ON THE DIOPHANTINE EQUATION

$$
x^{2}+2^{k}=y^{n}
$$

S. AKHTAR ARIF and FADWA S. ABU MURIEFAH

Department of Mathematics
Girls College of Education
Al-Riyadh, SAUDI ARABIA
(Received June 21, 1995 and in revised form September 29,1995)

Abstract

By factorizing the equation $x^{2}+2^{k}=y^{n}, n \geq 3, k$-even, in the field $Q(i)$, various theorems regarding the solutions of this equation in rational integers are proved. A conjecture regarding the solutions of this equation has been put forward and proved to be true for a large class of values of k and n.

KEY WORDS AND PHRASES: Diophantine equation, primitive root and the order of an integer 1992 AMS SUBJECT CLASSIFICATION CODES: 11D41.

1. INTRODUCTION

In his recent paper Cohn [1] has given a complete solution of the equation $x^{2}+2^{k}=y^{n}$ when k is an odd integer and $n \geq 3$. He proved that when k is an odd integer there are just three families of solutions. This equation is a special case of the equation $a x^{2}+b x+c=d y^{n}$, where a, b, c and d are integers, $a \neq 0, b^{2}-4 a c \neq 0, d \neq 0$, which has only a finite number of solutions in integers x and y when $n \geq 3$, see [2].

The first result regarding the title equation for general n is due to Lebesgue [3] who proved that when $k=0$ the equation has no solution in positive integers x, y and $n \geq 3$, and when $k=2$, Nagell [4] proved that the equation has the only solutions $x=2, y=2, n=3$ and $x=11, y=5, n=3$

In this paper we prove some results regarding the equation $x^{2}+2^{k}=y^{n}$, where k is even, say $k=2 m$ and since the results are known for $m=0,1$, we shall assume that $m>1$ The various results proved in this paper seem to suggest the

CONJECTURE. The diophantine equation

$$
\begin{equation*}
x^{2}+2^{2 m}=y^{n}, \quad n \geq 3, \quad m>1 \tag{ll}
\end{equation*}
$$

has two families of solutions given by $x=2^{m}, y^{n}=2^{2 m+1}$, and by $m=3 M+1, n=3, x=11.2^{3 M}$, $y=5.2^{2 M}$.

In this paper we are able to prove the above conjecture for all values of m when $n=3,7$ and when n has a prime divisor $p \not \equiv 7(\bmod 8)$, but we are unable to prove that if $m=3^{2 k+1} \cdot m^{\prime},\left(m^{\prime}, 3\right)=1$, and all prime divisors of n are congruent to 7 modulo 8 , then equation (1.1) has no solution in x odd integer

In the end we have verified that the conjecture is correct for all $m<100$ except possibly for 30 values of m The values $m=2,3$ are solved in [5].

2. CASE WHEN \boldsymbol{n} IS AN EVEN INTEGER

We first consider the case when n is an even integer We prove the following
THEOREM 1. If n is even, then the diophantine equation (1.1) has no solution in integers x and y
PROOF. Let $n=2 r, r \geq 2$, then $x^{2}+2^{2 m}=y^{2 r} \quad$ If x is odd, then also y is odd By factorization $\left(y^{r}+x\right)\left(y^{r}-x\right)=2^{n}$, we get $y^{r}+x=2^{\alpha}, y^{r}-x=2^{\beta}$, where α and β have the same parity and $\alpha>\beta \geq 1$. Thus $y^{r}=2^{\beta-1}\left(2^{\alpha-\beta}+1\right)$ and then $y^{r}=x_{1}^{2}+1$ where $x_{1}=2^{\frac{1}{2}(\alpha-\beta)}$, yielding no solution for $r \geq 3$ [3] and if $r=2$ it is easy to check that there is no solution. If x is even then writing $x=2^{a} X, y=2^{b} Y$, where $a>0, b>0$ and both X and Y are odd Then $2^{2 a} X^{2}+2^{2 m}=$ $2^{2 r b} Y^{2 r}$.

