CONVERGENCE OF COMPOSITION SEQUENCES OF BILINEAR AND OTHER TRANSFORMATIONS $\left\{\boldsymbol{f}_{n}\right\}, \boldsymbol{f}_{n} \rightarrow \boldsymbol{z}$

JOHN GILL
Mathematics Department
University of Southern Colorado
Pueblo, CO 81001-4901

(Received January 11, 1995 and in revised form July 28, 1995)

Abstract

This paper investigates convergence behavior of composition sequences $f_{1} \circ f_{2} \circ \ldots \circ f_{n}(z)$ and $f_{n} \circ f_{n-1} \circ \ldots \circ f_{1}(z)$ where the f_{n} 's are bilinear transformations and $f_{n} \rightarrow z$ Additional results are provided for the case when the f_{n} 's are more general functions

KEY WORDS AND PHRASES: Bilinear transformations, compositions, fixed points, continued fractions.
1991 AMS SUBJECT CLASSIFICATION CODES: 30B70, 40A15, 40 A 30.

1. INTRODUCTION

Starting with a sequence $\left\{f_{n}\right\}$ of complex valued functions, including bilinear transformations

$$
\begin{equation*}
f_{n}(z):=\left(a_{n} z+b_{n}\right) /\left(c_{n} z+d_{n}\right), \quad a_{n} d_{n}-b_{n} c_{n} \neq 0, \tag{11}
\end{equation*}
$$

two composition sequences can be formed

$$
\begin{align*}
& F_{n}(z):=f_{1} \circ f_{2} \circ \ldots \circ f_{n}(z), \quad \text { (inner composition), and } \tag{12}\\
& G_{n}(z):=f_{n} \circ f_{n-1} \circ \ldots \circ f_{1}(z), \quad \text { (outer composition). }
\end{align*}
$$

The sequence $\left\{F_{n}(z)\right\}$ (using (1.1)) arises in connection with normal continued fractions [1], and $\left\{G_{n}(z)\right\}$ occurs (using (11)) in the study of reverse continued fractions [2] and (more generally) in the computation of fixed points of functions written as infinite expansions [3]. Both sequences give perturbed orbits of $f(z)$ if $f_{n} \approx f$, and are thus interesting from a dynamical systems perspective

The investigation of the convergence behavior of sequences of the form (1.2) involving bilinear transformations (1.1) goes back at least to Paydon \& Wall [4] (1942) ant Schwerdtfeger [5] (1946), and was continued by Piranian \& Thron [6] (1957), and DePree \& Thron [7] (1962). Later, Magnus \& Mandell [8] (1970) gave explicit results when $f_{n} \rightarrow f$, where f is categorized as "hyperbolic", "loxodromic", or "elliptic" (see below). The author pursued the elliptic case further and explored the remaining "parabolic" case [9] (1973) More recently the author investigated these cases with regard to outer compositional structures $\left\{G_{n}(z)\right\}$ in [10] (1991), [2] (1993). Barrlund, Karlsson \& Wallin [11] (1993) have studied random inner and outer compositions of bilinear transformations-without the requirement that $f_{n} \rightarrow f$.

In addition, the author has explored structures (1.2) and (1.3) for sequences $\left\{f_{n}\right\}$ of more general complex functions in [12] (1988), [13] (1990), [14] (1992) Lorentzen has written a number of papers concerned with convergence properties of sequences of bilinear transformations and a definitive paper on inner compositions of more general functions [15] (1990)

This paper focuses on a case not falling into the four categories (hyperbolic, loxodromic, parabolic, or elliptic) mentioned above: the convergence behavior of (1.2) and (1.3) when $f_{n} \rightarrow z$, the identity function, and $\left\{f_{n}\right\}$ is described by (1.1) A minor additional case is considered also $f_{n} \rightarrow \alpha$, a certain constant. Further theory is developed for the setting in which the f_{n} 's are not necessarily bilinear transformations but $f_{n} \rightarrow z$.

The earliest results for $f_{n} \rightarrow z$ are due probably to DePree \& Thron [7]
THEOREM 1.1. If $\left\{F_{n}(z)\right\}$ converges to a bilinear transformation, where the f_{n} 's are bilinear transformations, then $f_{n} \rightarrow z$. and its partial converse.

THEOREM 1.2. If, for $f_{n}(z):=\left(a_{n} z+b_{n}\right) /\left(c_{n} z+d_{n}\right), a_{n} d_{n}-b_{n} c_{n}=1, \Pi a_{n}, \Pi d_{n}, \Sigma b_{n}$, and Σc_{n} all converge absolutely, then $\lim _{n \rightarrow \infty} F_{n}(z)=(P z+Q) /(R z+S)$, where $P S-R Q \neq 0$.

The hypotheses of Theorem 1.2 are written in terms of the coefficients of f_{n} as it is described in (1.1). This seems reasonable, particularly in light of applications. However, there is a more "natural" approach to the study of compositions of the form (1.2) and (1.3), one that demonstrates the similarity of convergence behavior between $\left\{F_{n}(z)\right\},\left\{G_{n}(z)\right\}$, and simple iteration $\left\{f^{n}(z)\right\}$ when $f_{n} \rightarrow f$ It is this approach that is taken in the current paper.

