SUBCLASSES OF UNIVALENT FUNCTIONS SUBORDINATE TO CONVEX FUNCTIONS

YONG CHAN KIM

Department of Mathematics
Yeungnam University
Gyongsan 712-749, KOREA

IL BONG JUNG

Department of Mathematics
Kyungpook National University
Taegu 702-701, KOREA
(Received May 17, 1995 and in revised form August 30, 1995)

Abstract

In this paper, we define a new subclass $\mathcal{M}_{\alpha}(A, B)$ of univalent functions and investigate several interesting characterization theorems involving a general class $\mathcal{S}^{*}[A, B]$ of starlike functions

KEY WORDS AND PHRASES: Univalent function, subordination, α-convex function 1991 AMS SUBJECT CLASSIFICATION CODES: 30C45, 30D30

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{array}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, let \mathcal{S} denote the class of all functions in \mathcal{U} which are univalent in \mathcal{U}

A function $f(z)$ belonging to \mathcal{S} is said to be starlike of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathcal{U} ; 0 \leq \alpha<1) \tag{12}
\end{equation*}
$$

We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{S} consisting of functions which are starlike of order α
A function $f(z)$ belonging to \mathcal{S} is said to be convex of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathcal{U} ; 0 \leq \alpha<1) \tag{13}
\end{equation*}
$$

We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{S} consisting of functions which are convex of order α We note that

$$
\begin{equation*}
\mathcal{S}^{*}(\alpha) \subseteq \mathcal{S}^{*}(0) \equiv \mathcal{S}^{*} \quad(0 \leq \alpha<1) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}(\alpha) \subseteq \mathcal{K}(0) \equiv \mathcal{K} \quad(0 \leq \alpha<1) \tag{15}
\end{equation*}
$$

With a view to introducing an interesting family of analytic functions, we should recall the concept of subordination between analytic functions Given two functions $f(z)$ and $g(z)$, which are analytic in \mathcal{U}, the function $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $h(z)$, analytic in \mathcal{U} with

$$
\begin{equation*}
h(0)=0 \quad \text { and } \quad|h(z)|<1 \tag{16}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(z)=g(h(z)) \quad(z \in \mathcal{U}) . \tag{1.7}
\end{equation*}
$$

We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) . \tag{18}
\end{equation*}
$$

In particular, if $g(z)$ is univalent in \mathcal{U}, the subordination (18) is equivalent to

$$
\begin{equation*}
f(0)=g(0) \quad \text { and } \quad f(\mathcal{U}) \subset g(\mathcal{U}) \tag{19}
\end{equation*}
$$

Janowski [1] introduced the class $\mathcal{P}[A, B]$ For $-1 \leq B<A \leq 1$, a function p, analytic in \mathcal{U} with $p(0)=1$, belongs to the class $\mathcal{P}[A, B]$ if $p(z)$ is subordinate to $(1+A z) /(1+B z) \quad$ Also $\mathcal{S}^{*}[A, B]$ and $\mathcal{K}[A, B]$ denote the subclasses of \mathcal{S} consisting of all functions $f(z)$ such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \in \mathcal{P}[A, B] \quad \text { and } \quad \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in \mathcal{P}[A, B] \tag{110}
\end{equation*}
$$

respectively. We note that $\mathcal{S}^{*}[-1,1]=\mathcal{S}^{*}$ and $\mathcal{K}[-1,1]=\mathcal{K}$
DEFINITION 1. Let α be a real number. A function $f(z)$ belonging to the class \mathcal{A} with $(f(z) / z) f^{\prime}(z) \neq 0$ is said to be α-convex in \mathcal{U} if and only if

$$
\begin{equation*}
\operatorname{Re}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0 \tag{111}
\end{equation*}
$$

Also we denote the class of α-convex functions by \mathcal{M}_{α}. Then it is easy to see that

$$
\begin{equation*}
\mathcal{M}_{\alpha}=\left\{f \in \mathcal{S}: \operatorname{Re}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0, \quad z \in \mathcal{U}\right\} \tag{112}
\end{equation*}
$$

See Eenigenberg and Miller [5] for further information on them
We now define the class $\mathcal{M}_{\alpha}(A, B)$ as follows: If α is a real number, then

$$
\begin{array}{r}
\mathcal{M}_{\alpha}(A, B)=\left\{f \in \mathcal{S}:\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \prec \frac{1+A z}{1+B z}\right. \\
-1 \leq B<A \leq 1, z \in \mathcal{U}\} \tag{array}
\end{array}
$$

Clearly, we have

$$
\begin{equation*}
\mathcal{M}_{\alpha}(1,-1)=\mathcal{M}_{\alpha}, \quad M_{1}(A, B)=\mathcal{K}[A, B] \tag{114}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{M}_{0}(A, B)=\mathcal{S}^{*}[A, B] \tag{115}
\end{equation*}
$$

