α -DERIVATIONS AND THEIR NORM IN PROJECTIVE TENSOR PRODUCTS OF $\Gamma\textsc{-}\textsc{-}\textsc{banach}$ ALGEBRAS

T.K. DUTTA, H.K. NATH and R.C. KALITA

Department of Mathematics Gauhati University Guwahati - 781 014 Assam, India.

(Received April 16, 1996 and in revised form December 10, 1996)

ABSTRACT. Let (V,Γ) and (V',Γ') be Gamma-Banach algebras over the fields F_1 and F_2 isomorphic to a field F which possesses a real valued valuation, and $(V,\Gamma) \otimes_p (V',\Gamma')$, their projective tensor product. It is shown that if D_1 and D_2 are α -derivation and α' -derivation on (V,Γ) and (V',Γ') respectively and $U=\sum_i x_i \otimes y_i$ is an arbitrary element of $(V,\Gamma) \otimes_p (V',\Gamma')$, then there exists an $\alpha \otimes \alpha'$ -derivation D on $(V,\Gamma) \otimes_p (V',\Gamma')$ satisfying the relation

$$D(u) = \sum_{i} \left[(D_{1} x_{i}) \otimes y_{i} + x_{i} \otimes (D_{2} y_{i}) \right]$$

and possessing many enlightening properties. The converse is also true under a certain restriction. Furthermore, the validity of the results $\|D\| = \|D_1\| + \|D_2\|$ and $sp(D) = sp(D_1) + sp(D_2)$ are fruitfully investigated.

KEY WORDS AND PHRASES: Γ - Banach algebras, projective tensor products, α - derivations. **1991 AMS SUBJECT CLASSIFICATION CODES**: Primary 46G05, 46M05; Secondary 15A69.

1. INTRODUCTION

 Γ — Banach algebras and α — derivations are generalisation of ordinary Banach algebras and derivations respectively. The set of all m x n rectangular matrices and the set of all bounded linear transformations from an infinite dimensional normed linear space X into a Banach space Y are nice examples of Γ - Banach algebras which are not general Banach algebras. Similarly a derivation can't be defined on these spaces as there appears to be no natural way of introducing an algebraic multiplication into these. So, a new concept of derivation known as α - derivation is introduced on a Γ - Banach algebra. Bhattacharya and Maity have defined a Γ - Banach algebra in their paper [1] and have discussed in their another paper [2] various tensor products of Γ - Banach algebras over fields which are isomorphic to another field with a real valued valuation by using semilinear transformations, [3]. Derivations and tensor products of general Banach algebras are discussed in many papers, [4.5,6,7.8]. Now there are some natural questions: Does every pair of derivations D_1 and D_2 on Gamma Banach algebras (V, Γ) and (V', Γ ') respectively give rise to a derivation D on their projective tensor product? If yes, then can one estimate the norm of D with the help of norms of D_1 and D_2 ? Can one evaluate the spectrum of D with the help

of those of D_1 and D_2 ? Are the converses of the above problems true? We give affirmative answers to some of these questions. The useful terminologies are forwarded below:

DEFINITION 1.1. Let $X(F_1)$ and $Y(F_2)$ be given normed linear spaces over fields F_1 and F_2 , which are isomorphic to a field F with a real valued valuation, (refer to Backman's book [9]). If $u = \sum_{i=1}^{n} (x_i \otimes y_i)$ is an element of the algebraic tensor product $X \otimes Y$, then the projective norm p is defined by

$$p(u) = \inf \left\{ \sum_{i} \| x_{i} \| \| y_{i} \| : x_{i} \in X, y_{i} \in Y \right\},$$

where the infimum is taken over all finite representations of u. Further the weak norm w on u is defined by

$$w(u)=\sup \left\{ \left| \sum_{i} \zeta_{1} \left(f\left(x_{i}\right) \right) \right| : f \in X^{*}, g \in Y^{*}, \| f \| \leq 1, \| g \| \leq 1 \right\}.$$

[Here X^* and Y^* are respective dual spaces of X and Y; and F_1 , F_2 are isomorphic to F under isomorphisms ζ_1 and ζ_2]. The projective tensor product $X \otimes_p Y$ and the weak tensor product $X \otimes_w Y$ are the completions of $X \otimes Y$ with their respective norms. For details, see Bonsall and Duncan's book [10].

DEFINITION 1.2. Let (V,Γ) be a Γ -Banach algebra and α , a fixed element of Γ . Then α -identity, 1_{α} , is an element of V satisfying the conditions $x\alpha 1_{\alpha} = x$ and $1_{\alpha} \alpha x = x$ for every x in V.

DEFINITION 1.3. A linear operator D of (V,Γ) into itself is called an α - derivation if

$$D(x \alpha y) = (Dx) \alpha y + x\alpha (Dy), \qquad x, y \in V.$$

Every $x \in V$ gives rise to an α -derivation D_x defined by $D_x(y) = x\alpha y - y\alpha x$. Such a derivation is called an α -inner derivation. Further, if (V,Γ) is an involutive Γ - Banach algebra with an involution *, then an α - derivation D is called an α - star-derivation if $Dx^* = -(Dx)^*$, x^* being the adjoint of x. Again, we define an operation D by D by D by D by D called an D-Jordan derivation if D (D) oy+xo (D) for all D and D in D.

