THE DIOPHANTINE EQUATION
 $x^{2}+3^{m}=y^{n}$

S. AKHTAR ARIF and FADWA S. ABU MURIEFAH
 Department of Mathematics
 Girls College of Education
 Al-Riyadh, SAUDI ARABIA

(Received March 11, 1996 and in revised form May 31, 1996)

ABSTRACT. The object of this paper is to prove the following
THEOREM. Let m be odd. Then the diophantine equation $x^{2}+3^{m}=y^{n}, n \geq 3$ has only one solution in positive integers x, y, m and the unique solution is given by $m=5+6 M, x=10.3^{3 M}$, $y=7.3^{2 M}$ and $n=3$.

KEY WORDS AND PHRASES: Diphantine equation.
1992 AMS SUBJECT CLASSIFICATION CODES: $11 D 41$.

INTRODUCTION

It is well known that there is no general method for determining all integral solutions x and y for a given diophantine equation $a x^{2}+b x+c=d y^{n}$, where a, b, c and d are integers, $a \neq 0, b^{2}-4 a c \neq 0$, $d \neq 0$, but we know that it has only a finite number of solutions when $n \geq 3$ This was first shown by Thue [1]

The first result for the title equation for general n is due to Lebesgue [2] who proved that when $m=0$ there is no solution, for $m=1$, Nagell [3] has proved that it has no solution and in 1993 Cohn [4] has given another proof for this case.

The proof of the theorem is divided into two main cases $(3, x)=1$ and $3 \mid x$. It is sufficient to consider x a positive integer.

To prove the theorem we need the following
LEMMA (Nagell [5]). The equation $3 x^{2}+1=y^{n}$, where n is an odd integer ≥ 3 has no solution in integers x and y for y odd and ≥ 1.

PROOF OF THEOREM. Suppose $m=2 k+1$. Since the result is known for $m=1$ we shall lassume that $k>0$. The case when x is odd, can be easily eliminated since $y^{n} \equiv 0(\bmod 8)$, so we assume that x is even.

CASE 1: Let $(3, x)=1$. First let n be odd, then there is no loss of generality in considering $n=p$ an odd prime. Thus $x^{2}+3^{2 k+1}=y^{p}$. Then from [6 , Theorem 1] we have only two possibilities and they are

$$
\begin{equation*}
x+3^{k} \sqrt{-3}=(a+b \sqrt{-3})^{p} \tag{1}
\end{equation*}
$$

where $y=a^{2}+3 b^{2}$ and

$$
\begin{equation*}
x+3^{k} \sqrt{-3}=\left(\frac{a+b \sqrt{-3}}{2}\right)^{3}, \quad a \equiv b \equiv 1(\bmod 2) \tag{2}
\end{equation*}
$$

where $y=\frac{a^{2}+3 b^{2}}{4}$, for some rational integers a and b.
In (1) since $y=a^{2}+3 b^{2}$ and y is odd so only one of a or b is odd and the other is even. Equating imaginary parts we get

$$
3^{k}=b \sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} a^{p-2 r-1}\left(-3 b^{2}\right)^{r} .
$$

So b is odd Since 3 does not divide the term inside \sum we get $b= \pm 3^{k}$ Hence

$$
\pm 1=\sum_{r=0}^{\frac{p-1}{2}}\binom{p}{2 r+1} a^{p-2 r-1}\left(-3^{2 k+1}\right)^{r}
$$

This is equation (1) in [6], and Lemmas 4 and 5 in [6] show that both the signs are impossible. Hence (1) gives rise to no solutions

Now consider equation (2). By equating imaginary parts we obtain

$$
\begin{equation*}
8.3^{k}=b\left(3 a^{2}-3 b^{2}\right) \tag{3}
\end{equation*}
$$

If $b= \pm 1$ in (3) we get

$$
\pm 8.3^{k}=3 a^{2}-3
$$

The case $k=1$ can be easily eliminated, so suppose $k>1$ then

$$
\pm 8.3^{k-1}=a^{2}-1
$$

This equation has the only solution $a= \pm 5, k=2$ and so $y=\frac{a^{2}+3 b^{2}}{4}=(25+3) / 4=7$. Hence from (2) $x=\left|\frac{a^{3}-9 a b^{2}}{8}\right|=10$

