SUBCONTRA-CONTINUOUS FUNCTIONS

C.W. BAKER

Department of Mathematics Indiana University Southeast New Albany, Indiana 47150

(Received December 27, 1996)

ABSTRACT. A weak form of contra-continuity, called subcontra-continuity, is introduced. It is shown that subcontra-continuity is strictly weaker than contra-continuity and stronger than both subweak continuity and sub-LC-continuity. Subcontra-continuity is used to improve several results in the literature concerning compact spaces.

KEY WORDS AND PHRASES: subcontra-continuity, contra-continuity, subweak continuity. sub-LC-continuity.

1991 AMS SUBJECT CLASSIFICATION CODE: 54C10

1. INTRODUCTION

In [1] Dontchev introduced the notion of a contra-continuous function. In this note we develop a weak form of contra-continuity, which we call subcontra-continuity. We show that subcontracontinuity implies both subweak continuity and sub-LC-continuity. We also establish some of the properties of subcontra-continuous functions. In particular it is shown that the graph of a subcontracontinuous function into a T_1 -space is closed. Finally, we show that many of the applications of contra-continuous functions to compact spaces established by Dontchev [1] hold for subcontracontinuous functions. For example, we establish that the subcontra-continuous, nearly continuous image of an almost compact space is compact and that the subcontra-continuous, β -continuous image of an S-closed space is compact.

2. PRELIMINARIES

The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. The closure and interior of a subset A of a space X are signified by Cl(A) and Int(A), respectively. A set A is regular open (semi-open, nearly open) provided that A = Int(Cl(A)) ($A \subseteq Cl(Int(A))$), $A \subseteq Int(Cl(A))$) and A is regular closed (semi-closed) if its complement is regular open (semi-open). A set A is locally closed provided that $A = U \cap F$, where U is an open set and F is a closed set.

DEFINITION 1. Dontchev [1]. A function $f: X \to Y$ is said to contra-continuous provided that for every open set V in Y, $f^{-1}(V)$ is closed in X.

DEFINITION 2. Rose [2]. A function $f: X \to Y$ is said to be subweakly continuous if there is an open base \mathcal{B} for the topology on Y such that $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$ for every $V \in \mathcal{B}$.

DEFINITION 3. Ganster and Reilly [3]. A function $f: X \to Y$ is said to be sub-LCcontinuous provided there is an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is locally closed for every $V \in \mathcal{B}$.

DEFINITION 4. A function $f: X \to Y$ is said to be semi-continuous (Levine [4]) (nearly continuous (Ptak [5]), β -continuous (Abd El-Monsef *et al.* [6])) if for every open set V in Y, $f^{-1}(V) \subseteq Cl(Int(f^{-1}(V))) (f^{-1}(V) \subseteq Int(Cl(f^{-1}(V))), f^{-1}(V) \subseteq Cl(Int(Cl(f^{-1}(V)))))$.

DEFINITION 5. Gentry and Hoyle [7]. A function $f: X \to Y$ is said to be c-continuous if, for every $x \in X$ and every open set V in Y containing f(x) and with compact complement, there exists an open set U in X containing x such that $f(U) \subseteq V$.

3. SUBCONTRA-CONTINUOUS FUNCTIONS

We define a function $f: X \to Y$ to be subcontra-continuous provided there exists an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Obviously contracontinuity implies subcontra-continuity. The following example shows that the reverse implication does not hold.

EXAMPLE 1. Let X be a nondiscrete T_1 -space and let Y be the set X with the discrete topology. Finally let $f: X \rightarrow Y$ be the identity mapping. If B is the collection of all singleton subsets of Y, then B is an open base for the topology on Y. Since X is T_1 , f is subcontra-continuous with respect to B. Obviously f is not contra-continuous.

Subcontra-continuity is independent of continuity. The function in Example 1 is subcontracontinuous but not continuous. The next example shows that continuity does not imply subcontracontinuity.

EXAMPLE 2 Let $X = \{a, b\}$ be the Sierpinski space with the topology $\mathcal{T} = \{X, \emptyset, \{a\}\}$ and let $f: X \to X$ be the identity mapping. Obviously f is continuous. However, any open base for the topology on X must contain $\{a\}$ and $f^{-1}(\{a\})$ is not closed. It follows that f is not subcontracontinuous.

Since closed sets are locally closed, subcontra-continuity implies sub-LC-continuity. We see from the following theorem that subcontra-continuity also implies subweak continuity.

