$\alpha-$ DERIVATIONS AND THEIR NORM IN PROJECTIVE TENSOR PRODUCTS OF「-BANACH ALGEBRAS

T.K. DUTTA, H.K. NATH and R.C. KALITA
Department of Mathematics
Gauhati University
Guwahati - 781014
Assam, India.

(Received April 16, 1996 and in revised form December 10, 1996)

Abstract

Let ($\mathrm{V} . \Gamma$) and ($\mathrm{V}^{\prime}, \Gamma^{\prime}$) be Gamma-Banach algebras over the fields F_{1} and F_{2} isomorphic to a field F which possesses a real valued valuation, and $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$, their projective tensor product. It is shown that if D_{1} and D_{2} are α - derivation and α^{\prime} - derivation on (V, Γ) and ($\mathrm{V}^{\prime}, \Gamma^{\prime}$) respectively and $\mathrm{u}=\sum_{1} \mathrm{x}_{1} \otimes \mathrm{y}$ is an arbitrary element of $(\mathrm{V}, \Gamma) \otimes_{\mathrm{p}}\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$, then there exists an $\alpha \otimes \alpha^{\prime}$ - derivation D on $(\mathrm{V}, \Gamma) \otimes_{\mathrm{p}}\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$ satisfying the relation $$
D(u)=\sum_{1}\left[\left(D_{1} x_{1}\right) \otimes y_{1}+x_{1} \otimes\left(D_{2} y_{1}\right)\right]
$$ and possessing many enlightening properties. The converse is also true under a certain restriction. Furthermore, the validity of the results $\|D\|=\left\|D_{1}\right\|+\left\|D_{2}\right\|$ and $s p(D)=\operatorname{sp}\left(D_{1}\right)+\operatorname{sp}\left(D_{2}\right)$ are fruitfully investigated.

KEY WORDS AND PHRASES : Γ - Banach algebras, projective tensor products. α - derivations. 1991 AMS SUBJECT CLASSIFICATION CODES : Primary 46G05, 46M05: Secondary 15A69.

1. INTRODUCTION

Γ - Banach algebras and α-derivations are generalisation of ordinary Banach algebras and derivations respectively. The set of all $\mathrm{m} \times \mathrm{n}$ rectangular matrices and the set of all bounded linear transformations from an infinite dimensional normed linear space X into a Banach space Y are nice examples of Γ - Banach algebras which are not general Banach algebras. Similarly a derivation can't be defined on these spaces as there appears to be no natural way of introducing an algebraic multiplication into these. So, a new concept of derivation known as α - derivation is introduced on a Γ - Banach algebra. Bhattacharya and Maity have defined a Γ - Banach algebra in their paper [1] and have discussed in their another paper [2] various tensor products of Γ - Banach algebras over fields which are isomorphic to another field with a real valued valuation by using semilinear transformations, [3]. Derivations and tensor products of general Banach algebras are discussed in many papers, [4.5.6.7.8]. Now there are some natural questions : Does every pair of derivations D_{1} and D_{2} on Gamma Banach ágebras (V. Γ) and ($\mathrm{V}^{\prime} \cdot \Gamma^{\prime}$) respectively give rise to a derivation D on their projective tensor product? If yes. then can one estimate the norm of D with the help of norms of D_{1} and D_{2} ? Can one evaluate the spectrum of D with the help
of those of D_{1} and D_{2} ? Are the converses of the above problems true? We give affirmative answers to some of these questions. The useful terminologies are forwarded below :

DEFINITION 1.1. Let $X\left(F_{1}\right)$ and $Y\left(F_{2}\right)$ be given normed linear spaces over fields F_{1} and F_{2}, which are isomorphic to a field F with a real valued valuation, (refer to Backman's book [9]). If $u=\sum_{1}\left(x_{1} \otimes y_{1}\right)$ is an element of the algebraic tensor product $X \otimes Y$, then the projective norm p is defined by

$$
\mathrm{p}(\mathrm{u})=\inf \left\{\sum_{\mathrm{i}}\left\|\mathrm{x}_{1}\right\|\left\|\mathrm{y}_{1}\right\|: \mathrm{x}_{1} \varepsilon \mathrm{X}, \mathrm{y}_{1} \varepsilon \mathrm{Y}\right\}
$$

where the infimum is taken over all finite representations of u. Further the weak norm w on u is defined by

$$
\mathrm{w}(\mathrm{u})=\sup \left\{\left|\sum_{i} \zeta_{1}\left(\mathrm{f}\left(\mathrm{x}_{1}\right)\right) . \zeta_{2}\left(\mathrm{~g}\left(\mathrm{y}_{1}\right)\right)\right|: \mathrm{f} \varepsilon \mathrm{X}^{*}, \mathrm{~g} \varepsilon \mathrm{Y}^{*},\|\mathrm{f}\| \leq 1,\|\mathrm{~g}\| \leq 1\right\}
$$

[Here X^{*} and Y^{*} are respective dual spaces of X and Y; and F_{1}, F_{2} are isomorphic to F under isormorphisms ζ_{1} and ζ_{2}]. The projective tensor product $\mathrm{X} \otimes_{\mathrm{p}} \mathrm{Y}$ and the weak tensor product $\mathrm{X} \otimes_{\mathrm{w}} \mathrm{Y}$ are the completions of $X \otimes Y$ with their respective norms. For details, see Bonsall and Duncan's book [10].

DEFINITION 1.2. Let (V, Γ) be a Γ-Banach algebra and α, a fixed element of Γ. Then α-identity, 1_{α}, is an element of V satisfying the conditions $\mathrm{x} \alpha \mathrm{l}_{\alpha}=\mathrm{x}$ and $\mathrm{l}_{\alpha} \alpha \mathrm{x}=\mathrm{x}$ for every x in V .

DEFINITION 1.3. A linear operator D of (V, Γ) into itself is called an α-derivation if

$$
\mathrm{D}(\mathrm{x} \alpha \mathrm{y})=(\mathrm{Dx}) \alpha \mathrm{y}+\mathrm{x} \alpha(\mathrm{Dy}), \quad \mathrm{x}, \mathrm{y} \varepsilon \mathrm{~V}
$$

Every $\mathrm{x} \varepsilon \mathrm{V}$ gives rise to an α - derivation D_{x} defined by $\mathrm{D}_{\mathrm{x}}(\mathrm{y})=\mathrm{x} \alpha \mathrm{y}-\mathrm{y} \alpha \mathrm{x}$. Such a derivation is called an α-inner derivation. Further, if (V, Γ) is an involutive Γ - Banach algebra with an involution *, then an α - derivation D is called an α-star-derivation if $D x^{*}=-(D x)^{*}, x^{*}$ being the adjoint of x. Again, we define an operation o by xoy $=\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x}, \mathrm{x}, \mathrm{y} \varepsilon \mathrm{V}$. A linear map D on (V, Γ) is called an α-Jordan derivation if $D(x o y)=(D x)$ oy $+x 0(D y)$ for all x and y in V.