2. THE MAIN RESULTS

Throughout our discussion, unless stated otherwise, (V,Γ) and (V',Γ') are Gamma-Banach algebras over F_1 and F_2 , isomorphic to F which possesses a real valued valuation; α and α' are fixed elements of Γ and Γ' ; and $I_{\alpha}, I_{\alpha'}$ are α - identity and α' -identity of V and V' respectively. Moreover, suppose that $\|I_{\alpha}\| = k_1 \neq 0$ and $\|II_{\alpha'}\| = k_2 \neq 0$.

The following proposition is fundamental for our purpose, and we refer to Bhattacharya and Maity [2] for its proof.

PROPOSITION 2.1. The projective tensor product $(V,\Gamma) \otimes_p (V',\Gamma')$ with the projective norm is a $\Gamma \otimes \Gamma'$ - Banach algebra over the field F, where multiplication is defined by the formula

$$(x \otimes y)(\gamma \otimes \delta)(x' \otimes y') = (x \gamma x') \otimes (y \delta y')$$
, where $x, y \in V; x', y' \in V'; \gamma \in \Gamma; \delta \in \Gamma'$.

THEOREM 2.1. Let D_1 and D_2 be bounded α - derivation and α' - derivation on (V,Γ) and (V',Γ') respectively. Then

(i) there exists a bounded $\alpha \otimes \alpha'$ - derivation D on the projective tensor product $(V, \Gamma) \otimes_{_{\mathfrak{D}}} (V', \Gamma')$ defined

by the relation

$$D(u) = \sum_{i} \left[(D_{1} x_{i}) \otimes y_{i} + x_{i} \otimes (D_{2} y_{i}) \right], \text{ for each vector } u = \sum_{i} x_{i} \otimes y_{i} \varepsilon (V, \Gamma) \otimes_{p} (V', \Gamma').$$

- (ii) If D_1 and D_2 are α and α' inner derivations implemented by the elements $r_o \varepsilon V$ and $s_o \varepsilon V'$ respectively then D is an $\alpha \otimes \alpha'$ inner derivation implemented by $r_o \otimes l_{\alpha'} + l_{\alpha} \otimes s_o$.
- (iii) If D_1 and D_2 are α and α '- Jordan derivations, then D is an $\alpha \otimes \alpha$ '- Jordan derivation.
- (iv) If (V,Γ) and (V',Γ') are involutive Gamma -Banach algebras, and if D_1 and D_2 are α and α' star derivations, then D is $\alpha \otimes \alpha'$ star derivation.

PROOF. (i) We define a map D: $(V, \Gamma) \otimes_{p} (V', \Gamma') \rightarrow (V, \Gamma) \otimes_{p} (V', \Gamma')$ by the rule

$$D(u) = \sum_{i} \left[D_{1} x_{i} \otimes y_{i} + x_{i} \otimes D_{2} y_{i} \right] , \text{for each vector } u = \sum_{i} x_{i} \otimes y_{i}.$$

Clearly, D is well - defined. Before establishing the linearity of D, we first aim at proving the boundedness of D. For any arbitrary element $u \in (V, \Gamma) \bigotimes_p (V', \Gamma')$ and $\varepsilon > 0$, the definition of the projective norm provides a finite representation $\sum_{i=1}^n x'_i \otimes y'_i$ such that $\|u\|_p + \varepsilon \ge \sum_{i=1}^n \|x'_i\| \|y'_i\|$. Therefore, for this representation of u, we obtain

$$\begin{split} &\parallel Du \parallel_p = \parallel \sum\limits_{i} \left[D_1 \ x'_i \otimes y'_i + x'_i \otimes D_2 y'_i \right]_{\parallel_p} \\ &\leq \sum\limits_{i} \left[\parallel D_1 \ x'_i \otimes y'_i \parallel_p + \parallel x'_i \otimes D_2 y'_i \parallel_p \right] \\ &= \sum\limits_{i} \left[\parallel D_1 \ x'_i \parallel \parallel y'_i \parallel + \parallel x'_i \parallel \parallel D_2 y'_i \parallel_p \right] \\ &\leq \left(\parallel D_1 \ \parallel + \parallel D_2 \parallel \right) \sum\limits_{i} \parallel x'_i \parallel \parallel y'_i \parallel, \text{ (because a projective norm is a cross norm)}. \\ &\leq \left(\parallel D_1 \parallel + \parallel D_2 \parallel \right) \sum\limits_{i} \parallel x'_i \parallel \parallel y'_i \parallel, \text{ (because } D_1 \text{ and } D_2 \text{ are bounded)} \\ &\leq K \ \left(\parallel u \parallel_p + \epsilon \right), \text{ where } K = \parallel D_1 \parallel + \parallel D_2 \parallel. \end{split}$$

Thus, $\| Du \|_{p} \le K (\| u \|_{p} + \epsilon)$. Since the left hand side is independent of ϵ , and ϵ was arbitrary, it follows that $\| Du \|_{p} \le K \| u \|_{p}$ for every $u \epsilon (V, \Gamma) \otimes_{p} (V', \Gamma')$. Consequently, D is bounded.