We first observe that any bilinear transformation f (or f_{n}) having two finite and distinct fixed points α and β (or α_{n} or β_{n}) can be written in "multiplier" form (Ford [16]):

$$
\begin{equation*}
\frac{f(z)-\alpha}{f(z)-\beta}=K \frac{z-\alpha}{z-\beta}, \quad|K| \leq 1, \quad \text { and } \quad \frac{f_{n}(z)-\alpha_{n}}{f_{n}(z)-\beta_{n}}=K_{n} \frac{z-\alpha_{n}}{z-\beta_{n}}, \quad\left|K_{n}\right| \leq 1 \tag{1.4}
\end{equation*}
$$

Here K is called the "multiplier" of the transformation. Its value determines the character of f Equation (1.4) coupled with the strongly geometrical nature of bilinear transformations leads to clear geometrical convergence patterns for the iteration $\left\{f^{n}(z)\right\}$ (see Ford [16], e.g.). Using (1.4) judiciously also allows the formulation of hypotheses written in terms of α_{n}, β_{n} and K_{n} that lead to conclusions on the convergence behavior of $\left\{F_{n}(z)\right\}$ and $\left\{G_{n}(z)\right\}$.

When f is hyperbolic or loxodromic $(|K|<1)$, (1.4) shows that $f^{n}(z) \rightarrow \alpha$, the attracting fixed point of f, for each $z \neq \beta$, the repelling fixed point of f. Under rather mild restrictions on α_{n}, β_{n} and K_{n} the behavior of $\left\{F_{n}(z)\right\}$ and $\left\{G_{n}(z)\right\}$ when $f_{n} \rightarrow f$ with $|K|<1$ is analogous to that of $\left\{f^{n}(z)\right\},[8],[10]$. In the parabolic case (single attracting fixed point α), and the elliptic case $(|K|=1$, $K \neq 1$), roughly parallel behavior has been shown to exist between $\left\{f^{n}(z)\right\}$ and $\left\{F_{n}(z)\right\}$ and $\left\{G_{n}(z)\right\}$ as well [2], [9].

However, in the present case $(f(z):=z)$ one finds $\left\{f^{n}(z)\right\}$ exhibiting no dynamical behavior whatsoever, since $f^{n}(z) \equiv z \quad$ Clearly f has an infinite number of neutral fixed points, no one of which exerts more dynamical influence than the others. Nevertheless, it will be shown that when $f_{n} \rightarrow z$ "slowly", with each $\left|K_{n}\right|<1$ in (1.4), $G_{n}(z) \rightarrow \alpha=\lim \alpha_{n}$ for all z with one possible exception and $F_{n}(z) \rightarrow \Gamma$, a constant, for all values of z except $z=\beta$. Thus the "perturbed iterations" $\left\{F_{n}(z)\right\}$ and $\left\{G_{n}(z)\right\}$ possess virtual attracting fixed points even though $z=f(z)=\lim f_{n}$ does not.

To demonstrate the importance of the sequence $\left\{K_{n}\right\}$ in determining "slow" versus "fast" convergence, we have the following simple example.

EXAMPLE. $\quad \frac{f_{n}(z)-\alpha}{f_{n}(z)-\beta}=K_{n} \frac{z-\alpha}{z-\beta}$, with $\alpha \neq \beta$ and (a) $K_{n}=1-1 / n$, and (b) $K_{n}=1-1 / n^{2}$, $n>1$. Then (a) $\frac{G_{n}(z)-\alpha}{G_{n}(z)-\beta}=\prod_{j=2}^{n}\left(1-\frac{1}{j}\right) \frac{z-\alpha}{z-\beta} \rightarrow 0$ shows that $G_{n}(z) \rightarrow G(z) \equiv \alpha$ for all $z \neq \beta$, and (b) $\frac{G(z)-\alpha}{G(z)-\beta}=\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right) \frac{z-\alpha}{z-\beta}=\frac{1}{2} \frac{z-\alpha}{z-\beta}$ shows that $G(z)=\lim G_{n}(z)=a$ bilinear transformation. The same results clearly hold for $F(z)=\lim F_{n}(z)$

2. OUTER COMPOSITION

The basic theorem of this section is the following:
THEOREM 2.1. Suppose
(i) $0<\left|K_{n}\right|<1, K_{n} \rightarrow 1\left(f_{n} \rightarrow z\right)$ or $K_{n} \rightarrow 0\left(f_{n} \rightarrow \alpha\right)$,
(ii) $\alpha_{\mathrm{n}} \rightarrow \alpha, \beta_{\mathrm{n}} \rightarrow \beta$, with $\alpha \neq \beta$, and
(iii) $\Sigma\left|\alpha_{n}-\alpha_{n-1}\right|<\infty$, and $\Sigma\left|\beta_{n}-\beta_{n-1}\right|<\infty$

Then
1 If $\Pi K_{n}=0,\left\{G_{n}(z)\right\}$ converges to α for all $z \in \mathbb{C}$, with one possible exception
2 If $\Pi K_{n}=\Gamma \neq 0,\left\{G_{n}(z)\right\}$ converges to a bilinear transformation
PROOF OF 1. The proof of Theorem 2.1 involves the same techniques used by Magnus \& Mandel [8] and the author [9] in the elliptic and parabolic cases for inner compositions.