If $a=m$, we get $2^{2 a}\left(X^{2}+1\right)=2^{2 r b} Y^{2 r}$. Since X is odd let $X^{2}=8 T+1$ then $2^{2 a+1}(4 T+1)=2^{2 r b} Y^{2 r}$ which obviously is not valid

If $a \neq m$, then $2 r b=\min (2 a, 2 m) \quad$ If $a<m$, then $2 r b=2 a$, and we get $X^{2}+2^{2(m-a)}=Y^{2 r}$ which is not soluble for X and Y odd as we proved in the first part of this theorem, and if $a>m$ then $2 r b=2 m$ and we obtain $\left(2^{a-m} X\right)^{2}+1=Y^{2 r}$ which has no solutions [3]

3. CASE WHEN \boldsymbol{n} IS AN ODD INTEGER

Now we proceed to consider the case where n is an odd integer.
We first prove that it is sufficient to consider x odd. Because if x is even, then also y must be even and if $x=2^{u} X, y=2^{\nu} Y$ where both X and Y are odd, we obtain from (1.1) $2^{2 u} X^{2}+2^{2 m}=2^{\nu n} Y^{n}$, and therefore of the three powers of $2,2 u, 2 m$ and νn which occur here, two must be equal and the third is greater. There are thus three cases:

Case a: $2 u>2 m=\nu n$; then $\left(2^{u-m} X\right)^{2}+1=Y^{n}$ and this has no solution by [3]
Case b: $\nu n>2 u=2 m$; then $X^{2}+1=2^{\nu n-2 u} Y^{n}$. Here modulo 8 we see that $X^{2}+1=2 Y^{n}$ and this equation has been proved by C Störmer to have no solution except $X=Y=1$, so $x=2^{m}$

Case c: $2 m>2 u=\nu n$, then $X^{2}+\left(2^{m-u}\right)^{2}=Y^{n}$, and the problem is reduced to the one with X odd.

THEOREM 2. If n is an odd integer, the diophantine equation (1.1) has no solution in odd integer x if $m=3^{2 k} m^{\prime}$, where $k \geq 0,\left(m^{\prime}, 3\right)=1$.

PROOF. It is sufficient to consider $n=p$, an odd prime. The field $Q(\sqrt{-1})$ has unique prime factorization and so we may write equation (11) as

$$
\left(x+2^{m} \sqrt{-1}\right)\left(x-2^{m} \sqrt{-1}\right)=y^{p}
$$

where the factors on the left hand side have no common factor Thus for some rational integers a and b

$$
\begin{equation*}
x+2^{m} \sqrt{-1}=(a+b \sqrt{-1})^{p} \tag{array}
\end{equation*}
$$

so that $y=a^{2}+b^{2}$ and exactly one of a and b is even and the other is odd. From (3.1), we have

$$
2^{m}=b\left\{\sum_{r=0}^{1 / 2(p-1)}\binom{p}{2 r+1} a^{p-2 r-1}\left(-b^{2}\right)^{r}\right\}
$$

the case when a is even and b is odd can be easily eliminated. Hence a is odd and b is even. Since the term in brackets is odd, we get $b= \pm 2^{m}$ and

$$
\begin{equation*}
\pm 1=p a^{p-1}-\binom{p}{3} b^{2} a^{p-3}+\ldots+(-1)^{\frac{p-1}{2}} b^{p-1} \tag{3}
\end{equation*}
$$

By Lemma 5 in [5] the plus sign is impossible Since $m>1$, by Lemma 4 in [5] the minus sign implies that $p \equiv 7(\bmod 8)$ and $2^{2 m} \equiv 1(\bmod 9)$ which implies that $3 \mid m$. So

$$
\begin{equation*}
-1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} a^{p-2 r-1}\left(-2^{2 m}\right)^{r} \tag{array}
\end{equation*}
$$

Now we consider the two cases $3 \mid a$ and $(3, a)=1$ separately. If $(a, 3)=1$, then from (3) we get

$$
-1 \equiv\binom{p}{1}-\binom{p}{3}+\binom{p}{5}-\ldots-\binom{p}{p}(\bmod 3)
$$

which can be written as

$$
-1 \equiv \frac{(1+i)^{p}-(1-i)^{p}}{2 i}(\bmod 3)
$$

but since $p \equiv 7(\bmod 8)$, we find that $\frac{(1+\imath)^{p}-(1-\imath)^{p}}{2 \imath} \equiv 1(\bmod 3)$ which is a contradiction. So $3 \mid a$, say $a=3^{S} a^{\prime}$, where $\left(a^{\prime}, 3\right)=1$ and $S \geq 1$. Now let $p=1+2.3^{\delta} N$, where $(N, 2)=(N, 3)=1$ and $\delta \geq 0$ We can rewrite (3.3) as

$$
2^{m(p-1)}-1=\sum_{r=1}^{\frac{p-1}{2}}(-1)^{\frac{p-2 r-1}{2}}\binom{p}{p-2 r} a^{2 r}\left(-2^{m}\right)^{p-2 r-1}
$$