Next to establish the linearity, let $u = \sum_{i=1}^{n} x_i \otimes y_i$ and $v = \sum_{j=1}^{m} r_j \otimes s_j$ be any two elements of

$$\begin{split} \text{Now} \,,\, D \,(\,\, u + v \,) &= D \,(\, \sum_{i=1}^{n+m} x_i \otimes y_i \,) \\ &= \sum_{i=1}^{n+m} \left[\begin{array}{c} D_1 \, x_i \otimes y_i + x_i \otimes D_2 \, y_i \end{array} \right] \\ &= \sum_{i=1}^n \left[\begin{array}{c} D_1 \, x_i \otimes y_i + x_i \otimes D_2 \, y_i \end{array} \right] + \sum_{i=n+1}^{m+n} \left[\begin{array}{c} D_1 \, x_i \otimes y_i + x_i \otimes D_2 \, y_i \end{array} \right] \\ &= \sum_{i=1}^n \left[\begin{array}{c} D_1 \, x_i \otimes y_i + x_i \otimes D_2 \, y_i \end{array} \right] + \sum_{i=n+1}^m \left[\begin{array}{c} D_1 \, x_i \otimes y_i + x_i \otimes D_2 \, y_i \end{array} \right] \\ &= \sum_{i=1}^n \left[\begin{array}{c} D_1 \, x_i \otimes y_i + x_i \otimes D_2 \, y_i \end{array} \right] + \sum_{i=n+1}^m \left[\begin{array}{c} D_1 \, r_i \otimes s_i + r_j \otimes D_2 \, s_i \end{array} \right] = D(\, u) + D(\, v) \,\,. \end{split}$$

The boundedness of D implies that the rusult, D (u+v) = D(u) + D(v), is also true for any infinite

representations of u and v. Similarly it can be shown easily that D(au) = aD(u) for any scalar a. Consequently D is a bounded linear map.

To show that D is an $\alpha \otimes \alpha'$ - derivation, we suppose that $u = x \otimes y$ and $v = r \otimes s$ are any two elementary tensors of $(V, \Gamma) \otimes_p (V', \Gamma')$. Then $u \alpha \otimes \alpha' v = x \alpha r \otimes y \alpha's$. Now

$$\begin{split} D\left(u\,\alpha\otimes\alpha'\,v\right) &= (\,D_{_1}\,x\,\alpha\,r)\otimes y\,\alpha's\, + x\,\alpha\,r\otimes(\,D_{_2}y\,\alpha'\,s\,) \\ \\ &= \left[\,(\,D_{_1}\,x)\,\alpha\,r + x\,\alpha(D_{_1}\,r)\,\,\right]\otimes y\alpha'\,s + x\,\alpha\,r\otimes\left[\,(\,D_{_2}y\,)\,\alpha'\,s\, + y\,\alpha'\,(D_{_2}\,s\,)\,\right] \\ \\ &= \left[\,(\,D_{_1}\,x)\,\alpha\,r\otimes y\,\alpha's + x\,\alpha r\otimes(D_{_2}\,y\,)\,\alpha's\,\right] + \left[\,x\,\alpha\,(\,D_{_1}\,r\,)\otimes y\,\alpha's + x\,\alpha r\otimes y\,\alpha'\,(D_{_2}\,s)\,\right] \\ \\ &= (\,Du\,)\,\alpha\otimes\alpha'\,v + u\,\alpha\otimes\alpha'\,(\,Dv\,). \end{split}$$

Similarly, if $u = \sum_i x_i \otimes y_i$ and $v = \sum_j r_j \otimes s_j$ be any two elements of $(V, \Gamma) \otimes_p (V', \Gamma')$, then summing over i and j we can prove easily that $D(u \alpha \otimes \alpha' v) = (Du) \alpha \otimes \alpha' v + u \alpha \otimes \alpha' (Dv)$. so D is an $\alpha \otimes \alpha'$ - derivation. (ii) Let D_i and D_i be α - and α' - inner derivations implemented by the vectors r_0 and s_0 respectively.

So,
$$D_{1}(x) = r_{0}\alpha x - x\alpha r_{0}, \forall x \in V \text{ and } D_{2}(y) = s_{0}\alpha' y - y\alpha' s_{0}, \forall y \in V'.$$

$$D(u) = \sum_{i} \left[D_{1} x_{i} \otimes y_{i} + x_{i} \otimes D_{2} y_{i} \right]$$

$$= \sum_{i} \left[(r_{o} \alpha x_{i} - x_{i} \alpha r_{o}) \otimes y_{i} + x_{i} \otimes (s_{o} \alpha' y_{i} - y_{i} \alpha' s_{o}) \right]$$

$$= \sum_{i} \left[(r_{o} \alpha x_{i} \otimes y_{i} - x_{i} \alpha r_{o} \otimes y_{i} + x_{i} \otimes s_{o} \alpha' y_{i} - x_{i} \otimes y_{i} \alpha' s_{o}) \right]$$

$$= \sum_{i} \left[(r_{o} \otimes 1_{\alpha'})(\alpha \otimes \alpha')(x_{i} \otimes y_{i}) - (x_{i} \otimes y_{i})(\alpha \otimes \alpha')(r_{o} \otimes 1_{\alpha'}) + (1_{\alpha} \otimes s_{o})(\alpha \otimes \alpha')(x_{i} \otimes y_{i}) - (x_{i} \otimes y_{i})(\alpha \otimes \alpha')(1_{\alpha} \otimes s_{o}) \right]$$

$$= \sum_{i} \left[(r_{o} \otimes 1_{\alpha'} + 1_{\alpha} \otimes s_{o})(\alpha \otimes \alpha')(x_{i} \otimes y_{i}) - (x_{i} \otimes y_{i})(\alpha \otimes \alpha')(r_{o} \otimes 1_{\alpha'} + 1_{\alpha} \otimes s_{o}) \right]$$

$$= D_{i_{o}}(u), \quad \text{where } t_{o} = r_{o} \otimes 1_{\alpha'} + 1_{\alpha} \otimes s_{o}.$$