2. THE MAIN RESULTS

Throughout our discussion, unless stated otherwise, (V, Γ) and ($\left.V^{\prime}, \Gamma^{\prime}\right)$ are Gamma-Banach algebras over F_{1} and F_{2}, isomorphic to F which possesses a real valued valuation; α and α^{\prime} are fixed elements of Γ and $\Gamma^{\prime} ;$ and $1_{\alpha^{\prime}}, 1_{\alpha^{\prime}}$ are α - identity and α^{\prime}-identity of V and V^{\prime} respectively. Moreover, suppose that $\left\|1_{\alpha}\right\|=k_{1} \neq 0$ and $\left\|1_{\alpha^{\prime}}\right\|=k_{2} \neq 0$.

The following proposition is fundamental for our purpose, and we refer to Bhattacharya and Maity [2] for its proof.

PROPOSITION 2.1. The projective tensor product (V, Γ) $\otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$ with the projective norm is
a $\Gamma \otimes \Gamma^{\prime}$ - Banach algebra over the field F, where multiplication is defined by the formula

$$
(\mathrm{x} \otimes \mathrm{y})(\gamma \otimes \delta)\left(\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}\right)=\left(\mathrm{x} \gamma \mathrm{x}^{\prime}\right) \otimes\left(\mathrm{y} \delta \mathrm{y}^{\prime}\right), \text { where } \mathrm{x}, \mathrm{y} \varepsilon \mathrm{~V} ; \mathrm{x}^{\prime}, \mathrm{y}^{\prime} \varepsilon \mathrm{V}^{\prime} ; \gamma \varepsilon \Gamma ; \delta \varepsilon \Gamma^{\prime} .
$$

THEOREM 2.1. Let D_{1} and D_{2} be bounded α - derivation and α^{\prime} - derivation on (V, Γ) and $\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$ respectively. Then
(i) there exists a bounded $\alpha \otimes \alpha^{\prime}$ - derivation D on the projective tensor product $(\mathrm{V}, \Gamma) \otimes_{\mathrm{p}}\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$ defined
by the relation

$$
D(u)=\sum_{1}\left[\left(D_{1} x_{i}\right) \otimes y_{1}+x_{1} \otimes\left(D_{2} y_{1}\right)\right], \text { for each vector } u=\sum_{1} x_{1} \otimes y_{1} \varepsilon(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)
$$

(ii) If D_{1} and D_{2} are α - and α^{\prime} - inner derivations implemented by the elements $r_{0} \varepsilon V$ and $s_{0} \varepsilon V^{\prime}$ respectively then D is an $\alpha \otimes \alpha^{\prime}$ - inner derivation implemented by $\mathrm{r}_{0} \otimes 1_{\alpha^{\prime}}+1_{\alpha} \otimes \mathrm{s}_{\mathrm{o}}$.
(iii) If D_{1} and D_{2} are α - and α^{\prime} - Jordan derivations, then D is an $\alpha \otimes \alpha^{\prime}$ - Jordan derivation.
(iv) If (V, Γ) and $\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$ are involutive Gamma -Banach algebras, and if D_{1} and D_{2} are α - and α^{\prime} - star derivations, then D is $\alpha \otimes \alpha^{\prime}$ - star derivation.

PROOF. (i) We define a map $D:(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right) \rightarrow(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$ by the rule

$$
D(u)=\sum_{i}\left[D_{1} x_{1} \otimes y_{1}+x_{1} \otimes D_{2} y_{1}\right] \text {,for each vector } u=\sum_{1} x_{1} \otimes y_{1}
$$

Clearly, D is well - defined. Before establishing the linearity of D, we first aim at proving the boundedness of D. For any arbitrary element $\mathrm{u} \varepsilon(\mathrm{V}, \Gamma) \otimes_{\mathrm{p}}\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$ and $\varepsilon>0$, the definition of the projective norm provides a finite representation $\sum_{i=1}^{n} x^{\prime}, \otimes y^{\prime}$, such that $\|u\|_{p}+\varepsilon \geq \sum_{i=1}^{n}\left\|x^{\prime},\right\|\left\|y^{\prime},\right\|$. Therefore , for this representation of u, we obtain

$$
\begin{aligned}
\|D u\|_{p} & \left.=\| \sum_{1}\left[D_{1} x_{1}^{\prime} \otimes y_{1}^{\prime}+x_{1}^{\prime} \otimes D_{2} y_{1}^{\prime}\right)\right]_{p} \\
& \leq \sum_{1}\left[\left\|D_{1} x_{1}^{\prime} \otimes y_{1}^{\prime}\right\|\left\|_{p}+\right\| x_{1}^{\prime} \otimes D_{2} y_{1}^{\prime} \|_{p}\right] \\
& =\sum_{1}\left[\left\|D_{1} x_{1}^{\prime}\right\|\left\|y^{\prime}\right\|+\left\|x_{1}^{\prime}\right\|\left\|D_{2} y_{1}^{\prime}\right\|\right],(\text { because a projective norm is a cross norm }) . \\
& \leq\left(\left\|D_{1}\right\|+\left\|D_{2}\right\|\right) \sum_{1}\left\|x_{1}^{\prime}\right\|\left\|y_{1}^{\prime}\right\|,\left(\text { because } D_{1} \text { and } D_{2} \text { are bounded }\right) \\
& \leq K\left(\|u\|_{p}+\varepsilon\right), \text { where } K=\left\|D_{1}\right\|+\left\|D_{2}\right\| .
\end{aligned}
$$

Thus, $\|\mathrm{Du}\|_{\mathrm{p}} \leq \mathrm{K}\left(\|\mathrm{u}\|_{\mathrm{p}}+\varepsilon\right)$. Since the left hand side is independent of ε, and ε was arbitrary, it follows that $\|D u\|_{p} \leq K\|u\|_{p}$ for every $u \varepsilon(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$. Consequently, D_{m} is bounded.