The general term in the right hand side is

$$
\binom{\dot{p}}{p-2 r} a^{2 r}\left(-2^{m}\right)^{p-2 r-1}=\binom{p}{2 r} a^{2 r}\left(-2^{m}\right)^{p-2 r-1}=\frac{p a^{2 r-2}}{r(2 r-1)}\binom{p-2}{2 r-2} a^{2} \cdot \frac{p-1}{2}\left(-2^{m}\right)^{p-2 r-1}
$$

Since $3^{2 r-2} \geq r(2 r-1)$, for $r \geq 1$, this right hand side is divisible by at least $3^{2 S+\delta}$, that is

$$
2^{m(p-1)} \equiv 1 \quad\left(\bmod 3^{2 S+\delta}\right)
$$

Since 2 is a primitive root of $3^{2 S+\delta}, \phi\left(3^{2 S+\delta}\right) \mid m(p-1)$, that is $3^{2 S-2 k-1} \mid m^{\prime} N$. But $\left(m^{\prime}, 3\right)=(N, 3)=1$, so $2 S-2 k-1=0$, which is impossible

COROLLARY 1. If $(3, m)=1$, then the diophantine equation (1.1) has no solution in x odd
COROLLARY 2. The diophantine equation (1.1) has no solution in x odd integer if n has a prime divisor $p \not \equiv 7(\bmod 8)$.

From Corollary 2 and Case b in Section 3, we can deduce the following theorem:
THEOREM 3. The equation $x^{2}+2^{2 m}=y^{p}, m>1, p$ is an odd prime $p \not \equiv 7(\bmod 8), p \neq 3$ has a solution only if $2 m+1 \equiv 0(\bmod p)$ If this condition is satisfied then it has exactly one solution given by $x=2^{m}, y=2^{\frac{2 m+1}{p}}$

For $n=3,7$, we are able to solve the equations completely. We prove:
THEOREM 4. The equation $x^{2}+2^{2 m}=y^{3}$ has solutions only if $m \equiv 1(\bmod 3)$ and if this condition is satisfied it has exactly two solutions given by

$$
x=2^{m}, \quad y=2^{\frac{2 m+1}{3}} \quad \text { and } \quad x=11.2^{m-1}, \quad y=5.2^{\frac{2(m-1)}{3}}
$$

PROOF. From Corollary 2 it is sufficient to consider x even. From Case b we get $x=2^{m}$ as a solution, and Case c gives $X^{2}+2^{2(m-u)}=Y^{3}$. If $m-u=0$, then there is no solution [3], and if $m-u=1$, then we get $X=11, Y=5$ [4], so $x=11.2^{u}=11.2^{m-1}$ and $y=5.2^{\nu}=5.2^{\frac{2 m-1}{3}}$ is a solution. Finally for $m-u>1$, the equation has no solution (Corollary 2)

THEOREM 5. The diophantine equation $x^{2}+2^{2 m}=y^{7}$ has a solution only if $m \equiv 3(\bmod 7)$ and the unique solution is given by $x=2^{m}$ and $y=2^{\frac{2 m+1}{7}}$.

PROOF. If x is odd, then by using the same method as in [6] we can prove that the equation has no solution If x is even we get $x=2^{m}, y=2^{\frac{2 m+1}{7}}$ as the unique solution.

From the above three theorems we deduce that

THEOREM 6. The diophantine equation (11), where n has no prime divisor $p \equiv 7(\bmod 8)$ greater than 7 and $n \mid 2 m+1$ has a unique solution given by $x=2^{m}$ and $y=2^{\frac{2 m+1}{n}}$ if $(3, n)=1$ And if $3 \mid n$ it has exactly one additional solution $x=11.2^{m}$ and $y=5.2^{\frac{2(m-1)}{3}}$

NOTE We consider two solutions of the equation (1.1) different if they have different values of x.
THEOREM 7. The diophantine equation $x^{2}+2^{2 m}=y^{p}$ for given $m>0$ and prime p has at most one solution with x odd.