Consequently, D is an $\alpha \otimes \alpha'$ -inner derivation implemented by t_{α} .

- (iii) The proof is routine.
- (iv) Let D_1 and D_2 be star derivations. If $u = \sum_i x_i \otimes y_i$ is an element of $(V, \Gamma) \otimes_p (V', \Gamma')$, then the adjoint of u is given by $u^* = \sum_i x_i^* \otimes y_i^*$ Now,

$$\begin{split} & Du^* = D \left(\sum_i \ x_i^* \otimes y_i^* \right) \\ & = \sum_i \left[D_1 x_i^* \otimes y_i^* + x_i^* \otimes D_2 \ y_i^* \right) \right] \\ & = \sum_i \left[\ - \left(D_1 \ x_i \right)^* \otimes y_i^* + x_i^* \otimes \left\{ - \left(D_2 y_i \right)^* \right\} \right], \text{ because } D_1 \text{ and } D_2 \text{ are star derivation.} \end{split}$$

$$= -\sum_{i} \left[(D_{i}x_{i})^{*} \otimes y_{i}^{*} + x_{i}^{*} \otimes (D_{2}y_{i})^{*} \right] = - (Du)^{*}. \text{ So, D is a star-derivation. Q.E.D.}$$

REMARK 2.1. (i) The above theorem can be extended to the projective tensor product of n number of Γ - Banach algebras.

(ii) If $u = x \otimes 1_{\sigma'} \varepsilon (V, \Gamma) \otimes_{\mathbb{R}} (V', \Gamma')$, then from the definition of D, we get

$$Du = D_1 x \otimes 1_{\alpha}, \text{ because } D_2 1_{\alpha} = 0 \qquad \dots \qquad (2.1)$$

From this result, we can ascertain that for each derivation D on $(V,\Gamma) \otimes_p (V',\Gamma')$, there may **not** exist derivations D_1 and D_2 on (V,Γ) and (V',Γ') respectively such that D, D_1 and D_2 are connected by the relation given in Theorem 2.1. For example, let D' be an $\alpha \otimes \alpha'$ - inner derivation implemented by an element $r_n \otimes s_n$, where s_n is not a scalar multiple of the identity element 1_n . Then

D' $u = (r_o \otimes s_o) (\alpha \otimes \alpha') u - u (\alpha \otimes \alpha') (r_o \otimes s_o)$, for every $u \in (V, \Gamma) \otimes_v (V', \Gamma')$. Now if $u = x \otimes l_a$, then

$$\begin{aligned} & \text{D'u} = (\text{r}_{\circ} \otimes \text{s}_{\circ}) \ (\alpha \otimes \alpha') \ (\text{x} \otimes \text{l}_{\alpha'}) - (\text{x} \otimes \text{l}_{\alpha'}) \ (\alpha \otimes \alpha') \ (\text{r}_{\circ} \otimes \text{s}_{\circ}) \\ & = \text{r}_{\circ} \alpha \text{x} \otimes \text{s}_{\circ} \alpha' \text{l}_{\alpha'} - \text{x} \alpha \text{r}_{\circ} \otimes \text{l}_{\alpha'} \alpha' \text{s}_{\circ} = (\text{r}_{\circ} \alpha \text{x} - \text{x} \alpha \text{r}_{\circ}) \otimes \text{s}_{\circ} \\ & = (\text{D}_{\text{l}_{\circ}} \times \text{l}_{\circ}) \otimes \text{s}_{\circ}, \text{ where } \text{D}_{\text{l}} \text{ is a derivation on (V, Γ) implemented by r_{\circ} ... (2.2) \end{aligned}$$

From the results (2.1) and (2.2) we can conclude that unless s_o is a scalar multiple of the identity element $l_{\alpha'}$, $D'(x \otimes l_{\alpha'})$ may not be of the form $x_1 \otimes l_{\alpha'}$, where $x_1 \in V$, $[x_1]$ may be different from x]. This implies that D' may not equal D in general. However, we have a converse of Theorem 2.1 as follows. Recall that an element $x \in V$ is called an α - idempotent element if $x \in V$.