Next to establish the linearity, let $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ and $v=\sum_{j=1}^{m} r_{j} \otimes s_{j}$ be any two elements of $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$. Then $u+v=\sum_{i=1}^{n m} x_{1} \otimes y_{1}$, where $x_{n+j}=r_{j}$ and $y_{n+j}=s_{j}, j=1,2, \ldots \ldots m$.

Now, $D(u+v)=D\left(\sum_{i=1}^{n+m} x_{1} \otimes y_{1}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n+m}\left[D_{1} x_{1} \otimes y_{1}+x_{1} \otimes D_{2} y_{1}\right] \\
& =\sum_{i=1}^{n}\left[D_{1} x_{1} \otimes y_{1}+x_{1} \otimes D_{2} y_{1}\right]+\sum_{i=n+1}^{m+n}\left[D_{1} x_{1} \otimes y_{1}+x_{1} \otimes D_{2} y_{1}\right] \\
& =\sum_{i=1}^{n}\left[D_{1} x_{1} \otimes y_{1}+x_{1} \otimes D_{2} y_{1}\right]+\sum_{j=1}^{m}\left[D_{1} r_{j} \otimes s_{j}+r_{j} \otimes D_{2} s_{j}\right]=D(u)+D(v)
\end{aligned}
$$

The boundedness of D implies that the rusult, $D(u+v)=D(u)+D(v)$, is also true for any infinite
representations of u and v. Similarly it can be shown easily that $D(a u)=a D(u)$ for any scalar a. Consequently D is a bounded linear map.

To show that D is an $\alpha \otimes \alpha^{\prime}$ - derivation, we suppose that $\mathrm{u}=\mathrm{x} \otimes \mathrm{y}$ and $\mathrm{v}=\mathrm{r} \otimes \mathrm{s}$ are any two elementary tensors of $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$. Then $u \alpha \otimes \alpha^{\prime} v=x \alpha r \otimes$ y α^{\prime}. Now

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{u} \alpha \otimes \alpha^{\prime} \mathrm{v}\right) & =\left(\mathrm{D}_{1} \mathrm{x} \alpha \mathrm{r}\right) \otimes \mathrm{y} \alpha^{\prime} \mathrm{s}+\mathrm{x} \alpha \mathrm{r} \otimes\left(\mathrm{D}_{2} \mathrm{y} \alpha^{\prime} \mathrm{s}\right) \\
& =\left[\left(\mathrm{D}_{1} \mathrm{x}\right) \alpha \mathrm{r}+\mathrm{x} \alpha\left(\mathrm{D}_{1} \mathrm{r}\right)\right] \otimes \mathrm{y} \alpha^{\prime} \mathrm{s}+\mathrm{x} \alpha \mathrm{r} \otimes\left[\left(\mathrm{D}_{2} \mathrm{y}\right) \alpha^{\prime} \mathrm{s}+\mathrm{y} \alpha^{\prime}\left(\mathrm{D}_{2} \mathrm{~s}\right)\right] \\
& =\left[\left(\mathrm{D}_{1} \mathrm{x}\right) \alpha \mathrm{r} \otimes \mathrm{y} \alpha^{\prime} \mathrm{s}+\mathrm{x} \alpha \mathrm{r} \otimes\left(\mathrm{D}_{2} \mathrm{y}\right) \alpha^{\prime} \mathrm{s}\right]+\left[\mathrm{x} \alpha\left(\mathrm{D}_{1} \mathrm{r}\right) \otimes \mathrm{y} \alpha^{\prime} \mathrm{s}+\mathrm{x} \alpha \mathrm{r} \otimes \mathrm{y} \alpha^{\prime}\left(\mathrm{D}_{2} \mathrm{~s}\right)\right] \\
& =(\mathrm{Du}) \alpha \otimes \alpha^{\prime} \mathrm{v}+\mathrm{u} \alpha \otimes \alpha^{\prime}(\mathrm{Dv}) .
\end{aligned}
$$

Similarly, if $u=\sum_{i} x_{1} \otimes y_{1}$ and $v=\sum_{j} r_{j} \otimes s_{j}$ be any two elements of $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$, then summing over i and j we can prove easily that $\mathrm{D}\left(\mathrm{u} \alpha \otimes \alpha^{\prime} \mathrm{v}\right)=(\mathrm{Du}) \alpha \otimes \alpha^{\prime} v+u \alpha \otimes \alpha^{\prime}(\mathrm{Dv})$. so D is an $\alpha \otimes \alpha^{\prime}$ - derivation. (ii) Let D_{1} and D_{2} be α - and α^{\prime} - inner derivations implemented by the vectors r_{0} and s_{0} respectively.

So,

$$
\mathrm{D}_{1}(\mathrm{x})=\mathrm{r}_{0} \alpha \mathrm{x}-\mathrm{x} \alpha \mathrm{r}_{0}, \forall \mathrm{x} \varepsilon \mathrm{~V} \text { and } \mathrm{D}_{2}(\mathrm{y})=\mathrm{s}_{0} \alpha^{\prime} \mathrm{y}-\mathrm{y} \alpha^{\prime} \mathrm{s}_{0}, \forall \mathrm{y} \varepsilon \mathrm{~V}^{\prime}
$$

Now, $\quad D(u)=\sum_{1}\left[D_{1} x_{1} \otimes y_{1}+x_{1} \otimes D_{2} y_{1}\right]$

$$
\begin{aligned}
& =\sum_{1}\left[\left(r_{0} \alpha x_{1}-x_{1} \alpha r_{0}\right) \otimes y_{1}+x_{1} \otimes\left(s_{0} \alpha^{\prime} y_{1}-y_{1} \alpha^{\prime} s_{0}\right)\right] \\
& =\sum_{1}\left[r_{0} \alpha x_{1} \otimes y_{1}-x_{1} \alpha r_{0} \otimes y_{1}+x_{1} \otimes s_{0} \alpha^{\prime} y_{1}-x_{1} \otimes y_{1} \alpha^{\prime} s_{0}\right] \\
& =\sum_{1}\left[\left(r_{0} \otimes 1_{\alpha^{\prime}}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(x_{1} \otimes y_{1}\right)-\left(x_{1} \otimes y_{1}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(r_{0} \otimes 1_{\alpha^{\prime}}\right)\right. \\
& \left.\quad+\left(1_{\alpha} \otimes s_{0}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(x_{1} \otimes y_{1}\right)-\left(x_{i} \otimes y_{1}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(1_{\alpha} \otimes s_{0}\right)\right]
\end{aligned}
$$

$$
=\sum_{1}\left[\left(\mathrm{r}_{0} \otimes 1_{a^{\prime}}+1_{\alpha} \otimes \mathrm{s}_{0}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{x}_{\mathrm{i}} \otimes \mathrm{y}_{\mathrm{i}}\right)-\left(\mathrm{x}_{1} \otimes \mathrm{y}_{1}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{r}_{0} \otimes 1_{\alpha^{\prime}}+1_{\alpha} \otimes \mathrm{s}_{0}\right)\right]
$$

$$
=D_{t_{0}}(u), \quad \text { where } t_{0}=r_{0} \otimes 1_{\alpha^{\prime}}+1_{\alpha} \otimes s_{0}
$$