PROOF. We know that the solution is $y=a^{2}+2^{2 m}$ where a is odd and

$$
-1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} a^{p-2 r-1}\left(-2^{2 m}\right)^{r}
$$

if two different solutions were to arise from odd $a_{1}>a>0$, we should obtain

$$
\begin{equation*}
0=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} \frac{a_{1}^{p-2 r-1}-a^{p-2 r-1}}{a_{1}^{2}-a^{2}}\left(-2^{2 m}\right)^{r} \equiv p \frac{a_{1}^{p-1}-a^{p-1}}{a_{1}^{2}-a^{2}} \quad(\bmod 2) \tag{34}
\end{equation*}
$$

Since $p \equiv 3(\bmod 4)$ the number

$$
\frac{a_{1}^{p-1}-a^{p-1}}{a_{1}^{2}-a^{2}}=a_{1}^{p-3}+a_{1}^{p-5} a^{2}+\ldots+a^{p-3}
$$

is odd, so (34) is impossible
We need the following lemma to prove the next theorem.
LEMMA (Cohn [5]) If q is any odd prime that divides a, satisfying (3 3), then

$$
2^{m(q-1)} \equiv 1 \quad\left(\bmod q^{2}\right)
$$

THEOREM 8. If m is even and $(5, m)=1$, then the diophantine equation (1.1) has no solution in x odd.

PROOF. First suppose that $5 \mid a$ in (3.3), then by the last lemma $2^{8 m} \equiv 1(\bmod 25) \quad$ But ord(2) $\bmod 25$ is equal to 20 , so $20 \mid 8 m$, hence $5 \mid m$, and so if $(5, m)=1$, then $(a, 5)=1$. Since m is even so $2^{2 m} \equiv 1(\bmod 5) \quad$ If $a^{2} \equiv 1(\bmod 5)$ then from (3.3)

$$
\begin{aligned}
-1 & \equiv\binom{p}{1}-\binom{p}{3}+\binom{p}{5}-\ldots-\binom{p}{p}(\bmod 5) \\
& \equiv \frac{(1+i)^{p}-(1-i)^{p}}{2 i}(\bmod 5) \\
& \equiv-3(\bmod 5)
\end{aligned}
$$

which is impossible
If $a^{2} \equiv-1(\bmod 5)$, then from (3.3)

$$
-1 \equiv-\binom{p}{1}-\binom{p}{3}-\binom{p}{5}-\ldots-\binom{p}{p}(\bmod 5)
$$

So, $1 \equiv 2^{p-1}(\bmod 5)$ which is impossible since $p \equiv 7(\bmod 8)$, and the theorem is proved.
NOTE. We can easily prove that: If m is odd, then equation (1.1) may have a solution in x odd only if $a^{2} \equiv 1(\bmod 5) \quad$ Because if we suppose $5 \mid a$, then from equation (3.3) we get

$$
2^{m(p-1)} \equiv 1 \quad(\bmod 25)
$$

Hence $20 \mid m(p-1)$, showing thereby that m is even, and if we suppose that $a^{2} \equiv-1(\bmod 5)$ then for m odd $2^{2 m} \equiv-1(\bmod 5)$, so (3.3) gives

$$
-1 \equiv-\binom{p}{1}+\binom{p}{3}-\ldots-\binom{p}{p} \quad(\bmod 5)
$$

like before $1 \equiv-3(\bmod 5)$ which is not true
THEOREM 9. The diophantine equation $x^{2}+2^{2 m}=y^{p}, m>1,(m, 7)=1$ may have a solution in x odd only if $p \equiv 7(\bmod 24)$

PROOF. Since $3 \mid m, 2^{2 m} \equiv 1(\bmod 7) \quad$ Now $(a \pm i)^{8} \equiv a^{2}+1(\bmod 7)$, so if $p=7+8 k$ and by using (3.3) we have

$$
\begin{aligned}
-1 & \equiv \frac{(a+i)^{p}-(a-i)^{p}}{2 i}(\bmod 7) \\
& \equiv\left(a^{2}+1\right)^{k} \cdot \frac{(a+i)^{7}-(a-i)^{7}}{2 i}(\bmod 7)
\end{aligned}
$$

So $\left(a^{2}+1\right)^{k} \equiv 1(\bmod 7) \quad$ We consider the different values of a If
$1 a^{2} \equiv 0(\bmod 7)$, then from the last lemma $2^{12 m} \equiv 1(\bmod 49)$ but $\operatorname{ord}(2) \bmod 49$ is 21 , so $7 \mid m$, hence if $(7, m)=1$, there is no solution in this case.
2. $a^{2} \equiv 1(\bmod 7)$, then $2^{k} \equiv 1(\bmod 7)$, so $k \equiv 0(\bmod 3)$ and $p \equiv 1(\bmod 3)$
$3 a^{2} \equiv 2(\bmod 7)$, then $3^{k} \equiv 1(\bmod 7)$, so $k \equiv 0(\bmod 6)$ and $p \equiv 1(\bmod 3)$
4. $a^{2} \equiv 4(\bmod 7)$, then $5^{k} \equiv 1(\bmod 7)$, so $k \equiv 0(\bmod 6)$ and $p \equiv 1(\bmod 3)$.