2. MAIN RESULTS

Applying the method of the integral representation [2] for functions in $\mathcal{M}_{\alpha}(A, B)(\alpha>0)$, it is not difficult to deduce

LEMMA 1. The function $f(z)$ is in $\mathcal{M}_{\alpha}(A, B), \alpha>0$, if and only if there exists a function $g(z)$ belonging to the class $\mathcal{S}^{*}[A, B]$ such that

$$
\begin{equation*}
f(z)=\left[\frac{1}{\alpha} \int_{0}^{z}\{g(t)\}^{1 / \alpha} t^{-1} d t\right]^{\alpha} \tag{array}
\end{equation*}
$$

PROOF. Setting $g(z)=f(z)\left\{z f^{\prime}(z) / f(z)\right\}^{\alpha}$, so that (2.1) is satisfied, we observe that

$$
\frac{z g^{\prime}(z)}{g(z)}=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

Hence $f \in \mathcal{M}_{\alpha}(A, B)$ if and only if $g \in \mathcal{S}^{*}[A, B]$.
Before stating our first theorem, we need the following definition
DEFINITION 2. Let c be a complex number such that $\operatorname{Re} c>0$, and let

$$
\begin{equation*}
N=N(c)=\left[|c|(1+2 \operatorname{Re} c)^{1 / 2}+\operatorname{Im} c\right] / \operatorname{Re} c . \tag{22}
\end{equation*}
$$

If h is the univalent function $h(z)=2 N z /\left(1-z^{2}\right)$ and $b=h^{-1}(c)$, then we define the "open door" (cf [3]) function \mathcal{Q}_{c} as

$$
\begin{equation*}
\mathcal{Q}_{c}(z)=h[(z+b) /(1+\bar{b} z)], \quad z \in \mathcal{U} . \tag{23}
\end{equation*}
$$

THEOREM 1. Let $f \in \mathcal{M}_{\alpha}(A, B)(\alpha>0)$, and let

$$
\begin{equation*}
\left(\frac{1+A z}{1+b z}\right) \prec \alpha \mathcal{Q}_{\frac{1}{a}}(z) . \tag{24}
\end{equation*}
$$

Then $f \in \mathcal{S}^{*}$
PROOF. Since $f \in \mathcal{M}_{\alpha}(A, B)(\alpha>0)$, it follows that there exists a function $g \in \mathcal{S}^{*}[A, B]$ such that

$$
\begin{equation*}
f(z)=\left[\frac{1}{\alpha} \int_{0}^{z}\{g(t)\}^{1 / \alpha} t^{-1} d t\right]^{\alpha}, \tag{25}
\end{equation*}
$$

by using Lemma 1. By the hypothesis, we also have

$$
\begin{equation*}
\frac{1}{\alpha}\left(\frac{z g^{\prime}(z)}{g(z)}\right) \prec \frac{1}{\alpha}\left(\frac{1+A z}{1+B z}\right) \prec \mathcal{Q}_{\frac{1}{⿺}}(z) \tag{26}
\end{equation*}
$$

Thus, by a result of Miller and Mocanu ([3], Corollary 3.1), we have

$$
f(z)=\left[\frac{1}{\alpha} \int_{0}^{z}\{g(t)\}^{1 / \alpha} t^{-1} d t\right]^{\alpha} \in \mathcal{S}^{*}
$$

LEMMA 2. (Mocanu [4]) Let \mathcal{P} be an analytic function in \mathcal{U} satisfying $\mathcal{P} \prec \mathcal{Q}_{c}$ If p is analytic in $\mathcal{U}, p(0)=1 / c$, and

$$
\begin{equation*}
z p^{\prime}(z)+\mathcal{P}(z) p(z)=1 \tag{27}
\end{equation*}
$$

then $\operatorname{Re} p(z)>0$ in \mathcal{U}
Making use of Lemma 2, we now prove
THEOREM 2. Let $f \in \mathcal{M}_{\alpha}(A, B)(\alpha>0)$, and let

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}+\frac{f(z)}{z f^{\prime}(z)}-1 \prec \mathcal{Q}_{1} \tag{28}
\end{equation*}
$$

Then $f \in \mathcal{S}^{*}[A, B]$.
PROOF. If we set $p(z)=z f^{\prime}(z) / f(z)$, then

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{29}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \tag{210}
\end{equation*}
$$

Since $f \in \mathcal{M}_{\alpha}(A, B)$,

$$
\begin{equation*}
p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+A z}{1+B z} \tag{211}
\end{equation*}
$$

Setting $\mathcal{P}(z)=p(z)+1 / p(z)-1$, we obtain

$$
\begin{equation*}
z p^{\prime}(z)+\mathcal{P}(z) \boldsymbol{p}(z)=1 \tag{212}
\end{equation*}
$$

and $\mathcal{P} \prec \mathcal{Q}_{1}$ by the hypothesis (2.8)
Thus, by Lemma 2, we have

$$
\operatorname{Re} p(z)>0 \quad(z \in \mathcal{U})
$$

Since $\alpha>0$,

$$
\operatorname{Re}\left\{\frac{1}{\alpha} p(z)\right\}>0 \quad(z \in \mathcal{U})
$$