We begin by solving (14) for $f_{n}(z)$, generating the following relationships.

$$
\begin{align*}
& a_{n}=\left(\alpha_{n}-K_{n} \beta_{n}\right) /\left(K_{n} \alpha_{n}-\beta_{n}\right), \quad b_{n}=\alpha_{n} \beta_{n}\left(K_{n}-1\right) /\left(K_{n} \alpha_{n}-\beta_{n}\right) \tag{21}\\
& c_{n}=\left(1-K_{n}\right) /\left(K_{n} \alpha_{n}-\beta_{n}\right), \quad d_{n}=1, \quad \text { provided } \quad K_{n} \alpha_{n}-\beta_{n} \neq 0
\end{align*}
$$

The inequality in (1.1) is equivalent to $K_{n}\left(\alpha_{n}-\beta_{n}\right)^{2} \neq 0$. If $K_{n} \rightarrow 1, \alpha_{n} \rightarrow \alpha, \beta_{n} \rightarrow \beta$, with $\alpha \neq \beta$, then $f_{n} \rightarrow z$. If $K \rightarrow 0$, then $f_{n} \rightarrow \alpha$

Next, set

$$
\begin{gather*}
\lambda_{n}(z):=\left(z-\alpha_{n}\right) /\left(z-\beta_{n}\right), \quad \text { and } \quad K_{n}(z):=K_{n} z, \quad \text { giving } \tag{2.2}\\
\lambda_{n}^{-1}(z):=\left(\beta_{n} z-\alpha_{n}\right) /(z-1) .
\end{gather*}
$$

Thus

$$
f_{n}(z)=\lambda_{n}^{-1} \circ K_{n} \circ \lambda_{n}(z)
$$

Hence

$$
\begin{align*}
G_{n}(z) & =f_{n} \circ f_{n-1} \circ \ldots \circ f_{1}(z) \\
& =\lambda_{n}^{-1} \circ w_{n-1} \circ \ldots \circ w_{h+1} \circ w_{h} \circ \ldots \circ w_{1}(S(z)) \tag{23}\\
& =\lambda_{n}^{-1} \circ W_{n-1}^{h} \circ W_{h}\left(S_{1}(z)\right)
\end{align*}
$$

where

$$
\begin{aligned}
w_{\jmath}(z) & :=K_{\jmath+1} \circ \lambda_{\jmath+1} \circ \lambda_{\jmath}^{-1}(z) \\
W_{\jmath}(z) & :=w_{\jmath} \circ w_{\jmath-1} \circ \ldots \circ w_{1}(z) \\
W_{n-1}^{h}(z) & :=w_{n-1} \circ w_{n-2} \circ \ldots \circ w_{h+1}(z), \text { and } \\
S(z) & :=K_{1} \circ \lambda_{1}(z)
\end{aligned}
$$

We find that

$$
\begin{equation*}
w_{\jmath}(z)=\left(p_{\jmath} z+q_{j}\right) /\left(r_{\jmath} z+1\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{\jmath}=K_{\jmath}\left(\beta_{\jmath-1}-\alpha_{\jmath}\right) /\left(\beta_{\jmath}-\alpha_{\jmath-1}\right) \\
& q_{\jmath}=K_{\jmath}\left(\alpha_{\jmath}-\alpha_{\jmath-1}\right) /\left(\beta_{\jmath}-\alpha_{\jmath-1}\right), \quad \text { and } \\
& \left.r_{\jmath}=\left(\beta_{\jmath-1}-\beta_{\jmath}\right) / \beta_{\jmath}-\alpha_{\jmath-1}\right)
\end{aligned}
$$

The hypotheses of Theorem 2.1 imply $\Pi p_{j}=0, \Sigma\left|q_{n}\right|<\infty$, and $\Sigma\left|r_{n}\right|<\infty$. It is of value to introduce the following additional notation

$$
\begin{aligned}
& W_{h+\jmath}^{h}(z)=w_{h+\jmath} \circ w_{h+\jmath-1} \circ \ldots \circ w_{h+1}(z)=\left(A_{h+\jmath}^{h} z+B_{h+\jmath}^{h}\right) /\left(C_{h+\jmath}^{h} z+D_{h+\jmath}^{h}\right) \\
& \quad \text { with } \quad A_{h+1}^{h}=p_{h+1}, \quad B_{h+1}^{h}=q_{h+1}, \quad C_{h+1}^{h}=r_{h+1}, \quad \text { and } \quad D_{h+1}^{h}=1
\end{aligned}
$$

Then

$$
\begin{align*}
& A_{n}^{h}=p_{n} A_{n-1}^{h}+q_{n} C_{n-1}^{h} \tag{2.5}\\
& C_{n}^{h}=r_{n} A_{n-1}^{h}+C_{n-1}^{h} \tag{2.6}\\
& B_{n}^{h}=p_{n} B_{n-1}^{h}+q_{n} D_{n-1}^{h} \tag{27}\\
& D_{n}^{h}=r_{n} B_{n-1}^{h}+D_{n-1}^{h} \tag{2.8}
\end{align*}
$$

(2 5) and (2.6) give

$$
\begin{equation*}
A_{n}^{h}=p_{n} A_{n-1}^{h}+q_{n}\left(r_{n+1}+\sum_{\jmath=h+2}^{n-1} r_{\jmath} A_{\jmath-1}\right) \tag{29}
\end{equation*}
$$