So if $p \equiv 2(\bmod 3)$, there is no solution. Combining $p \equiv 7(\bmod 8)$ and $p \equiv 1(\bmod 3)$ we get $p \equiv 7(\bmod 24)$

EXAMPLES. The equations $x^{2}+2^{30}=y^{23}, x^{2}+2^{54}=y^{47}$, have no solutions in x odd

4. PARTICULAR EQUATIONS

In this section we consider some particular equations and solve them completely
EXAMPLE 1. Consider the equation $x^{2}+2^{8}=y^{n} \quad$ By Theorem 1 and Corollary 1 it suffices to consider n odd and x even. Then Case b gives $u=4, X=Y=1$, i.e. $x=2^{4}$, Case c gives $8>2 u=n \nu$; then $X^{2}+\left(2^{4-u}\right)^{2}=Y^{n}$, with X odd For $3 \mid n$ the sole solution is $X=11, u=3$ whence $x=11.2^{3}, y=5.2^{2}, n=3$.

By using methods similar to the above and considering the equation $X^{2}+2^{2(m-u)}=Y^{n}$, in X odd for $3 \leq u \leq m-1$ we can solve the equation $x^{2}+2^{2 m}=y^{n}$ completely for $4 \leq m \leq 14$ For the other values of $m>15$ we need also Theorems $4,5,6$ and 9 to solve the case when x is even and n is odd.

EXAMPLE 2. Consider the equation $x^{2}+2^{86}=y^{n}$. As in Example 1 we get from Case \mathbf{b} $u=43, X=Y=1$, i.e. $x=2^{43}$. Case c gives $86>2 u=\nu n$, then $X^{2}+\left(2^{43-u}\right)^{2}=Y^{n}$, with X odd For $3 \mid n$ the sole solution is $X=11, u=42$ whence $x=11.2^{42}$. Otherwise, all the prime factors of n must be congruent to 7 modulo 8 but be unequal to 7 Thus since $n<86, n$ must be prime p Next, the new $m=43-u$ must be divisible by an odd power of 3 , and u a multiple of p. The only possibility would be $u=p=31, m=12$, so $X^{2}+2^{24}=Y^{31}$, which has no solution by Theorem 8

EXAMPLE 3. Consider the equation $x^{2}+2^{198}=y^{n}$. As we solved before we find $x=2^{99}$, $y=2, n=199$ Case c gives $198>2 u=\nu n$, then $X^{2}+\left(2^{99-u}\right)^{2}=Y^{n}$ with X odd. For $3 \mid n$ there is no solution (Theorem 4). Otherwise as in Example 2, we get the only possibility $u=69, p=23$, $m=30$, so $X^{2}+2^{60}=Y^{23}$ which has no solution (Theorem 9).

By using the above methods we are able to verify the conjecture for $m<100$ except possibly for the values $m=3,15,21,27,30,33,39,44,46,51,52,57,58,60,61,64,67,68,69,70,75,77,82,83,87$, 88, 90, 91, 93, 94

REFERENCES

[1] COHN, J.H.E., The diophantine equation $x^{2}+2^{k}=y^{n}$, Archiv der Mat., 59 (1992), 341-344
[2] LANDAU, E. and OSTROWSKI, A., On the diophantine equation $a y^{2}+b y+c=d x^{n}$, Proc. Lon. Math. Soc. (2), 19 (1920), 276-280
[3] LEBESGUE, V.A., Sur I' impossibilité en nombres entiers de I'équation $x^{m}=y^{n}+1$, Nouvelles Annales des Mathématıques (1), 9 (1850), 178-181.
[4] NAGELL, T., Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Regiae Soc. Sc. Upaliensis (4), 16 Nr 2 (1955), 1-38
[5] COHN, J.H.E., The diophantine equation $x^{2}+C=y^{n}$, Acta Arth., 65 (1993), 367-381
[6] BLASS, J and STEINER, R., On the equation $y^{2}+k=X^{7}$, Utilitas Math., 13 (1978), 293-297

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

