### SUBCLASSES OF UNIVALENT FUNCTIONS SUBORDINATE TO CONVEX FUNCTIONS

YONG CHAN KIM

Department of Mathematics Yeungnam University Gyongsan 712-749, KOREA IL BONG JUNG Department of Mathematics Kyungpook National University Taegu 702-701, KOREA

(Received May 17, 1995 and in revised form August 30, 1995)

**ABSTRACT.** In this paper, we define a new subclass  $\mathcal{M}_{\alpha}(A, B)$  of univalent functions and investigate several interesting characterization theorems involving a general class  $\mathcal{S}^*[A, B]$  of starlike functions

# **KEY WORDS AND PHRASES:** Univalent function, subordination, $\alpha$ -convex function **1991 AMS SUBJECT CLASSIFICATION CODES:** 30C45, 30D30

## 1. INTRODUCTION AND DEFINITIONS

Let  $\mathcal{A}$  denote the class of functions normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{11}$$

which are analytic in the open unit disk  $\mathcal{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ . Further, let S denote the class of all functions in  $\mathcal{U}$  which are univalent in  $\mathcal{U}$ 

A function f(z) belonging to S is said to be starlike of order  $\alpha$  ( $0 \le \alpha < 1$ ) if and only if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathcal{U}; 0 \le \alpha < 1).$$
(12)

We denote by  $S^*(\alpha)$  the subclass of S consisting of functions which are starlike of order  $\alpha$ 

A function f(z) belonging to S is said to be convex of order  $\alpha (0 \le \alpha < 1)$  if and only if

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \mathcal{U}; 0 \le \alpha < 1).$$
(13)

We denote by  $\mathcal{K}(\alpha)$  the subclass of S consisting of functions which are convex of order  $\alpha$  We note that

$$S^*(\alpha) \subseteq S^*(0) \equiv S^* \quad (0 \le \alpha < 1) \tag{14}$$

and

$$\mathcal{K}(\alpha) \subseteq \mathcal{K}(0) \equiv \mathcal{K} \quad (0 \le \alpha < 1).$$
 (15)

With a view to introducing an interesting family of analytic functions, we should recall the concept of subordination between analytic functions Given two functions f(z) and g(z), which are analytic in  $\mathcal{U}$ , the function f(z) is said to be *subordinate* to g(z) if there exists a function h(z), analytic in  $\mathcal{U}$  with

$$h(0) = 0$$
 and  $|h(z)| < 1$ , (16)

such that

$$f(z) = g(h(z)) \quad (z \in \mathcal{U}). \tag{1.7}$$

We denote this subordination by

$$f(z) \prec g(z). \tag{18}$$

In particular, if g(z) is univalent in U, the subordination (18) is equivalent to

$$f(0) = g(0)$$
 and  $f(\mathcal{U}) \subset g(\mathcal{U})$ . (19)

Janowski [1] introduced the class  $\mathcal{P}[A, B]$  For  $-1 \leq B < A \leq 1$ , a function p, analytic in  $\mathcal{U}$  with p(0) = 1, belongs to the class  $\mathcal{P}[A, B]$  if p(z) is subordinate to (1 + Az)/(1 + Bz) Also  $\mathcal{S}^{\bullet}[A, B]$  and  $\mathcal{K}[A, B]$  denote the subclasses of  $\mathcal{S}$  consisting of all functions f(z) such that

$$\frac{zf'(z)}{f(z)} \in \mathcal{P}[A, B] \quad \text{and} \quad \frac{(zf'(z))'}{f'(z)} \in \mathcal{P}[A, B], \tag{110}$$

respectively. We note that  $S^*[-1,1] = S^*$  and  $\mathcal{K}[-1,1] = \mathcal{K}$ 