It easily follows that A_{n}^{h} has 2^{n-h-1} terms, and, by writing out the first few terms and applying (2.9) inductively, one gets

LEMMA 2.1. $A_{n}^{h}=\prod_{j=h+1}^{n} p_{j}+\sum^{*} r_{k_{1}} q_{k_{2}}+\sum^{*} r_{k_{1}} q_{k_{2}} r_{k_{3}} q_{k_{4}}+\ldots+\sum^{*} r_{k_{1}} q_{k_{2}} \ldots r_{k_{2 j-1}} q_{k_{2}}$, where the * indicates a suppression of $\Pi p_{\text {J }}$ products and $h+1 \leq k_{1}<k_{2}<\ldots k_{2 \jmath} \leq n$

Given $\epsilon>0$, for h sufficiently large one has $\left|p_{h+\jmath}\right|<1$ and

$$
\begin{aligned}
\left|A_{n}^{h}-\prod_{J=h+1}^{n} p_{j}\right| & \leq \sum\left|r_{k_{1}} q_{k_{2}}\right|+\sum\left|r_{k_{1}} q_{k_{2}} r_{k_{3}} q_{k_{4}}\right|+\ldots \\
& \leq\left(\sum_{h+1}^{\infty}\left|r_{j}\right| \sum_{h+1}^{\infty}\left|q_{\jmath}\right|\right)+\left(\sum_{h+1}^{\infty}\left|r_{j}\right| \sum_{h+1}^{\infty}\left|q_{\jmath}\right|\right)^{2}+\ldots \leq \epsilon
\end{aligned}
$$

Thus, for sufficiently large h and $n>h, A_{n}^{h}$ is bounded by 1 .
Next, from (2.6), one can get $C_{n}^{h}=r_{h+1}+\sum_{j=h+2}^{n-h} r_{,} A_{j-1}^{h}$, so that $C_{n}^{h} \approx 0$ for large h and $n>h$. Also, from (2.6), $\left|C_{n}^{h}-C_{n-1}^{h}\right| \leq\left|r_{n}\right|\left|A_{n-1}^{h}\right|$, so that $\left|C_{n}^{h}-C_{m}^{h}\right| \leq \sum_{j=m+1}^{n}\left|r_{j}\right|\left|A_{j-1}^{h}\right|$ for $n>m \quad$ The Cauchy condition is met, and we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}^{h}=L(C, h) \approx 0 \tag{2.10}
\end{equation*}
$$

The following formula can be obtained by induction on (2.5)

$$
\begin{equation*}
A_{n}^{h}=\prod_{\jmath=h+1}^{n} p_{\jmath}+\sum_{m=h+1}^{n-2}\left(\prod_{\jmath=m+2}^{n} p_{\jmath}\right) q_{m+1} C_{m}^{h}+q_{n} C_{n-1}^{h} \tag{211}
\end{equation*}
$$

Which implies, using $\Pi p_{\jmath}=0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n}^{h}=0 \tag{2.12}
\end{equation*}
$$

In analogy with (2.9), (2.7) and (2.8) combine to give

$$
\begin{equation*}
B_{n}^{h}=p_{n} B_{n-1}^{h}+q_{n}\left(1+\sum_{j=h+2}^{n-1} r_{\jmath} B_{\jmath-1}^{h}\right) \tag{2.13}
\end{equation*}
$$

For $\epsilon>0$ one can use a lemma analogous to Lemma 2.1 to show that, if h is sufficiently large, $\left|B_{n}^{h}-\left(\prod_{j=h+2}^{n} p_{j}\right) q_{h+1}\right|<\epsilon$ for $n>h$, so that $\left\{B_{n}^{h}\right\}$ is bounded by a small positive number. Treating D_{n}^{h} in (12) as we did C_{n}^{h} in (2.6) gives $D_{n}^{h} \approx 1$ for large h The Cauchy Condition then gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{n}^{h}=L(D, h) \approx 1 \tag{214}
\end{equation*}
$$

From (2.7) and (2.8) one obtains

$$
B_{n}^{h}=\left(\prod_{J=h+2}^{n} p_{\jmath}\right) q_{h+1}+\sum_{m=h+1}^{n-2}\left(\prod_{J=m+2}^{n} p_{j}\right) q_{m+1} D_{m}^{h}+q_{n} D_{n-1}^{h}
$$

Using $\Pi p_{j}=0$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{n}^{h}=0 \tag{215}
\end{equation*}
$$

Returning to (2.3), we choose and fix a value of h large enough to satisfy the various requirements already described. Then, from (2 10), (2.12), (2.14), and (2.15),

$$
W_{n-1}^{h}\left(V_{h}\right)=\frac{A_{n-1}^{h} V_{h}+B_{n-1}^{h}}{C_{n-1}^{h} V_{h}+D_{n-1}^{h}} \rightarrow \frac{O V_{h}+O}{L(C, h) V_{h}+L(D, h)}, \quad \text { as } \quad n \rightarrow \infty \quad(L(D, h) \approx 1)
$$