Also $(1+A z) /(1+B z)$ (with $-1 \leq B<A \leq 1$) is a convex univalent function Therefore, by appealing to a known result ([6], Theorem 7), we conclude from (2 11) and (2 14) that

$$
\begin{equation*}
p(z) \prec \frac{1+A z}{1+B z} \tag{215}
\end{equation*}
$$

This evidently completes the proof of Theorem 2
As an example of ([7], Corollary 3.2, see also [9]), consider the case when $\alpha>0$, $-1 \leq B<A \leq 1$, and $A \neq B$. Then the differential equation

$$
q(z)+\alpha \frac{z q^{\prime}(z)}{q(z)}=\frac{1+A z}{1+B z}
$$

has a univalent solution given by

$$
q(z)= \begin{cases}\frac{z^{\frac{1}{\alpha}}(1+B z)^{\frac{1}{\alpha}}\left(\frac{A-B}{B}\right)}{\frac{1}{\alpha} \int_{0}^{z} t^{\frac{1}{\alpha}-1}(1+B t)^{\frac{1}{\alpha}\left(\frac{A-B}{B}\right)} d t} & \text { if } B \neq 0 \\ \frac{z^{\frac{1}{\alpha}} e^{\frac{A}{\alpha}}}{\frac{1}{\alpha} \int_{0}^{z} t^{\frac{1}{\alpha}-1} e^{\frac{A}{\alpha}} d t} & \text { if } B=0\end{cases}
$$

If $p(z)$ is analytic in \mathcal{U} and satisfies

$$
p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+A z}{1+B z}
$$

then

$$
\begin{equation*}
p(z) \prec q(z) \prec \frac{1+A z}{1+B z} \tag{2.19}
\end{equation*}
$$

Hence, by the equations (2.11) and (2 19), we obtain
THEOREM 3. Let $\alpha>0$ and $f \in \mathcal{M}_{\alpha}(A, B)$. Then

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec q(z) \prec \frac{1+A z}{1+B z} \tag{2.20}
\end{equation*}
$$

where $q(z)$ is given by (2.17).
THEOREM 4. $\mathcal{K}(\alpha) \subset \mathcal{M}_{\alpha}(1-2 \alpha,-1)(0 \leq \alpha<1)$.
PROOF. If we define

$$
\begin{equation*}
h_{\alpha}(z)=\frac{1+(1-2 \alpha) z}{1-z} \quad(0 \leq \alpha<1) \tag{221}
\end{equation*}
$$

then we can easily see that $f \in \mathcal{K}(\alpha)$ if and only if

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec h_{\alpha}(z) \tag{222}
\end{equation*}
$$

(cf [10], Equation (9)). Hence, by Theorem 1 of [10], we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec h_{\alpha}(z) \tag{223}
\end{equation*}
$$

Therefore we conclude from [8, Lemma 2.2] that

$$
\begin{equation*}
\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \prec h_{\alpha}(z) \tag{224}
\end{equation*}
$$

This completes the proof of Theorem 4
ACKNOWLEDGMENT. This work was partially supported by KOSEF (project No 94-1400-02-01-3) and TGRC-KOSEF, and by the Basic Science Research Institute Program (BSRI-95-1401)

REFERENCES

[1] JANOWSKI, W, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), 297-326
[2] MOCANU, P T., Une propriété de convexité généraliseé dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133.
[3] MILLER, S.S. and MOCANU, P.T., Classes of univalent integral operators, J. Math. Anal. Appl. 157 (1991), 147-165
[4] MOCANU, P.T., Some integral operators and starlike functions, Rev. Roumaine Math. Pures Appl. 31 (1986), 231-235.
[5] EENIGENBURG, P.J. and MILLER, S.S., The H^{p} classes for α-convex functions, Proc. Amer. Math. Soc. 38 (1973), 558-562.
[6] MILLER, S.S and MOCANU, P.T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171
[7] MILLER, S.S. and MOCANU, P T., Univalent solutions of Briot-Bouquet differential equations, J. Differential Equatıon 56 (1985), 297-309.
[8] NOOR, K.I., On some univalent integral operators, J. Math. Anal. Appl. 128 (1987), 586-592
[9] OWA, S. and SRIVASTAVA, H.M., Analytic solutions of a class of Briot-Bouquet differential equations, in Current Topics in Analytic Function Theory (H.M Srivastava and S Owa, Editors), 252-259, World Science Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
[10] SALAGEAN, G S., Subclasses of univalent functions, Complete Analysis: Fifth Romanıan-Finish Seminer, Part 1 (C Andreian Cazacu, N. Boboc, M Jurchescu, and I Siciu, Editors), 362-372, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