**DEFINITION 1.** Let  $\alpha$  be a real number. A function f(z) belonging to the class  $\mathcal{A}$  with  $(f(z)/z)f'(z) \neq 0$  is said to be  $\alpha$ -convex in  $\mathcal{U}$  if and only if

$$\operatorname{Re}\left[\left(1-\alpha\right)\frac{zf'(z)}{f(z)}+\alpha\left(1+\frac{zf''(z)}{f'(z)}\right)\right]>0.$$
(111)

Also we denote the class of  $\alpha$ -convex functions by  $\mathcal{M}_{\alpha}$ . Then it is easy to see that

$$\mathcal{M}_{\alpha} = \left\{ f \in \mathcal{S} : \operatorname{Re}\left[ (1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left( 1 + \frac{zf''(z)}{f'(z)} \right) \right] > 0, \ z \in \mathcal{U} \right\}.$$
(112)

See Eenigenberg and Miller [5] for further information on them

We now define the class  $\mathcal{M}_{\alpha}(A, B)$  as follows: If  $\alpha$  is a real number, then

$$\mathcal{M}_{\alpha}(A,B) = \left\{ f \in \mathcal{S} : \left[ (1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left( 1 + \frac{zf''(z)}{f'(z)} \right) \right] \prec \frac{1+Az}{1+Bz}, -1 \le B < A \le 1, z \in \mathcal{U} \right\}.$$
(1.13)

Clearly, we have

$$\mathcal{M}_{\alpha}(1, -1) = \mathcal{M}_{\alpha}, \quad M_{1}(A, B) = \mathcal{K}[A, B], \tag{114}$$

and

$$\mathcal{M}_0(A,B) = \mathcal{S}^*[A,B]. \tag{115}$$

#### 2. MAIN RESULTS

Applying the method of the integral representation [2] for functions in  $\mathcal{M}_{\alpha}(A, B)$  ( $\alpha > 0$ ), it is not difficult to deduce

**LEMMA 1.** The function f(z) is in  $\mathcal{M}_{\alpha}(A, B)$ ,  $\alpha > 0$ , if and only if there exists a function g(z) belonging to the class  $\mathcal{S}^*[A, B]$  such that

$$f(z) = \left[\frac{1}{\alpha} \int_0^z \{g(t)\}^{1/\alpha} t^{-1} dt\right]^{\alpha}.$$
 (2 1)

**PROOF.** Setting  $g(z) = f(z) \{ zf'(z)/f(z) \}^{\alpha}$ , so that (2.1) is satisfied, we observe that

$$\frac{zg'(z)}{g(z)} = (1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right).$$

Hence  $f \in \mathcal{M}_{\alpha}(A, B)$  if and only if  $g \in \mathcal{S}^{*}[A, B]$ .

Before stating our first theorem, we need the following definition

**DEFINITION 2.** Let c be a complex number such that  $\operatorname{Re} c > 0$ , and let

$$N = N(c) = \left[ |c| (1 + 2 \operatorname{Re} c)^{1/2} + \operatorname{Im} c \right] / \operatorname{Re} c.$$
 (2 2)

If h is the univalent function  $h(z) = 2Nz/(1-z^2)$  and  $b = h^{-1}(c)$ , then we define the "open door" (cf [3]) function  $Q_c$  as

$$Q_c(z) = h\left[(z+b)/(1+\overline{b}z)\right], \quad z \in \mathcal{U}.$$
(2.3)

**THEOREM 1.** Let  $f \in \mathcal{M}_{\alpha}(A, B)$  ( $\alpha > 0$ ), and let

$$\left(\frac{1+Az}{1+bz}\right) \prec \alpha \, \mathcal{Q}_{\frac{1}{\alpha}}(z). \tag{24}$$

Then  $f \in S^*$ 

**PROOF.** Since  $f \in \mathcal{M}_{\alpha}(A, B)$   $(\alpha > 0)$ , it follows that there exists a function  $g \in \mathcal{S}^{*}[A, B]$  such that

$$f(z) = \left[\frac{1}{\alpha} \int_0^z \{g(t)\}^{1/\alpha} t^{-1} dt\right]^{\alpha},$$
 (2.5)

by using Lemma 1. By the hypothesis, we also have

$$\frac{1}{\alpha} \left( \frac{zg'(z)}{g(z)} \right) \prec \frac{1}{\alpha} \left( \frac{1+Az}{1+Bz} \right) \prec \mathcal{Q}_{\frac{1}{\alpha}}(z).$$
(2.6)