Setting $V_{h}:=V_{h}(z):=W_{h+1}(S(z))$, one gets

$$
\lim _{n \rightarrow \infty} G_{n}(z)=\lim _{n \rightarrow \infty} \lambda_{n}^{-1}\left(W_{n-1}^{h}\left(V_{h}\right)\right)=\alpha
$$

provided

$$
V_{h}(z) \neq \infty \quad \text { if } L(C, h)=0 \quad \text { and } \quad V_{h}(z) \neq-L(D, h) / L(C, h) \quad \text { if } \quad L(C, h) \neq 0
$$

PROOF OF 2. Using the same set of formulae derived in the proof of part 1 , one can show the following: For large values of $h, A_{n}^{h} \approx 1$, and

$$
\begin{align*}
& \lim _{n \rightarrow \infty} C_{n}^{h}=L(C, h) \approx 0 \\
& \lim _{n \rightarrow \infty} A_{n}^{h}=L(A, h) \approx 1 \tag{212'}\\
& \lim _{n \rightarrow \infty} D_{n}^{h}=L(D, h) \approx 1 \tag{2.14'}\\
& \lim _{n \rightarrow \infty} B_{n}^{h}=L(B, h) \approx 0 . \tag{array}
\end{align*}
$$

Therefore

$$
W_{n-1}^{h}\left(V_{h}\right)=\frac{A_{n-1}^{h} V_{h}+B_{n-1}^{h}}{C_{n-1}^{h} V_{h}+D_{n-1}^{h}} \rightarrow \frac{\left(1+\epsilon_{1}\right) V_{h}(z)+\epsilon_{2}}{\epsilon_{3} V_{h}(z)+\left(1+\epsilon_{4}\right)}=\frac{A z+B}{C z+D}:=\phi(z) .
$$

Hence $\lim _{n \rightarrow \infty} G_{n}(z)=\lim _{n \rightarrow \infty} \lambda_{n}^{-1}\left(W_{n-1}^{h}\left(V_{h}\right)\right)=\frac{\beta \phi(z)-\alpha}{\phi(z)-1}$, a bilinear transformation.
Next, we look at a more general class of functions $f_{n} \rightarrow z$.
THEOREM 2.2. Given a sequence of functions $\left\{f_{n}\right\}$ where $f_{n} \rightarrow z$. Suppose
(i) there exists a convex set S where $S \supset f_{n}(S)$,
(ii) there exist $\left\{\alpha_{n}\right\}$ where $f_{n}\left(\alpha_{n}\right)=\alpha_{n} \in S, \alpha_{n} \rightarrow \alpha \in S$, and $\Sigma\left|\alpha_{n}-\alpha_{n-1}\right|<\infty$,
(iii) $\left|f_{n}^{\prime}(z)\right| \leq K_{n} \leq 1$ for all $z \in S$, and $K_{n} \rightarrow 1$ with $\Pi K_{n}=0$.

Then $G_{n}(z) \rightarrow \alpha$ for all z in S.
PROOF. First, we see that $\left|f_{n}(z)-f_{n}(w)\right| \leq \int_{w}^{z}\left|f_{n}^{\prime}(s)\right| d s \leq K_{n}|z-w| \quad$ implies $\left|f_{n}(z)-f_{n}\left(\alpha_{n}\right)\right| \leq K_{n}\left|z-\alpha_{n}\right| \quad$ for all z in S. Then backward recursion using $\left|G_{n}(z)-\alpha\right|-\left|\alpha-\alpha_{n}\right| \leq\left|G_{n}(z)-\alpha_{n}\right| \leq K_{n}\left|G_{n-1}(z)-\alpha_{n-1}\right|+K_{n}\left|\alpha_{n}-\alpha_{n-1}\right|$ gives

$$
\left|G_{n}(z)-\alpha\right| \leq\left|\alpha-\alpha_{n}\right|+\left(\prod_{1}^{n} K_{\jmath}\right)\left|z-\alpha_{1}\right|+\sum_{\jmath=2}^{n}\left(\prod_{\imath=\jmath}^{n} K_{2}\right)\left|\alpha_{\jmath}-\alpha_{\jmath-1}\right| .
$$

From this it is easily shown that $G_{n}(z) \rightarrow \alpha$.

COROLLARY 2.1. Let $f_{n}(z):=K_{n} g_{n}(z)\left(z-\alpha_{n}\right)+\alpha_{n}$, for $|z| \leq 1$. If (i) $0<K_{n} \rightarrow 1^{-}$with $\Pi K_{n}=0, \alpha_{n} \rightarrow 0$, and (ii) $\left|f_{n}(z)\right| \leq 1,\left|g_{n}(z)\right| \leq 1, g_{n}(z) \rightarrow 1$, for $|z| \leq 1$, then $G_{n}(z) \rightarrow 0$ for $|z| \leq 1$

The proof follows immediately from Theorem 2.2.
EXAMPLES. $g_{n}(z):=1-1 / n+z / n$ produces quadratic functions $f_{n}(z)=a_{n} z^{2}+b_{n} z+c_{n}$, and $g_{n}(z):=\left(2-\nu_{n}\right) /\left(2+\nu_{n} z^{2}\right)$ produces non-bilinear rational functions $f_{n}(z)=\frac{a_{n} z+b_{n}}{a_{n} z^{2}+d_{n}}+e_{n}$ In both instances $K_{n}:=1-1 / n, \alpha_{n}:=1 / n^{2}$ are sufficient to satisfy conditions in the hypothesis of the theorem.