THEOREM 1. Every subcontra-continuous function is subweakly continuous.

PROOF. Assume $f: X \to Y$ is subcontra-continuous. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Then for $V \in \mathcal{B}$, $Cl(f^{-1}(V)) = f^{-1}(V) \subseteq f^{-1}(Cl(V))$ and hence f is subweakly continuous. \Box

Since a subweakly continuous function into a Hausdorff space has a closed graph (Baker [8]), a subcontra-continuous function into a Hausdorff space has a closed graph. However, the following stronger result holds for subcontra-continuous functions.

THEOREM 2. If $f: X \rightarrow Y$ is a subcontra-continuous function and Y is T_1 , then the graph of f, G(f), is closed.

PROOF. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Since Y is T_1 , there exists $V \in \mathcal{B}$ such that $y \in V$ and $f(x) \notin V$. Then we see that $(x, y) \in (X - f^{-1}(V)) \times V \subseteq X \times Y - G(f)$. It follows that G(f) is closed. \Box

COROLLARY 1. If $f: X \to Y$ is contra-continuous and Y is T_1 , then the graph of f is closed.

Long and Hendrix [9] proved that the closed graph property implies c-continuity. Therefore we have the following corollary.

COROLLARY 2. If $f: X \rightarrow Y$ is subcontra-continuous and Y is T_1 , then f is c-continuous.

The next two results are also implied by the closed graph property (Fuller [10]).

COROLLARY 3. If $f: X \to Y$ is subcontra-continuous and Y is T_1 , then for every compact subset C of Y, $f^{-1}(C)$ is closed in X.

COROLLARY 4. If $f: X \rightarrow Y$ is subcontra-continuous and Y is T_1 , then for every compact subset C of X, f(C) is closed.

For a function $f: X \to Y$, the graph function of f is the function $g: X \to X \times Y$ given by g(x) = (x, f(x)). We shall see in the following example that the graph function of a subcontra-continuous function is not necessarily subcontra-continuous.

EXAMPLE 3. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\mathcal{T} = \{X, \emptyset, \{a\}\}$ and let $f: X \to X$ be given by f(a) = b and f(b) = a. Obviously f is subcontra-continuous, in fact contra-continuous. Let \mathcal{B} be any open base for the product topology on $X \times Y$. Then there exists $V \in \mathcal{B}$ for which $(a, b) \in V \subseteq \{(a, a), (a, b)\}$. We see that $V = \{(a, a), (a, b)\}$ and that, if $g: X \to X \times X$ is the graph function for f, then $g^{-1}(V) = \{a\}$ which is not closed. Thus the graph function of f is not subcontra-continuous.

However, the following result does hold for the graph function.

THEOREM 3. The graph function of a subcontra-continuous function is sub-LC-continuous.

PROOF. Assume $f: X \to Y$ is subcontra-continuous and let $g: X \to X \times Y$ be the graph function of f. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Then $\{U \times V : U \text{ is open in } X, V \in \mathcal{B}\}$ is an open base for the product topology on $X \times Y$. Since $g^{-1}(U \times V) = U \cap f^{-1}(V)$, we see that g is sub-LC-continuous. \Box

The graph function of a subweakly continuous function is subweakly continuous (Baker [8]) and the graph function of a sub-LC-continuous function is sub-LC-continuous (Ganster and Reilly [3]). It follows that the graph function in Example 3 is subweakly continuous and sub-LC-continuous but not subcontra-continuous. Therefore subcontra-continuity is strictly stronger than sub-LC-continuity and subweak continuity.

THEOREM 4. If Y is a T_1 -space and $f : X \rightarrow Y$ is a subcontra-continuous injection, then X is T_1 .

PROOF. Let x_1 and x_2 be distinct points in X. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Since Y is T_1 and $f(x_1) \neq f(x_2)$, there exists $V \in \mathcal{B}$ such that $f(x_1) \notin V$ and $f(x_2) \in V$. Then $x_1 \in X - f^{-1}(V)$ which is open and $x_2 \notin X - f^{-1}(V)$. \Box

THEOREM 5. Let $A \subseteq X$ and $f: X \to X$ be a subcontra-continuous function such that f(X) = A and $f|_A$ is the identity on A. Then, if X is T_1 , A is closed in X.