Thus, by a result of Miller and Mocanu ([3], Corollary 3.1), we have

$$f(z) = \left[\frac{1}{\alpha}\int_0^z \{g(t)\}^{1/\alpha}t^{-1}dt\right]^\alpha \in \mathcal{S}^*.$$

**LEMMA 2.** (Mocanu [4]) Let  $\mathcal{P}$  be an analytic function in  $\mathcal{U}$  satisfying  $\mathcal{P} \prec \mathcal{Q}_c$  If p is analytic in  $\mathcal{U}$ , p(0) = 1/c, and

$$zp'(z) + \mathcal{P}(z)p(z) = 1, \qquad (27)$$

then Re p(z) > 0 in  $\mathcal{U}$ 

Making use of Lemma 2, we now prove

**THEOREM 2.** Let  $f \in \mathcal{M}_{\alpha}(A, B)$  ( $\alpha > 0$ ), and let

$$\frac{zf'(z)}{f(z)} + \frac{f(z)}{zf'(z)} - 1 \prec Q_1.$$
 (2.8)

Then  $f \in \mathcal{S}^*[A, B]$ .

**PROOF.** If we set p(z) = zf'(z)/f(z), then

$$p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)}.$$
(2.9)

Hence

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) = p(z) + \alpha\frac{zp'(z)}{p(z)}.$$
(2.10)

Since  $f \in \mathcal{M}_{\alpha}(A, B)$ ,

$$p(z) + \alpha \frac{zp'(z)}{p(z)} \prec \frac{1+Az}{1+Bz}.$$
(2.11)

Setting  $\mathcal{P}(z) = p(z) + 1/p(z) - 1$ , we obtain

$$zp'(z) + \mathcal{P}(z)p(z) = 1$$
 (2.12)

and  $\mathcal{P} \prec \mathcal{Q}_1$  by the hypothesis (2.8)

Thus, by Lemma 2, we have

$$\operatorname{Re} p(z) > 0 \quad (z \in \mathcal{U}). \tag{2.13}$$

Since  $\alpha > 0$ ,

$$\operatorname{Re}\left\{\frac{1}{\alpha}\,p(z)\right\} > 0 \quad (z \in \mathcal{U}). \tag{2 14}$$

Also (1 + Az)/(1 + Bz) (with  $-1 \le B < A \le 1$ ) is a convex univalent function Therefore, by appealing to a known result ([6], Theorem 7), we conclude from (2 11) and (2 14) that

$$p(z) \prec \frac{1+Az}{1+Bz} \,. \tag{2.15}$$

This evidently completes the proof of Theorem 2

As an example of ([7], Corollary 3.2, see also [9]), consider the case when  $\alpha > 0$ ,  $-1 \le B < A \le 1$ , and  $A \ne B$ . Then the differential equation

$$q(z) + \alpha \, \frac{zq'(z)}{q(z)} = \frac{1+Az}{1+Bz}$$
(2.16)

has a univalent solution given by

$$q(z) = \begin{cases} \frac{z^{\frac{1}{\alpha}}(1+Bz)^{\frac{1}{\alpha}}\left(\frac{A-B}{B}\right)}{\frac{1}{\alpha}\int_{0}^{z}t^{\frac{1}{\alpha}-1}(1+Bt)^{\frac{1}{\alpha}}\left(\frac{A-B}{B}\right)dt} & \text{if } B \neq 0\\ \frac{z^{\frac{1}{\alpha}}e^{\frac{A}{\alpha}z}}{\frac{1}{\alpha}\int_{0}^{z}t^{\frac{1}{\alpha}-1}e^{\frac{A}{\alpha}}dt} & \text{if } B = 0. \end{cases}$$
(2.17)