3. INNER COMPOSITION

We turn now to the functional sequence $\left\{F_{n}(z)\right\}$ described in (1.2) and useful in studying traditional continued fractions. This form of composition has the longest history. One of the earliest results for the case $f(z):=z$ is the following (DePree \& Thron [7]).

THEOREM 3.1. Let $F_{n}(z):=f_{1} \circ f_{2} \circ \ldots \circ f_{n}(z)=\left(P_{n} z+Q_{n}\right) /\left(R_{n} z+S_{n}\right)$, and $f_{n}(z)=$ $\left(a_{n} z+b_{n}\right) /\left(c_{n} z+d_{n}\right)$, with $a_{n} d_{n}-b_{n} c_{n} \equiv 1$. Suppose that
(i) $\Sigma\left|b_{n}\right|$ and $\Sigma\left|c_{n}\right|$ both converge
(ii) $\left|a_{n}\right|=1+\epsilon_{n}, \epsilon_{n} \geq 0, \Sigma \epsilon_{n}$ diverges

Then $\lim _{n \rightarrow \infty} F_{n}(z)=\Gamma$, a constant, for all $z \neq 0$
In dynamical terms we have
COROLLARY 3.1. Suppose that the following conditions hold:
(i) $\Sigma\left|\alpha_{n}\right|$ and $\Sigma\left|\beta_{n}\right|^{-1}$ both converge
(ii) $K_{n} \rightarrow 1$
(iii) $\left|\frac{K_{n} \beta_{n}-\alpha_{n}}{\sqrt{K_{n}}\left(\beta_{n}-\alpha_{n}\right)}\right| 1 \quad$ and $\sum\left(\left|\frac{K_{n} \beta_{n}-\alpha_{n}}{\sqrt{K_{n}}\left(\beta_{n}-\alpha_{n}\right)}\right|-1\right)$ diverges

Then $\lim _{n \rightarrow \infty} F_{n}(z)=\Gamma$, a constant, for all $z \neq 0$.
PROOF. From (2.1) and $a_{n} d_{n}-b_{n} c_{n}=1$, one gets

$$
\begin{equation*}
a_{n}=\left(\alpha_{n}-K_{n} \beta_{n}\right) / \Delta_{n}, \quad b_{n}=\alpha_{n} \beta_{n}\left(K_{n}-1\right) / \Delta_{n}, \quad c_{n}=\left(1-K_{n}\right) / \Delta_{n} \tag{3.1}
\end{equation*}
$$

$d_{n}=\left(K_{n} \alpha_{n}-\beta_{n}\right) / \Delta_{n}$, where $\Delta_{n}:=\sqrt{K_{n}}\left(\alpha_{n}-\beta_{n}\right)$. Conditions (i), (ii), (iii) of the corollary then imply the hypotheses of Theorem 3.1

A different set of hypotheses on the fixed points leads to a similar conclusion: the techniques of proof of Theorem 2.1 can be used to prove an analogue of that theorem for inner composition The steps are nearly identically, so only an extended outline of the proof is given.

THEOREM 3.2. Suppose
(i) $0<\left|K_{n}\right|<1, K_{n} \rightarrow 1\left(f_{n} \rightarrow z\right)$ or $K_{n} \rightarrow 0\left(f_{n} \rightarrow \alpha\right)$
(ii) $\alpha_{n} \rightarrow \alpha, \beta_{n} \rightarrow \beta$, with $\alpha \neq \beta$,
(iii) $\Sigma\left|\alpha_{n}-\alpha_{n-1}\right|<\infty$, and $\Sigma\left|\beta_{n}-\beta_{n-1}\right|<\infty$, and
(iv) $\Pi K_{n}=0$.

Then $\left\{F_{n}(z)\right\}$ converges to Γ, a constant, for all $z \in \mathbb{C}$ except $z=\beta$
PROOF. We write

$$
\begin{align*}
F_{n}(z) & =\lambda_{1}^{-1} \circ w_{1} \circ \ldots \circ w_{h} \circ w_{h+1} \circ \ldots \circ w_{n-1}\left(S_{n}(z)\right) \tag{3.2}\\
& =\lambda_{1}^{-1} \circ W_{h} \circ W_{n-1}^{h}\left(S_{n}(z)\right)
\end{align*}
$$

where

$$
\begin{aligned}
w_{\jmath}(z) & :=K_{\jmath} \circ \lambda_{\jmath} \circ \lambda_{\jmath+1}^{-1}(z) \\
W_{\jmath}(z) & :=w_{1} \circ w_{2} \circ \ldots \circ w_{\jmath}(z) \\
W_{n-1}^{h}(z) & :=w_{h+1} \circ w_{h+2} \circ \ldots \circ w_{n-1}(z) \quad \text { and } \\
S_{n}(z) & :=K_{n} \circ \lambda_{n}(z)
\end{aligned}
$$