Consequently, D is an $\alpha \otimes \alpha^{\prime}$-inner derivation implemented by t_{o}.
(iii) The proof is routine.
(iv) Let D_{1} and D_{2} be star derivations. If $u=\sum_{1} x_{1} \otimes y_{1}$ is an element of $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$, then the adjoint of u is given by $u^{*}=\sum_{1} x_{1}^{*} \otimes y_{1}^{*} \quad$ Now,

$$
\begin{aligned}
D u^{*} & =D\left(\sum_{1} x_{1}^{*} \otimes y_{1}^{*}\right) \\
& \left.=\sum_{1}\left[D_{1} x_{1}^{*} \otimes y_{1}^{*}+x_{1}^{*} \otimes D_{2} y_{1}^{*}\right)\right] \\
& =\sum_{1}\left[-\left(D_{1} x_{1}\right)^{*} \otimes y_{1}^{*}+x_{1}^{*} \otimes\left\{-\left(D_{2} y_{1}\right)^{*}\right\}\right], \text { because } D_{1} \text { and } D_{2} \text { are star derivation. }
\end{aligned}
$$

$=-\sum_{1}\left[\left(D_{1} x_{1}\right)^{*} \otimes y_{1}^{*}+x_{1}^{*} \otimes\left(D_{2} y_{1}\right)^{*}\right]=-(D u)^{*}$. So, D is a star-derivation. Q.E.D.

REMARK 2.1. (i) The above theorem can be extended to the projective tensor product of n number of Γ - Banach algebras.
(ii) If $u=x \otimes 1_{\alpha^{\prime}} \varepsilon(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$, then from the definition of D, we get

$$
\begin{equation*}
\mathrm{Du}=\mathrm{D}_{1} \mathrm{x} \otimes 1_{\alpha^{\prime}}, \text { because } \mathrm{D}_{2} \mathrm{I}_{\alpha^{\prime}}=0 \tag{2.1}
\end{equation*}
$$

From this result, we can ascertain that for each derivation D on $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$, there may not exist derivations D_{1} and D_{2} on (V, Γ) and $\left(V^{\prime}, \Gamma^{\prime}\right)$ respectivey such that D, D_{1} and D_{2} are connected by the relation given in Theorem 2.1. For example, let D^{\prime} be an $\alpha \otimes \alpha^{\prime}$ - inner derivation implemented by an element $\mathrm{r}_{\mathrm{n}} \otimes \mathrm{s}_{\mathrm{n}}$, where s_{o} is not a scalar multiple of the identity element $1_{a^{\prime}}$. Then
$D^{\prime} u=\left(r_{0} \otimes s_{o}\right)\left(\alpha \otimes \alpha^{\prime}\right) u-u\left(\alpha \otimes \alpha^{\prime}\right)\left(r_{0} \otimes s_{o}\right)$, for every $u \varepsilon(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$. Now if $u=x \otimes I_{a^{\prime}}$, then

$$
\begin{align*}
\mathrm{D}^{\prime} \mathrm{u} & =\left(\mathrm{r}_{0} \otimes \mathrm{~s}_{\mathrm{o}}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{x} \otimes 1_{\alpha^{\prime}}\right)-\left(\mathrm{x} \otimes \mathrm{l}_{\alpha^{\prime}}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{r}_{\mathrm{o}} \otimes \mathrm{~s}_{\mathrm{o}}\right) \\
& =\mathrm{r}_{\mathrm{o}} \alpha \mathrm{x} \otimes \mathrm{~s}_{0} \alpha^{\prime} \mathrm{l}_{\alpha^{\prime}}-\mathrm{x} \alpha \mathrm{r}_{\mathrm{o}} \otimes \mathrm{I}_{\alpha^{\prime}} \alpha^{\prime} \mathrm{s}_{\mathrm{o}}=\left(\mathrm{r}_{0} \alpha \mathrm{x}-\mathrm{x} \alpha \mathrm{r}_{\mathrm{o}}\right) \otimes \mathrm{s}_{\mathrm{o}} \\
& =\left(\mathrm{D}_{\mathrm{r}_{\mathrm{r}_{0}}} \mathrm{x}\right) \otimes \mathrm{s}_{\mathrm{o}}, \text { where } \mathrm{D}_{1} \text { is a derivation on }(\mathrm{V}, \Gamma) \text { implemented by } \mathrm{r}_{0} \cdots \tag{2.2}
\end{align*}
$$

From the results (2.1) and (2.2) we can conclude that unless s_{o} is a scalar multiple of the identity element $1_{\alpha^{\prime}}, D^{\prime}\left(x \otimes 1_{\alpha^{\prime}}\right)$ may not be of the form $\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}$, where $\mathrm{x}_{1} \varepsilon \mathrm{~V},\left[\mathrm{x}_{1}\right.$ may be different from x$]$. This implies that D^{\prime} may not equal D in general. However, we have a converse of Theorem 2.1 as follows. Recall that an element $\mathrm{x} \varepsilon \mathrm{V}$ is called an α-idempotent element if $\mathrm{x} \alpha \mathrm{x}=\mathrm{x}$.