PROOF. Suppose A is not closed. Let $x \in Cl(A) - A$. Let B be an open base for the topology on Y for which $f^{-1}(V)$ is closed for every $V \in B$. Since $x \notin A$, we have that $x \neq f(x)$. Since X is T_1 , there exists $V \in B$ such that $x \in V$ and $f(x) \notin V$. Let U be an open set containing x. Then $x \in U \cap V$ which is open. Since $x \in Cl(A)$, $(U \cap V) \cap A \neq \emptyset$. Let $y \in (U \cap V) \cap A$. Since $y \in A$, $f(y) = y \in V$. So $y \in f^{-1}(V)$. Thus $y \in U \cap f^{-1}(V)$ and hence $U \cap f^{-1}(V) \neq \emptyset$. We see that $x \in Cl(f^{-1}(V)) = f^{-1}(V)$ which is a contradiction. Therefore A is closed. \Box

The next result follows easily for the definition.

THEOREM 6. If $f: X \rightarrow Y$ is subcontra-continuous, then for every open set V in Y, $f^{-1}(V)$ is a union of closed sets in X.

Obviously every function with a T_1 -domain satisfies the above condition. However, as we see in the following example, a function with a T_1 -domain can fail to be subcontra-continuous. It follows that the converse of Theorem 6 does not hold.

EXAMPLE 4. Let $X = \mathbb{R}$ with the usual topology and let $f: X \to X$ be the identity mapping. Since X is connected, f is not subcontra-continuous. However, since X is T_1 , f has the property that the inverse image of every (open) set is a union of closed sets.

4. APPLICATIONS TO COMPACT SPACES

In [1] Dontchev establishes that the image of an almost compact space under a contracontinuous, nearly continuous mapping is compact and that the contra-continuous image of a strongly S-closed space is compact. In this section, we strengthen both of these results by replacing contracontinuity with subcontra-continuity. The proofs mostly follow Dontchev's.

DEFINITION 6. Dontchev [1]. A space X is almost compact provided that every open cover of X has a finite subfamily the closures of whose members cover X.

THEOREM 7. The image of an almost compact space under a subcontra-continuous, nearly continuous mapping is compact.

PROOF. Let $f: X \rightarrow Y$ be subcontra-continuous and nearly continuous and assume that X is almost compact. Let B be an open base for the topology on Y for which $f^{-1}(V)$ closed in X for every $V \in \mathcal{B}$. Let \mathcal{C} be an open cover of f(X). For each $x \in X$, let $C_x \in \mathcal{C}$ such that $f(x) \in C_x$. Then let $V_x \in \mathcal{B}$ for which $f(x) \in V_x \subseteq C_x$. Now $f^{-1}(V_x)$ is closed and nearly open. It follows that $f^{-1}(V_x)$ is clopen and hence that $\{f^{-1}(V_x) : x \in X\}$ is a clopen cover of X. Since X is almost compact, there is a finite subfamily $\{f^{-1}(V_{x_i}): i = 1, ..., n\}$ for which $X = \bigcup_{i=1}^{n} Cl(f^{-1}(V_{x_i})) = \bigcup_{i=1}^{n} f^{-1}(V_{x_i}) \subseteq \bigcup_{i=1}^{n} f^{-1}(C_{x_i})$. Thus we have that $f(X) \subseteq \bigcup_{i=1}^{n} C_{x_i}$ and therefore that f(X) is compact. \Box

DEFINITION 7. Dontchev [1]. A space X is strongly S-closed provided that every closed cover of X has a finite subcover.

THEOREM 8. The subcontra-continuous image of a strongly S-closed space is compact.

PROOF. Let $f: X \to Y$ be subcontra-continuous and assume that X is strongly S-closed. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Let C be an open cover of f(X). For each $x \in X$, let $C_x \in C$ with $f(x) \in C_x$. Then let $V_x \in \mathcal{B}$ for which $f(x) \in V_x \subseteq C_x$. Since $\{f^{-1}(V_x) : x \in X\}$ is a closed cover of X and X is strongly S-closed, there is a finite subcover $\{f^{-1}(V_{x_i}): i = 1, ..., n\}$ of X. Then we see that $f(X) = f\left(\bigcup_{i=1}^{n} f^{-1}(V_{x_i})\right) = \bigcup_{i=1}^{n} f(f^{-1}(V_{x_i})) \subseteq \bigcup_{i=1}^{n} V_{x_i} \subseteq \bigcup_{i=1}^{n} C_{x_i}$ and hence that f(X) is compact. \Box

In [1] Dontchev also shows that the contra-continuous, β -continuous image of an S-closed space is compact. We extend this result by replacing contra-continuity with subcontra-continuity. The proof parallels that of Dontchev's.