And find that

$$
\begin{align*}
w_{\jmath}(z) & =\left(p_{\jmath} z+q_{\jmath}\right) /\left(r_{\jmath} z+1\right), & p_{\jmath} & =K_{j}\left(\beta_{\jmath+1}-\alpha_{\jmath}\right) /\left(\beta_{\jmath}-\alpha_{\jmath+1}\right), \\
q_{\jmath} & =K_{\jmath}\left(\alpha_{\jmath}-\alpha_{\jmath+1}\right) /\left(\beta_{\jmath}-\alpha_{\jmath+1}\right), & r_{\jmath} & =\left(\beta_{\jmath+1}-\beta_{\jmath}\right) /\left(\beta_{\jmath}-\alpha_{\jmath+1}\right) \tag{33}
\end{align*}
$$

Now write

$$
\begin{aligned}
& W_{h+\jmath}^{h}=w_{h+1} \circ w_{h+2} \circ \ldots \circ w_{h+\jmath}(z)=\left(A_{h+\jmath}^{h} z+B_{h+\jmath}^{h}\right) /\left(C_{h+\jmath}^{h} z+D_{h+\jmath}^{h}\right), \\
& \text { with } \quad A_{h+1}^{h}=p_{h+1}, \quad B_{h+1}^{h}=q_{h+1}, \quad C_{h+1}^{h}=r_{h+1}, \quad \text { and } \quad D_{h+1}^{h}=1 .
\end{aligned}
$$

As before

$$
\begin{align*}
& A_{n}^{h}=p_{n} A_{n-1}^{h}+r_{n} B_{n-1}^{h} \tag{34}\\
& C_{n}^{h}=p_{h n} C_{n-1}^{h}+r_{n} D_{n-1}^{h} \tag{35}\\
& B_{n}^{h}=q_{n} A_{n-1}^{h}+B_{n-1}^{h} \tag{36}\\
& D_{n}^{h}=q_{n} C_{n-1}^{h}+D_{n-1}^{h} \tag{37}
\end{align*}
$$

By hypotheses, $\Sigma\left|q_{\jmath}\right|$ and $\Sigma\left|r_{\jmath}\right|$ both converge, and $p_{\jmath}=K_{\jmath}\left(1+s_{\jmath}\right)$, where $s_{\jmath}=\left[\left(\alpha_{\jmath+1}-\alpha_{\jmath}\right)+\left(\beta_{\jmath+1}-\beta_{\jmath}\right)\right] /\left(\beta_{\jmath}-\alpha_{\jmath+1}\right)$. Thus $\Sigma\left|s_{j}\right|$ converges, and this implies $\Pi p_{\jmath}=\left(\Pi K_{\jmath}\right)$ $\Pi\left(1+s_{\jmath}\right)=0$ if $\Pi K_{\jmath}=0$. Clearly $\left|\prod_{\jmath=h+1}^{n} p_{\jmath}\right|<1$ for h sufficiently large and $n>h$.

As before, we find that A_{n}^{h} is uniformly bounded with regard to n if h is large enough, and is in fact close to 0 Therefore (3.6) gives $\lim _{n \rightarrow \infty} B_{n}^{h}=L(B, h) \approx 0$. This, coupled with the recursive formula

$$
\begin{equation*}
A_{n}^{h}=\prod_{\jmath=h+1}^{n} p_{\jmath}+\sum_{m=h+2}^{n-1}\left(\prod_{\jmath=m+1}^{n} p_{\jmath}\right) r_{m} B_{m-1}^{h}+r_{n} B_{n-1}^{h} \tag{38}
\end{equation*}
$$

gives $\lim _{n \rightarrow \infty} A_{n}^{h}=0$. Similarly, C_{n}^{h} is bounded uniformly (and close to 0) for sufficiently large h and all $n>h$. Thus $\lim _{\mathrm{n} \rightarrow \infty} D_{n}^{h}=L(D, h) \approx 1$.

Therefore

$$
\begin{equation*}
C_{n}^{h}=\left(\prod_{J=h+2}^{n} p_{J}\right) r_{h+1}+\sum_{m=h+2}^{n-1}\left(\prod_{J=m+1}^{n} p_{J}\right) r_{m} D_{m-1}^{h}+r_{n} D_{n-1}^{h} \tag{39}
\end{equation*}
$$

shows that $\lim _{n \rightarrow \infty} C_{n}^{h}=0$.
Now ${ }^{n \rightarrow \infty} F_{n}(z)=\lambda_{1}^{-1} \circ W_{h} \circ W_{n-1}^{h}\left(S_{n}(z)\right)$, where $\lim _{n \rightarrow \infty} S_{n}(z)=(z-\alpha) /(z-\beta)$ and $\lim _{n \rightarrow \infty}$ $W_{n-1}^{h}\left(S_{n}(z)\right)=\lim _{n \rightarrow \infty} \frac{A_{n-1}^{h} S_{n}(z)+B_{n-1}^{h}}{C_{n-1}^{h} S_{n}(z)+D_{n-1}^{n}}=L(B, h) / L(D, h) \approx 0 \quad$ for $\quad z \neq \beta$. Hence $\lim _{n \rightarrow \infty} F_{n}(z)=$ $\lambda_{1}^{-1} \circ W_{h}(L(B, h) / L(D, h))$, for $z \neq \beta$.

Theorem 1.2, like Theorem 31 , is an earlier result for the case $f_{n}(z) \rightarrow z$. In terms of fixed points we have

COROLLARY 3.2. If $0<\left|K_{n}\right|<1, K_{n} \rightarrow 1, \alpha_{n} \rightarrow \alpha, \beta_{n} \rightarrow \beta, \alpha \neq \beta$, and ΠK_{n} converges absolutely, then $\lim _{n \rightarrow \infty} F_{n}(z)=(P z+Q) /(R z+S)$, where $P S-R Q \neq 0$.