THEOREM 2.2. The following results are true :
(i) If D is a derivation on $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$ such that $D\left(\sum_{1} x_{1} \otimes y_{1}\right)=\sum_{1} z_{1} \otimes y_{1}, z_{1} \varepsilon V$ and y_{1} 's are α^{\prime} - idempotent elements of V^{\prime}, then there exists an α^{\prime}-derivation D_{1} on V defined by the rule $D_{1} x \otimes y=D(x \otimes y)$ for all $\mathrm{x} \varepsilon \mathrm{V}$ and for every α^{\prime} - idempotent element y $\varepsilon \mathrm{V}^{\prime}$;
(ii) If D is bounded, so is D_{1};
(iii) If D is an $\alpha \otimes \alpha '$-inner derivation implemented by an element w of the form $w=\sum_{1} x_{1} \otimes y_{1}$, where y_{1}^{\prime} 's are α^{\prime} - idempotent elements, then D_{1} is also an α - inner derivation implemented by the element $\Sigma \mathrm{x}_{1}$;
(iv) If (V, Γ) and $\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)$ are involutive Gamma-Banach algebras, and D is a star derivation, then so is D_{1} :
(v) If D is an $\alpha \otimes \alpha^{\prime}$ - Jordan derivation then D_{1} is an α - Jordan derivation;
(vi) If D is an $\alpha \otimes \alpha^{\prime}$ - derivation on $(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$ such that $D\left(\sum_{1} \otimes y_{1}\right)=\sum_{1} x_{1} \otimes s_{1}$ for α-idempotent elements $x_{1}^{\prime} s$ in V, and $s_{1} \varepsilon V^{\prime}$, then there exists an α^{\prime} - derivation D_{2} on $\left(V^{\prime}, \Gamma^{\prime}\right)$ given by the relation $x \otimes D_{2} y=D(x \otimes y)$ for every α-idempotent element $x \varepsilon V$ and for all elements $y \varepsilon V^{\prime}$. The above results (ii). (iii), (iv) and (v) are also true for D_{2}.

PROOF. (i) We define a map $D_{1}: V \rightarrow V$ by

$$
\mathrm{D}_{1} \mathrm{x} \otimes \mathrm{y}=\mathrm{D}(\mathrm{x} \otimes \mathrm{y}), \text { for all } \mathrm{x} \varepsilon \mathrm{~V} \text { and for every } \alpha^{\prime} \text {-idempotent element } y \varepsilon \mathrm{~V}^{\prime}
$$

Clearly, D_{1} is well-defined. In particular, we have $\mathrm{D}_{1} \mathrm{x} \otimes 1_{\alpha^{\prime}}=\mathrm{D}\left(\mathrm{x} \otimes \mathrm{I}_{\alpha^{\prime}}\right), \forall \mathrm{x} \varepsilon \mathrm{V}$. We first establish the linearity of D_{1}. Let $x_{1 .} x_{2} \varepsilon V$.

Then

$$
\begin{aligned}
\mathrm{D}_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \otimes 1_{\alpha^{\prime}} & =\mathrm{D}\left(\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \otimes 1_{\alpha^{\prime}}\right) \\
& =\mathrm{D}\left(\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}+\mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right) \\
& =\mathrm{D}\left(\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}\right)+\mathrm{D}\left(\mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right) \\
& =\left(\mathrm{D}_{1} \mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}+\mathrm{D}_{1} \mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right) \\
& =\left(\mathrm{D}_{1} \mathrm{x}_{1}+\mathrm{D}_{1} \mathrm{x}_{2}\right) \otimes 1_{\alpha^{\prime}}
\end{aligned}
$$

So, $\left(\mathrm{D}_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \otimes 1_{\alpha^{\prime}}\right)(\mathrm{f}, \mathrm{g})=\left(\left(\mathrm{D}_{1} \mathrm{x}_{1}+\mathrm{D}_{1} \mathrm{x}_{2}\right) \otimes \mathrm{I}_{\alpha^{\prime}}\right)(\mathrm{f}, \mathrm{g}), \quad \forall \mathrm{f} \varepsilon \mathrm{V}^{*}, \forall \mathrm{~g} \varepsilon \mathrm{~V}^{\prime *}$.

This gives, $\mathrm{f}\left(\mathrm{D}_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)\right) \mathrm{g}\left(\mathrm{l}_{\alpha^{\prime}}\right)=\mathrm{f}\left(\mathrm{D}_{1} \mathrm{x}_{1}+\mathrm{D}_{1} \mathrm{X}_{2}\right) \mathrm{g}\left(\mathrm{l}_{\alpha^{\prime}}\right), \quad \forall \mathrm{f} \varepsilon \mathrm{V}^{*}, \forall \mathrm{~g} \varepsilon \mathrm{~V}^{\prime *}$.
The Hahn-Banach theorem provides a functional $g_{o} \varepsilon V^{\prime *}$ in such a way that $g_{o}\left(1_{\alpha^{\prime}}\right)=\left\|1_{\alpha^{\prime}}\right\|=k_{2}$.

Then, $\quad f\left(D_{1}\left(x_{1}+x_{2}\right)\right)=f\left(D_{1} x_{1}+D_{1} x_{2}\right), \forall f \varepsilon V^{*}$. This yields, $D_{1}\left(x_{1}+x_{2}\right)=D_{1} x_{1}+D_{1} x_{2}$.

By appealing to the same mechanism, we can show that $D_{1}(a x)=a D_{1}(x)$ for any scalar a. So D_{1} is linear. Next, to show that D_{1} is an α-derivation.

$$
\begin{aligned}
& \mathrm{D}_{1}\left(\mathrm{x}_{1} \alpha \mathrm{x}_{2}\right) \otimes 1_{\alpha^{\prime}}=\mathrm{D}\left(\mathrm{x}_{1} \alpha \mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right) \quad\left(\mathrm{x}_{1} \cdot \mathrm{x}_{2} \varepsilon \mathrm{~V}\right) \\
&= \mathrm{D}\left[\left(\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right)\right] \\
&=\left(\mathrm{D}\left(\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}\right)\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right)+\left(\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}\right)\left(\alpha \otimes \alpha^{\prime}\right) \mathrm{D}\left(\mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right) \\
&\left.\quad \quad \text { (because } \mathrm{D} \text { is an } \alpha \otimes \alpha^{\prime} \text {-derivation }\right) \\
&=\left(\mathrm{D}_{1} \mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right)+\left(\mathrm{x}_{1} \otimes 1_{\alpha^{\prime}}\right)\left(\alpha \otimes \alpha^{\prime}\right)\left(\mathrm{D}_{1} \mathrm{x}_{2} \otimes 1_{\alpha^{\prime}}\right) \\
&=\left(\mathrm{D}_{1} \mathrm{x}_{1}\right) \alpha \mathrm{x}_{2} \otimes{1_{\alpha^{\prime}}}+\left(\mathrm{x}_{1} \alpha\left(\mathrm{D}_{1} \mathrm{x}_{2}\right)\right) \otimes 1_{\alpha^{\prime}}=\left[\left(\mathrm{D}_{1} \mathrm{x}_{1}\right) \alpha \mathrm{x}_{2}+\mathrm{x}_{1} \alpha\left(\mathrm{D}_{1} \mathrm{x}_{2}\right)\right] \otimes \mathrm{I}_{\alpha^{\prime}}
\end{aligned}
$$