THEOREM 2.2. The following results are true:

- (ii) If D is bounded, so is D,;
- (iii) If D is an $\alpha \otimes \alpha$ '-inner derivation implemented by an element w of the form $w = \sum_{i} x_{i} \otimes y_{i}$, where y_{i} 's are α '- idempotent elements, then D₁ is also an α inner derivation implemented by the element $\sum x_{i}$;
- (iv) If (V,Γ) and (V',Γ') are involutive Gamma-Banach algebras, and D is a star derivation, then so is D₁:
- (v) If D is an $\alpha \otimes \alpha'$ Jordan derivation then D₁ is an α Jordan derivation;
- (vi) If D is an $\alpha \otimes \alpha'$ derivation on $(V,\Gamma) \otimes_p (V',\Gamma')$ such that $D(\sum_i x_i \otimes y_i) = \sum_i x_i \otimes s_i$ for α -idempotent elements x_i 's in V, and $s_i \in V'$, then there exists an α' derivation D_2 on (V',Γ') given by the relation $x \otimes D_2 y = D(x \otimes y)$ for every α idempotent element $x \in V$ and for all elements $y \in V'$. The above results (ii). (iii), (iv) and (v) are also true for D_2 .

PROOF. (i) We define a map
$$D_1: V \rightarrow V$$
 by

 $D_1 x \otimes y = D(x \otimes y)$, for all $x \in V$ and for every α' -idempotent element $y \in V'$.

Clearly, D_1 is well-defined. In particular, we have $D_1 \times \otimes 1_{\alpha} = D(x \otimes 1_{\alpha})$, $\forall x \in V$. We first establish the linearity of D_1 . Let $x_1 \times_2 \in V$.

Then
$$\begin{aligned} D_{1} & (x_{1} + x_{2}) \otimes l_{\alpha'} = D((x_{1} + x_{2}) \otimes l_{\alpha'}) \\ &= D & (x_{1} \otimes l_{\alpha'} + x_{2} \otimes l_{\alpha}) \\ &= D & (x_{1} \otimes l_{\alpha'}) + D((x_{2} \otimes l_{\alpha'})) \\ &= (D_{1}x_{1} \otimes l_{\alpha'} + D_{1}x_{2} \otimes l_{\alpha'}) \\ &= (D_{1}x_{1} + D_{1}x_{2}) \otimes l_{\alpha'} \end{aligned}$$

So,
$$(D_1(x_1+x_2) \otimes 1_{\alpha})(f,g) = ((D_1x_1+D_1x_2) \otimes 1_{\alpha})(f,g), \quad \forall f \in V^*, \forall g \in V^{**}.$$

This gives, $f(D_1(x_1+x_2)) g(1_{\alpha'}) = f(D_1x_1+D_1X_2) g(1_{\alpha'})$, $\forall f \in V^*$, $\forall g \in V^{**}$. The Hahn-Banach theorem provides a functional $g_0 \in V^{**}$ in such a way that $g_0(1_{\alpha'}) = \| 1_{\alpha}\| = k_2$.

Then,
$$f(D_1(x_1 + x_2)) = f(D_1x_1 + D_1x_2), \forall f \in V'$$
. This yields, $D_1(x_1 + x_2) = D_1x_1 + D_1x_2$.

By appealing to the same mechanism, we can show that D_1 (ax) = a D_1 (x) for any scalar a. So D_1 is linear. Next, to show that D_1 is an α - derivation.

$$\begin{split} \mathbf{D}_{1}\left(\mathbf{x}_{1}\alpha\mathbf{x}_{2}\right)\otimes\mathbf{1}_{\alpha'}&=\mathbf{D}\left(\mathbf{x}_{1}\alpha\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}\right) \qquad \qquad (\mathbf{x}_{1}.\mathbf{x}_{2}\,\varepsilon\mathbf{V}) \\ &=\mathbf{D}\left[\left(\mathbf{x}_{1}\otimes\mathbf{1}_{\alpha'}\right)\left(\alpha\otimes\alpha'\right)\left(\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}\right)\right] \\ &=\left(\mathbf{D}\left(\mathbf{x}_{1}\otimes\mathbf{1}_{\alpha'}\right)\left(\alpha\otimes\alpha'\right)\left(\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}\right)+\left(\mathbf{x}_{1}\otimes\mathbf{1}_{\alpha'}\right)\left(\alpha\otimes\alpha'\right)\mathbf{D}\left(\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}\right) \\ &\qquad \qquad (\mathrm{because}\;\mathbf{D}\;\mathrm{is\;an\;}\alpha\otimes\alpha'\mathrm{-derivation}) \\ &=\left(\mathbf{D}_{1}\;\mathbf{x}_{1}\otimes\mathbf{1}_{\alpha'}\right)\left(\alpha\otimes\alpha'\right)\left(\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}\right)+\left(\mathbf{x}_{1}\otimes\mathbf{1}_{\alpha'}\right)\left(\alpha\otimes\alpha'\right)\left(\mathbf{D}_{1}\;\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}\right) \\ &=\left(\mathbf{D}_{1}\mathbf{x}_{1}\right)\alpha\mathbf{x}_{2}\otimes\mathbf{1}_{\alpha'}+\left(\mathbf{x}_{1}\alpha\;\left(\mathbf{D}_{1}\mathbf{x}_{2}\right)\right)\otimes\mathbf{1}_{\alpha'}=\left[\left(\mathbf{D}_{1}\mathbf{x}_{1}\right)\alpha\;\mathbf{x}_{2}+\mathbf{x}_{1}\;\alpha\;\left(\mathbf{D}_{1}\mathbf{x}_{2}\right)\right]\otimes\mathbf{1}_{\alpha'} \end{split}$$

So, $D_1(x_1\alpha x_2) = (D_1x_1)\alpha x_2 + x_1\alpha (D_1x_2)$. Therefore, D_1 is an α -derivation. The rest of the results are routine.