DEFINITION 8. Mukherjee and Basu [11]. A space X is S-closed provided that every semiopen cover of X has a finite subfamily the closures of whose members covers X.

From Herrmann [12], a space X is S-closed if and only if every regular closed cover of X has a finite subcover.

THEOREM 9. The subcontra-continuous, β -continuous image of an S-closed space is compact.

PROOF. Assume that $f: X \rightarrow Y$ is subcontra-continuous and β -continuous and that X is Sclosed. Let B be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Let C be an open cover of f(X). Then for each $x \in X$ there exists $C_x \in C$ for which $f(x) \in C_x$. For each $x \in X$, let $V_x \in \mathcal{B}$ such that $f(x) \in V_x \subseteq C_x$. Since f is subcontra-continuous, $\{f^{-1}(V_x): x \in X\}$ is a closed cover of X. The β -continuity of f implies that $f^{-1}(V_x) \subseteq Cl(Int(Cl(f^{-1}(V_x))))$ and therefore we see that $f^{-1}(V_x) = Cl(Int(f^{-1}(V_x)))$ or that

 $f^{-1}(V_x)$ is regular closed. Since X is S-closed, the regular closed cover $\{f^{-1}(V_x) : x \in X\}$ has a finite subcover $\{f^{-1}(V_{x_1}) : i = 1, ..., n\}$. Then we have $f(X) = f\left(\bigcup_{i=1}^{n} f^{-1}(V_{x_i})\right) \subseteq \bigcup_{i=1}^{n} V_{x_i} \subseteq \bigcup_{i=1}^{n} C$ and therefore f(X) is compared. \Box

 $\bigcup_{i=1}^{n} C_{x_{i}} \text{ and therefore } f(X) \text{ is compact. } \square$

In the above proof we showed that, if $f: X \to Y$ is subcontra-continuous and β -continuous, then there exists an open base \mathcal{B} for the topology on Y such that for every $V \in \mathcal{B}$, $f^{-1}(V)$ is regular closed and hence semi-open. Since unions of semi-open sets are semi-open (Arya and Bhamini [13]), it follows that inverse images of open sets are semi-open. Therefore we have the following theorem which strengthens the corresponding result for contra-continuous functions established by Dontchev [1].

THEOREM 10. Every subcontra-continuous, β -continuous function is semi-continuous.

REFERENCES

- Dontchev, J. Contra-continuous functions and strongly S-closed spaces, <u>Internat. J. Math.</u> <u>& Math. Sci. 19</u> (1996), 303-310.
- Rose, D. A. Weak continuity and almost continuity, <u>Internat. J. Math. & Math Sci. 7</u> (1984), 311-318.
- Ganster, M. and Reilly, I. L. Locally closed sets and LC-continuous functions, <u>Internat. J.</u> <u>Math. & Math. Sci. 12</u> (1989), 417-424.
- Levine, N. Semi-open sets and semi-continuity in topological spaces, <u>Amer. Math. Monthly</u> <u>70</u> (1963), 36-41.
- 5. Ptak, V. Completeness and open mapping theorem, <u>Bull. Soc. Math. France 86</u> (1958), 41-74.
- Abd El-Monsef, M. E., El-Deeb, S. N., and Mahmoud, R. A. β-open sets and β-continuous mappings, <u>Bull. Fac. Sci. Assiut Univ.</u> 12 (1983), 77-90.
- Gentry, K. R. and Hoyle, H. B. C-continuous functions, <u>Yokohama Math. J. 18</u> (1970), 71-76.
- Baker, C. W. Properties of subweakly continuous functions, <u>Yokohama Math. J. 32</u> (1984), 39-43.
- Long, P. E. and Hendrix, M. D. Properties of c-continuous functions, <u>Yokohama, Math. J.</u> <u>22</u>(1974), 117-123.
- Fuller, R. V. Relations among continuous and various noncontinuous functions, <u>Pacific J.</u> <u>Math. 25</u> (1968), 495-509.
- Mukherjee, M. N. and Basu, C. K. On S-closed and s-closed spaces, <u>Bull. Malaysian</u> <u>Math. Soc. (Second Series) 15</u> (1992),1-7.
- 12. Herrmann, R. A. RC-convergence, Proc. Amer. Math. Soc. 75 (1979), 311-317.
- Arya S. P. and Bhamini M. P. Some weaker forms of semi-continuous functions, <u>Gantita</u> <u>33</u> (1982), 124-134.

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