So, $\mathrm{D}_{1}\left(\mathrm{x}_{1} \alpha \mathrm{x}_{2}\right)=\left(\mathrm{D}_{1} \mathrm{x}_{1}\right) \alpha \mathrm{x}_{2}+\mathrm{x}_{1} \alpha\left(\mathrm{D}_{1} \mathrm{x}_{2}\right)$. Therefore, D_{1} is an α-derivation. The rest of the results are routine.

3. THE NORM OF D

We now shift our attention to study the possibility of the result, $\|D\|=\left\|D_{1}\right\|+\left\|D_{2}\right\|$. when D. D_{1} and D_{2} are related as in Theorem 2.1.

THEOREM 3.1. If D, D_{1} and D_{2} are related as in Theorem 2.1, then

$$
\|\mathrm{D}\| \leq\left\|\mathrm{D}_{1}\right\|+\left\|\mathrm{D}_{2}\right\| \leq 2\|\mathrm{D}\| .
$$

PROOF. For each $u \varepsilon(V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)$ with $\|u\|_{p}=1$ and for each $\varepsilon>0, \exists a$ (finite) representation

$$
u=\sum_{1} x_{i} \otimes y_{i} \text { such that }\|u\|_{p}+\varepsilon \geq \sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\| .
$$

Now, $\|D\|=\sup _{\mathbf{u}}\left\{\|D u\|_{p}:\|u\|_{p}=1\right\}$

$$
\begin{align*}
& =\sup _{u}\left\{\left\|\sum_{1}\left[D_{1} x_{i} \otimes y_{i}+x_{i} \otimes D_{2} y_{i}\right]\right\|_{p}:\|u\|_{p}=1\right\} \\
& \leq \sup _{u}\left\{\sum_{1}\left[\left\|D_{1} x_{i} \otimes y_{i}\right\|_{p}+\left\|x_{i} \otimes D_{2} y_{i}\right\|_{p}\right]:\|u\|_{p}=1\right\} \\
& =\sup _{u}\left\{\sum_{i}\left[\left\|D_{1} x_{i}\right\|\left\|y_{i}\right\|+\left\|x_{i}\right\|\left\|D_{2} y_{i}\right\|\right]:\|u\|_{p}=1\right\} \\
& \leq \sup _{u}\left\{\sum_{1}\left[\left\|D_{1}\right\|\left\|x_{i}\right\|\left\|y_{i}\right\|+\left\|x_{i}\right\|\left\|D_{2}\right\|\left\|y_{i}\right\|\right]:\|u\|_{p}=1\right\} \\
& \leq\left(\left\|D_{1}\right\|+\left\|D_{2}\right\|\right) \sup _{u}\left\{1+\varepsilon:\|u\|_{p}=1\right\} \\
& =\left(\left\|D_{1}\right\|+\left\|D_{2}\right\|\right)(1+\varepsilon) \tag{31}
\end{align*}
$$

Since ε was arbitrary, it follows that $\|D\| \leq\left\|D_{1}\right\|+\left\|D_{2}\right\|$
Next, let $\mathrm{x} \boldsymbol{\varepsilon} \mathrm{V}$ be such that $\|\mathrm{x}\|=1$. Then $\left\|\mathrm{x} / \mathrm{k}_{2} \otimes 1_{\boldsymbol{\alpha}^{\prime}}\right\|=\left\|\mathrm{x} / \mathrm{k}_{2}\right\|\left\|1_{\alpha^{\prime}}\right\|=1$
Now,

$$
\begin{aligned}
\|D\| & =\sup _{u}\left\{\|D u\|_{p}:\|u\|_{p}=1\right\} \\
& \geq\left\|D\left(x / k_{2} \otimes 1_{\alpha^{\prime}}\right)\right\|_{p}=\left\|D_{1}\left(x / k_{2}\right) \otimes 1_{\alpha^{\prime}}\right\|_{p},\left(\text { Since } D_{2}\left(1_{\alpha^{\prime}}\right)=0\right)=\left\|D_{1} x\right\|
\end{aligned}
$$

Thus, $\left\|\mathrm{D}_{1} \mathrm{x}\right\| \leq\|\mathrm{D}\|$ for every $\mathrm{x} \varepsilon \mathrm{V}$ with $\|\mathrm{x}\|=1$. This gives $\left\|\mathrm{D}_{1}\right\| \leq\|\mathrm{D}\|$. Similarly, we can prove that $\left\|D_{2}\right\| \leq\|D\|$. Hence, we have $\left\|D_{1}\right\|+\left\|D_{2}\right\| \leq 2\|D\|$
The inequalilies (3.1) ard (3.2) together imply $\|\mathrm{D}\| \leq\left\|\mathrm{D}_{1}\right\|+\left\|\mathrm{D}_{2}\right\| \leq 2\|\mathrm{D}\|$.
Q.E.D.

Our next question is - can one improve the above result - ? We illustrate the possibility with the help of examples :

Let V be the set of 2×3 rectangular matrices and Γ be the set of all 3×2 rectangular matrices with real (or complex) entries. Then V and Γ are Banach spaces under usual matrix addition, scalar multiplication, and the norm defined by $\|A\|_{\infty}=\max _{\mathrm{i}, \mathrm{j}}\left|\mathrm{a}_{11}\right|$, where $\mathrm{A}=\left(\mathrm{a}_{11}\right)$. Then $(\mathrm{V}, \Gamma$) is a Γ - Banach algebra Now the following result is true :

THEOREM 3.2. For a fixed $\alpha \varepsilon \Gamma$, each α-derivation on V is inner.
Since α-derivations on a finite dimensional Γ-Banach algebra are all inner, the result follows immediately, see [10] .

We show below with an exampe in the Γ - Banach algebra of 2×3 rectangular matrices that the equality

$$
\|D\|=\left\|D_{1}\right\|+\left\|D_{2}\right\| \text { holds. }
$$

AN EXAMPLE 3.1.