3. THE NORM OF D

We now shift our attention to study the possibility of the result , $\| D \| = \| D_1 \| + \| D_2 \|$, when D, D_1 and D_2 are related as in Theorem 2.1.

THEOREM 3.1. If D, D_1 and D_2 are related as in Theorem 2.1, then

$$\| D \| \le \| D_1 \| + \| D_2 \| \le 2 \| D \|.$$

PROOF. For each $u \in (V,\Gamma) \bigotimes_p (V',\Gamma')$ with $\|u\|_p = 1$ and for each $\epsilon > 0$, $\exists a$ (finite) representation

$$u = \sum_i x_i \bigotimes y_i \text{ such that } \quad \| u \|_p + \epsilon \ge \sum_i \| x_i \| \| y_i \|.$$

Now,
$$||D|| = \sup_{u} \{ \| Du \|_{p} : ||u||_{p} = 1 \}$$

$$= \sup_{\mathbf{U}} \left\{ \| \sum_{i} \left[D_{i} \, \mathbf{x}_{i} \otimes \mathbf{y}_{i} + \mathbf{x}_{i} \otimes D_{2} \, \mathbf{y}_{i} \, \right] \|_{p} : \| \mathbf{U} \|_{p} = 1 \right\}$$

$$\le \sup_{\mathbf{U}} \left\{ \sum_{i} \left[\| D_{i} \, \mathbf{x}_{i} \otimes \mathbf{y}_{i} \|_{p} + \| \mathbf{x}_{i} \otimes D_{2} \, \mathbf{y}_{i} \|_{p} \right] : \| \mathbf{U} \|_{p} = 1 \right\}$$

$$= \sup_{\mathbf{U}} \left\{ \sum_{i} \left[\| D_{i} \, \mathbf{x}_{i} \| \| \mathbf{y}_{i} \|_{p} + \| \mathbf{x}_{i} \| \| D_{2} \, \mathbf{y}_{i} \|_{p} \right] : \| \mathbf{U} \|_{p} = 1 \right\}$$

$$\le \sup_{\mathbf{U}} \left\{ \sum_{i} \left[\| D_{i} \| \| \mathbf{x}_{i} \| \| \mathbf{y}_{i} \|_{p} + \| \mathbf{x}_{i} \| \| D_{2} \| \| \mathbf{y}_{i} \|_{p} \right] : \| \mathbf{U} \|_{p} = 1 \right\}$$

$$\le \left(\| D_{i} \| + \| D_{2} \| \right) \sup_{\mathbf{U}} \left\{ 1 + \varepsilon : \| \mathbf{U} \|_{p} = 1 \right\}$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

$$= \left(\| D_{1} \| + \| D_{2} \| \right) (1 + \varepsilon)$$

Since ϵ was arbitrary, it follows that $\| D \| \le \| D_1 \| + \| D_2 \|$ (3 1) Next, let $x \in V$ be such that $\| x \| = 1$. Then $\| x/k_2 \otimes 1_{\alpha'} \| = \| x/k_2 \| \| 1_{\alpha'} \| = 1$

Now,
$$\| \mathbf{D} \| = \sup_{\mathbf{U}} \{ \| \mathbf{D} \mathbf{U} \|_{p} : \| \mathbf{U} \|_{p} = 1 \}$$

$$\geq \| \mathbf{D} (\mathbf{x}/\mathbf{k}_{2} \otimes \mathbf{1}_{\mathbf{G}'}) \|_{p} = \| \mathbf{D}_{1} (\mathbf{x}/\mathbf{k}_{2}) \otimes \mathbf{1}_{\mathbf{G}'} \|_{p}, (\text{Since } \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{1}_{\mathbf{G}'}) = 0) = \| \mathbf{D}_{1} \mathbf{x} \|_{p}, (\mathbf{S} \otimes \mathbf{D}_{2} (\mathbf{D}_{2} (\mathbf$$

Thus, $\|\mathbf{D}_1 \mathbf{x}\| \le \|\mathbf{D}\|$ for every $\mathbf{x} \in \mathbf{V}$ with $\|\mathbf{x}\| = 1$. This gives $\|\mathbf{D}_1\| \le \|\mathbf{D}\|$. Similarly, we can prove that $\|\mathbf{D}_2\| \le \|\mathbf{D}\|$. Hence, we have $\|\mathbf{D}_1\| + \|\mathbf{D}_2\| \le 2 \|\mathbf{D}\|$. (3.2)

The inequalities (3.1) ard (3.2) together imply $\|\mathbf{D}\| \le \|\mathbf{D}_1\| + \|\mathbf{D}_2\| \le 2 \|\mathbf{D}\|$. Q.E.D.

Our next question is - can one improve the above result - ? We illustrate the possibility with the help of examples :

Let V be the set of 2×3 rectangular matrices and Γ be the set of all 3×2 rectangular matrices with real (or complex) entries. Then V and Γ are Banach spaces under usual matrix addition, scalar multiplication, and the norm defined by $\|A\|_{\infty} = \max_{i,j} |a_{i,j}|$, where $A = (a_{i,j})$. Then (V, Γ) is a Γ -Banach algebra Now the following result is true:

THEOREM 3.2. For a fixed $\alpha \in \Gamma$, each α - derivation on V is inner.