If p(z) is analytic in  $\mathcal{U}$  and satisfies

$$p(z) + \alpha \, \frac{zp'(z)}{p(z)} \prec \frac{1+Az}{1+Bz},$$
 (2.18)

then

$$p(z) \prec q(z) \prec \frac{1+Az}{1+Bz}.$$
(2.19)

Hence, by the equations (2.11) and (2.19), we obtain

**THEOREM 3.** Let  $\alpha > 0$  and  $f \in \mathcal{M}_{\alpha}(A, B)$ . Then

$$\frac{zf'(z)}{f(z)} \prec q(z) \prec \frac{1+Az}{1+Bz}, \qquad (2.20)$$

where q(z) is given by (2.17).

**THEOREM 4.**  $\mathcal{K}(\alpha) \subset \mathcal{M}_{\alpha}(1-2\alpha, -1) \ (0 \leq \alpha < 1).$ **PROOF.** If we define

$$h_{\alpha}(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \quad (0 \le \alpha < 1),$$
(2.21)

then we can easily see that  $f \in \mathcal{K}(\alpha)$  if and only if

$$1 + \frac{zf''(z)}{f'(z)} \prec h_{\alpha}(z) \tag{2.22}$$

(cf [10], Equation (9)). Hence, by Theorem 1 of [10], we have

246

$$\frac{zf'(z)}{f(z)} \prec h_{\alpha}(z). \tag{2.23}$$

Therefore we conclude from [8, Lemma 2.2] that

$$\left[ (1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left( 1 + \frac{zf''(z)}{f'(z)} \right) \right] \prec h_{\alpha}(z).$$
(2 24)

This completes the proof of Theorem 4

ACKNOWLEDGMENT. This work was partially supported by KOSEF (project No 94-1400-02-01-3) and TGRC-KOSEF, and by the Basic Science Research Institute Program (BSRI-95-1401)

### REFERENCES

- JANOWSKI, W, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), 297-326
- [2] MOCANU, P T., Une propriété de convexité généraliseé dans la théorie de la représentation conforme, *Mathematica* (Cluy) 11 (34) (1969), 127-133.
- [3] MILLER, S.S. and MOCANU, P.T., Classes of univalent integral operators, J. Math. Anal. Appl. 157 (1991), 147-165
- [4] MOCANU, P.T., Some integral operators and starlike functions, *Rev. Roumaine Math. Pures Appl.* 31 (1986), 231-235.
- [5] EENIGENBURG, P.J. and MILLER, S.S., The H<sup>p</sup> classes for α-convex functions, Proc. Amer. Math. Soc. 38 (1973), 558-562.
- [6] MILLER, S.S and MOCANU, P.T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171
- [7] MILLER, S.S. and MOCANU, P.T., Univalent solutions of Briot-Bouquet differential equations, J. Differential Equation 56 (1985), 297-309.
- [8] NOOR, K.I., On some univalent integral operators, J. Math. Anal. Appl. 128 (1987), 586-592
- [9] OWA, S. and SRIVASTAVA, H.M., Analytic solutions of a class of Briot-Bouquet differential equations, in *Current Topics in Analytic Function Theory* (H.M Srivastava and S Owa, Editors), 252-259, World Science Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
- [10] SALAGEAN, G S., Subclasses of univalent functions, Complete Analysis: Fifth Romanian-Finish Seminer, Part 1 (C Andreian Cazacu, N. Boboc, M Jurchescu, and I Siciu, Editors), 362-372, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983



Advances in **Operations Research** 



**The Scientific** World Journal







Hindawi

Submit your manuscripts at http://www.hindawi.com



Algebra



Journal of Probability and Statistics



International Journal of Differential Equations





Complex Analysis

International Journal of

Mathematics and Mathematical Sciences





Mathematical Problems in Engineering



Abstract and Applied Analysis

Discrete Dynamics in Nature and Society





**Function Spaces** 



International Journal of Stochastic Analysis