Let $\alpha=\left(\begin{array}{cc}1 & 0 \\ 1 & 0 \\ -1 & 0\end{array}\right)$ be a fixed element in Γ, and let $D_{1 \alpha}$ and $D_{2 \alpha}$ be two α-derivations on V
implemented by A_{0} and B_{0} respectively, where $A_{0}=\left(\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & -2\end{array}\right)$ and $B_{0}=\left(\begin{array}{ccc}0 & 0 & 3 \\ 0 & 0 & -3\end{array}\right)$
Now $\quad\left\|\mathrm{A}_{0}\right\|=2$ and $\left\|\mathrm{B}_{0}\right\|=3$. and $\mathrm{D}_{1 \alpha}(\mathrm{~A})=\mathrm{A}_{o} \alpha \mathrm{~A}-\mathrm{A} \alpha \mathrm{A}_{o}, \forall \mathrm{~A} \varepsilon \mathrm{~V}$.
Then $\left\|\mathrm{D}_{1 \alpha} \mathrm{~A}\right\| \leq 2\left\|\mathrm{~A}_{0}\right\|\|\alpha\|\|\mathrm{A}\|=2\left\|\mathrm{~A}_{0}\right\|\|\mathrm{A}\|$, because $\|\alpha\|=1$.
Hence, $\quad\left\|D_{1 a}\right\| \leq 2\left\|A_{0}\right\|=2.2=4$. Next, suppose that $X_{0}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ Then $\left\|X_{0}\right\|=1$.

Also $\left\|A_{o} \alpha X_{o}-X_{o} \alpha A_{0}\right\|=\left\|\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 4\end{array}\right)\right\|=4$. Hence $\left\|D_{1 \alpha}\right\|=4$
Similarly we can show that $\left\|D_{2 \alpha}\right\|=6$. So $\left\|D_{1 \alpha}\right\|+\left\|D_{2 \alpha}\right\|=4+6=10$. If D is the derivation defined by the relation as in Theorem 3.1, then we always have

$$
\begin{equation*}
\|\mathrm{D}\| \leq\left\|\mathrm{D}_{1 \alpha}\right\|+\left\|\mathrm{D}_{2 \alpha}\right\|=10 \tag{3.1}
\end{equation*}
$$

Next, consider the element $u_{0}=e_{1} \otimes e_{1}$, where $e_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Then $\left\|u_{0}\right\|_{p}=1$.
Now, $\|D\| \geq\left\|\mathrm{Du}_{0}\right\|_{\mathrm{p}}$

$$
\begin{aligned}
& =\left\|D_{1 \alpha} e_{1} \otimes e_{1}+e_{1} \otimes D_{2 \alpha} e_{1}\right\|_{p} \\
& \geq D_{1 \alpha} e_{1} \otimes e_{1}+e_{1} \otimes D_{2 \alpha} e_{1} \|_{w}
\end{aligned}
$$

(because the projective norm is always greater than or equal to the weak norm)

$$
\begin{equation*}
=\sup \left\{\left|f\left(D_{1 \alpha} e_{1}\right) g\left(e_{1}\right)+f\left(e_{1}\right) g\left(D_{2 \alpha} e_{1}\right)\right|: f, g \varepsilon V^{*},\|f\|=\|g\|=1\right\} \tag{array}
\end{equation*}
$$

Again

$$
\begin{aligned}
& D_{1 \alpha} e_{1}=A_{o} \alpha e_{1}-e_{1} \alpha A_{0} \\
& =\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 0 \\
-1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & -2
\end{array}\right) \\
& =\left(\begin{array}{rrr}
-4 & 0 & 0 \\
2 & 0 & 0
\end{array}\right) \\
& D_{2 \alpha} e_{1}=B_{0} \alpha e_{1}-e_{1} \alpha B_{0} \\
& =\left(\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & -3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
-1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & -3
\end{array}\right) \\
& =\left(\begin{array}{rrr}
-6 & 0 & 0 \\
3 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We know that if we define
$f_{1}\left(e_{3}\right)=1$ if $i=j$ and $=0$ if $i \neq j$, then $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ is a basis for V^{*} In (3.2) put $f=g=f_{1}$. Then we find that $\|D\| \geq 10$.
The inequalities (3.1) and (3.3) combinedly give $\|D\|=10$. Hence $\|D\|=\left\|D_{1 \alpha}\right\|+D_{2 \alpha} \|$

ANOTHER EXAMPLE 3.2.

Next we wish to illustrate that the result in Theorem 31 cannot be improved in general. If we assume V and Γ represent the same set of all 2×2 real matrices, then $(\mathrm{V}, \Gamma$) is a particular Γ - Banach algebra with the usual operations. The ordinary identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity of (V, Γ) under
multiplication. multiplication.

If $e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), e_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), e_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, then $\beta=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is the standard basis for (V, Γ). For a simple example, let D_{1} and D_{2} be derivations on (V, Γ) implemented by the matrices $A_{0}=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$ and $B_{0}=\left(\begin{array}{rr}4 & -7 \\ 0 & 2\end{array}\right)$ respectively. Then the matrix representations of D_{1} and D_{2}
with respect to the basis β are respectively

So, $\left\|D_{1}\right\|=3$ and $\left\|D_{2}\right\|=7$. Again, $\gamma=\left\{e_{1} \otimes e_{j} \mid i, j=1,2,3,4\right\}$ is a basis for $(V, \Gamma) \otimes_{p}(V, \Gamma)$ and the matrix representation of D with respect to the basis γ is

$$
[\mathrm{D}]_{\gamma}=\left[\begin{array}{rrrrrrrrrrrrrrrr}
0 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7 & 2 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
-3 & 0 & 0 & 0 & 1 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 & 7 & 3 & 0 & -7 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & -3 & 0 & 0 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -7 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 1 & 0 & -7 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 7 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 7 & 0
\end{array}\right]
$$

Hence \|D $\|=7$. Thus the strict inequality $\|\mathrm{D}\|<\left\|\mathrm{D}_{1}\right\|+\left\|\mathrm{D}_{2}\right\|<2\|\mathrm{D}\|$ holds.