Since α -derivations on a finite dimensional Γ -Banach algebra are all inner, the result follows immediately, see [10] .

We show below with an example in the Γ - Banach algebra of 2 x 3 rectangular matrices that the equality $\|D\| = \|D_1\| + \|D_2\|$ holds.

AN EXAMPLE 3.1.

Let
$$\alpha = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix}$$
 be a fixed element in Γ , and let $D_{1\alpha}$ and $D_{2\alpha}$ be two α - derivations on V

implemented by
$$A_o$$
 and B_o respectively, where $A_o = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ and $B_o = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix}$

Now $\|A_o\| = 2$ and $\|B_o\| = 3$. and $D_{1\alpha}(A) = A_o \alpha A - A \alpha A_o$, $\forall A \in V$. Then $\|D_{1\alpha}A\| \le 2 \|A_o\| \|A\| = 2 \|A_o\| \|A\|$, because $\|\alpha\| = 1$. Hence, $\|D_{1\alpha}\| \le 2 \|A_o\| = 2.2 = 4$. Next, suppose that $X_o = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Then $\|X_o\| = 1$.

Also
$$\|A_0 \alpha X_0 - X_0 \alpha A_0\| = \|\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}\| = 4.$$
 Hence $\|D_{1\alpha}\| = 4$

Similarly we can show that $\|D_{2a}\| = 6$. So $\|D_{1a}\| + \|D_{2a}\| = 4 + 6 = 10$.

If D is the derivation defined by the relation as in Theorem 3.1, then we always have

$$\| \mathbf{D} \| \le \| \mathbf{D}_{1a} \| + \| \mathbf{D}_{2a} \| = 10$$
 (3.1)

Next, consider the element $u_o = e_1 \otimes e_1$, where $e_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then $\| u_o \|_p = 1$.

Now,
$$\|D\| \ge \|Du_o\|_p$$

$$= \| \mathbf{D}_{1\alpha} \mathbf{e}_1 \otimes \mathbf{e}_1 + \mathbf{e}_1 \otimes \mathbf{D}_{2\alpha} \mathbf{e}_1 \|_{\mathbf{p}}$$

$$\geq D_{1\alpha} e_1 \otimes e_1 + e_1 \otimes D_{2\alpha} e_1 \parallel_w$$

(because the projective norm is always greater than or equal to the weak norm)

$$= \sup \left\{ ||f(D_{1\alpha}e_1)g(e_1)+f(e_1)||g(D_{2\alpha}e_1)|| : f, g \in V^*, ||f|| = ||g|| = 1 \right\}. \quad (3.2)$$

Again
$$D_{1\alpha} e_1 = A_0 \alpha e_1 - e_1 \alpha A_0$$

$$= \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= \left(\begin{array}{ccc} -4 & 0 & 0 \\ 2 & 0 & 0 \end{array}\right)$$

$$D_{2\alpha} e_{1} = B_{0}\alpha e_{1} - e_{1}\alpha B_{0}$$

$$= \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

$$= \begin{pmatrix} -6 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$

We know that if we define

$$f_{i}(e_{j}) = 1$$
 if $i = j$ and $i = 0$ if $i \neq j$, then $\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\}$ is a basis for V* In (3.2) put $f = g = f_{i}$. Then we find that $||D|| \ge 10$ (3.3)

The inequalities (3.1) and (3.3) combinedly give ||D|| = 10. Hence $||D|| = ||D_{1\alpha}|| + D_{2\alpha}||$

ANOTHER EXAMPLE 3.2.

Next we wish to illustrate that the result in Theorem 3 1 cannot be improved in general. If we assume V and Γ represent the same set of all 2 x 2 real matrices, then (V, Γ) is a particular Γ - Banach

algebra with the usual operations. The ordinary identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity of (V, Γ) under multiplication.

If $\mathbf{e}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{e}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\mathbf{e}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then $\beta = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ is the standard basis for (V, Γ) . For a simple example, let D_1 and D_2 be derivations on (V, Γ) implemented by the matrices $A_0 = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$ and $B_0 = \begin{pmatrix} 4 & -7 \\ 0 & 2 \end{pmatrix}$ respectively. Then the matrix representations of D_1 and D_2

with respect to the basis β are respectively

$$\begin{bmatrix} D_1 \end{bmatrix}_{\beta} = \begin{pmatrix} 0 & 0 & 3 & 0 \\ -3 & 1 & 0 & 3 \\ 0 & 0 - 1 & 0 \\ 0 & 0 - 3 & 0 \end{pmatrix} \text{ and } \begin{bmatrix} D_2 \end{bmatrix}_{\beta} = \begin{pmatrix} 0 & 0 & -7 & 0 \\ 7 & 2 & 0 & -7 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 7 & 0 \end{pmatrix}$$

So, $\|D_1\| = 3$ and $\|D_2\| = 7$. Again, $\gamma = \{e_i \otimes e_j \mid i, j = 1, 2, 3, 4\}$ is a basis for $(V, \Gamma) \otimes_p (V, \Gamma)$ and the matrix representation of D with respect to the basis γ is

Hence $\|D\| = 7$. Thus the strict inequality $\|D\| < \|D_1\| + \|D_2\| < 2 \|D\|$ holds.