PROOF. From (3.1) it is not difficult to verify that the hypotheses of the corollary imply those of Theorem 1.2 For the products involving a_{n} and d_{n} use $K_{n}=1+\left(K_{n}-1\right)$ and observe that the convergence of $\Sigma\left|1-K_{n}\right|$ implies that of $\Sigma\left|1-\sqrt{K_{n}}\right|$.

Finally we present a simple result for sequences of more general analytic functions Actually, Theorem 3.3 is a corollary to Theorem 2.2 [12], but its proof is so brief it is given here

THEOREM 3.3. Suppose $\left\{f_{n}(z)\right\}$ is a sequence of functions analytic on a convex and compact set S and such that $f_{n} \rightarrow z$ or $f_{n} \rightarrow \alpha$ on S, with (i) $S \supset f_{n}(S)$ for each n, (ii) $\left|f_{n}^{\prime}(z)\right| \leq K_{n}<1$, and (iii) $\Pi K_{n} \rightarrow 0$. Then $\lim _{n \rightarrow \infty} F_{n}(z)=\Gamma \in S$, uniformly for all z in S

PROOF. As in the proof of Theorem 2.2, condition (ii) implies $\left|f_{n}\left(z_{1}\right)-f_{n}\left(z_{2}\right)\right| \leq K_{n}\left|z_{1}-z_{2}\right|$ Applying the Cauchy Condition,

$$
\begin{aligned}
\left|F_{n+p}(z)-F_{n}(z)\right| & \leq K_{1}\left|f_{2} \circ f_{3} \circ \ldots \circ f_{n+p}(z)-f_{2} \circ f_{3} \circ \ldots \circ f_{n}(z)\right| \\
& \vdots \\
& \leq K_{1} K_{2} \ldots K_{n}\left|f_{n+1} \circ f_{n+2} \circ \ldots \circ f_{n+p}(z)-z\right| \leq\left(\prod_{1}^{n} K_{j}\right) M \rightarrow 0
\end{aligned}
$$

where $M:=\operatorname{diam}(S)$. Similarly $\left|F_{n}\left(z_{1}\right)-F_{n}\left(z_{2}\right)\right| \leq\left(\prod_{1}^{n} K_{\jmath}\right) M \rightarrow 0$ for all $z_{1}, z_{2} \in S$

REFERENCES

[1] JONES W. and THRON, W. Continued Fractions: Analytic Theory \& Applicatıons, AddisonWesley, Reading, MA (1980).
[2] GLLL, J., Sequences of linear fractional transformations and reverse continued fractions, Contınued Fractions \& Orthogonal Functions, Lecture Notes in Pure \& Appl. Math., Marcel-Dekker, 54 (1994), 129-139
[3] GILL, J., The use of the sequence $F_{n}(z):=f_{n} \circ f_{n-1} \circ \ldots \circ f_{1}(z)$ in computing fixed points of continued fractions, products and series, Appl. Num. Math. 8 (1991), 469-476.
[4] PYADON, J. and WALL, H., The continued fraction as a sequence of linear transformations, Duke Math. J. 9 (1942), 360-372.
[5] SCHWERDTFEGER, H., Mobius transformations and continued fractions, Bull. Amer. Math. Soc. 52 (1946), 307-309.
[6] PIRANIAN, G. and THRON, W., Convergence properties of sequences of linear fractional transformations, Mich. Math. J. 4 (1957), 129-135
[7] DePREE, J and THRON, W., On sequences of Mobius transformations, Math. Zeitschr. 80 (1962), 184-193
[8] MAGNUS, A. and MANDELL, M., On convergence of sequences of linear fractional transformations, Math. Z. 115 (1970), 11-17.
[9] GILL, J., Infinite compositions of Mobius transformations, Trans. Amer. Math. Soc., 176 (1973), 479-487.
[10] GILL, J., Outer compositions of hyperbolic/loxodromic linear fractional transformations, Intl. J. Math. \& Math. Sci., 15 (4) (1992), 819-822.
[11] BARRLUND, A., WALLIN, H. and KARLSSON, J., Iteration of Mobius transformations and attractors on the real line, Univ. of Umeå, Res. Report No. 21 (1993)
[12] GILL, J., Limit periodic iteration, Appl. Numer. Math. 4 (1988), 297-308.
[13] GILL, J., Complex dynamics of the limit periodic system $F_{n}(z)=F_{n-1}\left(f_{n}(z)\right), f_{n} \rightarrow f$, J. Comp. \& Appl. Math. 32 (1990), 89-96.
[14] GILL, J., A note on the dynamics of the system $F_{n}(z)=f_{n}\left(F_{n-1}(z)\right), f_{n} \rightarrow f$, Comm. Anal. Th. Cont. Fractions, 1 (1992), 35-40.
[15] LORENTZEN, L., Compositions of contractions, J. Comp. \& Appl. Math. 32 (1990), 169-178.
[16] FORD, L.R., Automorphic Functions, McGraw-Hill, New York, 1929, Ch. 1.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