4. THE SPECTRUM OF D

We next devote to studying the validity of the result $\mathrm{sp}(D)=\operatorname{sp}\left(D_{1}\right)+s p\left(D_{2}\right)$. Recall that $\mathrm{sp}\left(D_{1}\right)$ consists of all scalars λ_{1} such that $D_{1}-\lambda_{1} I_{1}$ is singular. Analogous definitions apply to $\operatorname{sp}\left(D_{2}\right)$ and $\operatorname{sp}(D)$ Further, for the singularity and invertibility of a rectangular matrix, see . Joshi [11].

THEOREM 4.1. The derivations D, D_{1} and D_{2} are defined as in Theorem 2.1. Then

$$
\operatorname{sp}\left(D_{1}\right)+s p\left(D_{2}\right) \subseteq s p(D)
$$

PROOF. Let $\lambda_{1} \varepsilon \mathrm{sp}\left(\mathrm{D}_{1}\right)$ and $\lambda_{2} \varepsilon \mathrm{sp}\left(\mathrm{D}_{2}\right)$.
$\Rightarrow D_{1}-\lambda_{1} I_{1}$ and $D_{2}-\lambda_{2} I_{2}$ are singular
$\Rightarrow \exists$ nonzero vectors $x_{0} \varepsilon V$ and $y_{0} \varepsilon V^{\prime}$ such that $\left(D_{1}-\lambda_{1} I_{1}\right) x_{0}=0$ and $\left(D_{2}-\lambda_{2} I_{2}\right) y_{0}=0$
Now, $x_{0} \otimes y_{0}$ is a non-zero element in $(V, \Gamma) \otimes_{p}\left(V, \Gamma^{\prime}\right)$.

Again, $\left[D-\left(\lambda_{1}+\lambda_{2}\right) I\right]\left(x_{0} \otimes y_{0}\right)=D\left(x_{0} \otimes y_{0}\right)-\left(\lambda_{1}+\lambda_{2}\right)\left(x_{0} \otimes y_{0}\right)$

$$
\begin{aligned}
& =D_{1} x_{0} \otimes y_{0}+x_{0} \otimes D_{2} y_{0}-\left(\lambda_{1}+\lambda_{2}\right) x_{0} \otimes y_{0} \\
& =\left(D_{1}-\lambda_{1} I_{1}\right) x_{0} \otimes y_{0}+x_{0} \otimes\left(D_{2}-\lambda_{2} I_{2}\right) y_{0}=0
\end{aligned}
$$

So, $D-\left(\lambda_{1}+\lambda_{2}\right)$ I is singular and hence $\lambda_{1}+\lambda_{2} \varepsilon \mathrm{sp}(\mathrm{D})$. Thus, we obtain $\mathrm{sp}\left(\mathrm{D}_{1}\right)+\mathrm{sp}\left(\mathrm{D}_{2}\right) \subseteq \mathrm{sp}(\mathrm{D})$. Q.E.D
REMARK 4.1. (i) We conjecture that the above result cannot be improved in general.
(ii) However, the equality holds in finite dimensional Γ - Banach algebras. For, if $\operatorname{dim}(V, \Gamma)=m, d i m$ $\left(\mathrm{V}^{\prime}, \Gamma^{\prime}\right)=n$, then $\operatorname{dim}\left((V, \Gamma) \otimes_{p}\left(V^{\prime}, \Gamma^{\prime}\right)\right)=m n$. So, $s p\left(D_{1}\right), s p\left(D_{2}\right)$ and $s p(D)$ have m, n and $m n$ eigenvalues respectively. Again, $s p\left(D_{1}\right)+s p\left(D_{2}\right)$ gives $m n$ values which are precisely the eigenvalues of D.

Further, we have the following illuminating result.
THEOREM 4.2. As uusal, let D_{1}, D_{2} and D be derivations connected by the relation as in Theorem 2.1(i). If (V, Γ) and $\left(V, \Gamma^{\prime}\right)$ are finite dimensional Gamma-Banach algebras, D_{1} and D_{2} are implemented by $\mathrm{r} \varepsilon \mathrm{V}$ and $\mathrm{s} \varepsilon \mathrm{V}^{\prime}$ respectively, then

$$
\begin{gathered}
\operatorname{sp}\left(D_{1}\right)=\{\mathrm{a}=\lambda-\mu \mid \lambda, \mu \varepsilon \mathrm{sp}(\mathrm{r})\}, \\
\operatorname{sp}\left(\mathrm{D}_{2}\right)=\left\{\mathrm{b}=\lambda^{\prime}-\mu^{\prime} \mid \lambda^{\prime}, \mu^{\prime} \varepsilon \mathrm{sp}(\mathrm{~s})\right\} \\
\text { and } \operatorname{sp}(D)=\left\{a+b \mid a \varepsilon \operatorname{sp}\left(D_{1}\right), b \varepsilon \operatorname{sp}\left(D_{2}\right)\right\} .
\end{gathered}
$$

PROOF. The first two results will follow from Propostion 9, $518, \mathrm{Ch} 2$ in [10], and the last result will follow from Remark 4.1 (ii). Q.E.D.

REFERENCES

[1] BHATTACHARYA, D.K. and MAITY, A.K., Regular representation of Г-Banach Algebra, J. of Pure Mathematics, Calcutta University, India, (To appear).
[2.] BHATTACHARYA, D.K. and MAITY, A.K., Semilinear tensor product of Γ-Banach algebras, Ganita Vol. 40. No. 2, (1989), 75-80.
[3] GREUB, W.H., Multilinear algebra, Springer Verlag, 1967.
[4.] BADE, W.G. and DALES, H.G., Discontinuous derivations from algebras of power series, Proc. London Math. Soc. (3), 69 No. 1 (1989), 133-152.
[5.] CARNE, T.K , Tensor products of Banach algebras, J. London Math. Soc. (2), 17 (1978), 480-88
[6] CHUANKUN SUN, The essential norm of the generalized derivation, Chinese Anna. Math., 13A :2 (1992), 211-221.
[7] KYLE, J., Norms of derivations, J. London Math. Soc. (2), 16 (1977), 297-312
[8] VUKMAN, J., A result concerning derivations in Banach algebras, Proc. Amer. Math. Soc., Vol 116, No. 4 (December 1992), 971-975.
[9] BACKMAN, G., Introduction to p-adic numbers and valuation theory, Academic Press, 1964
[10]. BONSALL, F.F. and DUNCAN, J., Complete normed algebras, Springer Verlag, 1973
[11]. JOSHI, V.N.,A determinant for rectangular matrices, Bull. Austral. Math. Soc.,(Series A), Vol 21 (1980), 137-146

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