4. THE SPECTRUM OF D

We next devote to studying the validity of the result sp (D) = sp (D₁) + sp (D₂). Recall that sp (D₁) consists of all scalars λ_1 such that D₁ - λ_1 I₁ is singular. Analogous definitions apply to sp (D₂) and sp (D) Further, for the singularity and invertibility of a rectangular matrix, see . Joshi [11].

THEOREM 4.1. The derivations D, D, and D, are defined as in Theorem 2.1. Then

$$sp(D_1) + sp(D_2) \subseteq sp(D)$$

PROOF. Let $\lambda_1 \in \operatorname{sp}(D_1)$ and $\lambda_2 \in \operatorname{sp}(D_2)$. $\Rightarrow D_1 - \lambda_1 I_1$ and $D_2 - \lambda_2 I_2$ are singular $\Rightarrow \exists \operatorname{nonzero} \operatorname{vectors} x_o \in V \text{ and } y_o \in V' \text{ such that } (D_1 - \lambda_1 I_1) x_o = o \text{ and } (D_2 - \lambda_2 I_2) y_o = 0$ Now, $x_o \otimes y_o$ is a non-zero element in $(V, \Gamma) \otimes_p (V, \Gamma')$.

Again, [D - (
$$\lambda_1 + \lambda_2$$
) I] ($x_0 \otimes y_0$) = D ($x_0 \otimes y_0$) - ($\lambda_1 + \lambda_2$) ($x_0 \otimes y_0$)
$$= D_1 x_0 \otimes y_0 + x_0 \otimes D_2 y_0 - (\lambda_1 + \lambda_2) x_0 \otimes y_0$$

$$= (D_1 - \lambda_1 I_1) x_0 \otimes y_0 + x_0 \otimes (D_2 - \lambda_2 I_2) y_0 = 0$$

So, D - $(\lambda_1 + \lambda_2)$ I is singular and hence $\lambda_1 + \lambda_2 \varepsilon$ sp (D). Thus, we obtain sp (D₁) + sp (D₂) \subseteq sp (D). Q.E.D **REMARK 4.1.** (i) We conjecture that the above result cannot be improved in general.

(ii) However, the equality holds in finite dimensional Γ - Banach algebras. For, if dim (V, Γ) = m, dim (V, Γ') = n, then dim (V, Γ) \otimes_p (V', Γ')) = mn. So, sp (D_1), sp (D_2) and sp (D_3) have m,n and mn eigenvalues respectively. Again, sp (D_1) + sp (D_2) gives mn values which are precisely the eigenvalues of D_3 .

Further, we have the following illuminating result.

THEOREM 4.2. As usual, let D_1 , D_2 and D be derivations connected by the relation as in Theorem 2.1(i). If (V, Γ) and (V, Γ) are finite dimensional Gamma-Banach algebras, D_1 and D_2 are implemented by $r \in V$ and $s \in V$ respectively, then

$$sp(D_1) = \{ a = \lambda - \mu \mid \lambda, \mu \in sp(r) \},$$

$$sp(D_2) = \{ b = \lambda' - \mu' \mid \lambda', \mu' \in sp(s) \}$$

and $\operatorname{sp}(D) = \{a + b \mid a \varepsilon \operatorname{sp}(D_1), b \varepsilon \operatorname{sp}(D_2)\}.$

PROOF. The first two results will follow from Propostion 9,§18, Ch2 in [10], and the last result will follow from Remark 4.1 (ii). Q.E.D.

REFERENCES

- [1] BHATTACHARYA, D.K. and MAITY, A.K., Regular representation of Γ-Banach Algebra, J. of Pure Mathematics, Calcutta University, India, (To appear).
- [2.] BHATTACHARYA, D.K. and MAITY, A.K., Semilinear tensor product of Γ-Banach algebras, Ganita Vol. 40. No. 2, (1989), 75-80.
- [3] GREUB, W.H., Multilinear algebra, Springer Verlag, 1967.
- [4.] BADE, W.G. and DALES, H.G., Discontinuous derivations from algebras of power series, Proc. London Math. Soc. (3), 69 No. 1 (1989), 133 - 152.
- [5.] CARNE, T.K, Tensor products of Banach algebras, J. London Math. Soc. (2), 17 (1978), 480-88
- [6] CHUANKUN SUN, The essential norm of the generalized derivation, Chinese Anna. Math., 13A:2 (1992), 211-221.
- [7] KYLE, J., Norms of derivations, J. London Math. Soc. (2), 16 (1977), 297-312
- [8] VUKMAN, J., A result concerning derivations in Banach algebras, Proc. Amer. Math. Soc., Vol 116, No. 4 (December 1992), 971-975.
- [9] BACKMAN, G., Introduction to p-adic numbers and valuation theory, Academic Press, 1964
- [10] BONSALL, F.F. and DUNCAN, J., Complete normed algebras, Springer Verlag, 1973
- [11] JOSHI, V.N., A determinant for rectangular matrices, Bull. Austral. Math. Soc., (Series A), Vol 21 (1980), 137-146

Submit your manuscripts at http://www.hindawi.com

Journal of Discrete Mathematics