If $b= \pm 3^{\lambda}, 0<\lambda<k$, then (3) becomes $\pm 8.3^{k-\lambda-1}=a^{2}-3^{2 \lambda}$, and this is not possible modulo 3 if $k-\lambda-1>0$. So $k-\lambda-1=0$, that is $\pm 8=a^{2}-3^{2(k-1)}$, and we can reject the positive sign modulo 3. So we have $a^{2}-3^{2(k-1)}=-8$, which has the only solution $a= \pm 1, k=2$ and $x=10$ Finally if $b= \pm 3^{k}$ then $\pm 8=3 a^{2}-3^{2 k+1}$, and this is not true modulo 3 .

Now if n is even, then from the above it is sufficient to consider $n=4$, hence $\left(y^{2}+x\right)\left(y^{2}-x\right)=3^{2 k+1}$ Since $(3, x)=1$, we get

$$
y^{2}+x=3^{2 k+1} \quad \text { and } \quad y^{2}-x=1
$$

by adding these two equations we get $2 y^{2}=3^{2 k+1}+1$, which is impossible modulo 3 .
CASE 2. Let $3 \mid x$. Then of course $3 \mid y$. Suppose that $x=3^{u} X, y=3^{\nu} Y$ where $u>0, \nu>0$ and $(3, X)=(3, Y)=1$ Then $3^{2 u} X^{2}+3^{2 k+1}=3^{n \nu} Y^{n}$ There are three possibilities.
$12 u=\min (2 u, 2 k+1, n \nu)$. Then by cancelling $3^{2 u}$ we get $X^{2}+3^{2(k-u)+1}=3^{m \nu-2 u} Y^{n}$, and considering this equation modulo 3 we deduce that $n \nu-2 u=0$, then $x^{2}+3^{2(k-u)+1}=Y^{n}$, with $(3, X)=1$. If $k-u=0$, this equation has no solution [3,4] and if $k-u>0$, as proved above this equation has a solution only if $k-u=2$ and $n=3$, so $n \nu=3 \nu=2 u$ that is $3 \mid u$, let $u=3 M$ then $k=2+3 M$ and $m=5+6 M$. So this equation has a solution only if $m=5+6 M$ and the solution is given by $X=10, Y=7$. Hence the solution of our title equation is $x=10.3^{u}=10.3^{3 M}$ and $y=7.3^{\nu}=7.3^{2 M}$.
$2 \quad 2 k+1=\min (2 u, 2 k+1, n \nu) \quad$ Then $3^{2 u-2 k-1} X^{2}+1=3^{n \nu-2 k-1} Y^{n}$ and considering this equation modulo 3 we get $n \nu-2 k-1=0$, so n is odd and $3\left(3^{u-k-1} X\right)^{2}+1=Y^{n}$, by the lemma this equation has no solution.
3. $n \nu=\min (2 u, 2 k+1, n \nu)$. Then $3^{2 u-n \nu} X^{2}+3^{2 k+1-n \nu}=Y^{n}$ and this is possible modulo 3 only if $2 u-n \nu=0$ or $2 k+1-n \nu=0$ and both of these cases have already been discussed This concludes the proof.

REFERENCES

[1] THUE, A., Uber die Unlösbarkeit der Gleichung $a x^{2}+b x+c=d y^{n}$ in grossen ganzen Zahlen x and y, Arch. Math. og Naturvidenskab, Kristiania, Bd XXXIV (1916), 1-6.
[2] LEBESGUE, V.A., Sur I'impossibilite' en nombres entieres de I'l equation $x^{m}=y^{2}+1$, Nouvelles Ann. des Math. 9 (1) (1850), 178-181.
[3] NAGELL, T., Sur I'l impossibilite' de quelques équations à deux indetermindées, Norsk Math. Forenings Skrifter, Kristiania, Ser. I, 13 (1923), 65-82.
[4] COHN, J.H.E., The diophantine equation $x^{2}+3=y^{n}$, Glasgow Math. J., 35 (1993), 203-206.
[5] NAGELL, T., Contributions to the theory of a category of diophantine equations of the second degree with two unknown, Nova Acta Reg. Soc. Upsal, Ser IV, 16 (1955), 1-38.
[6] COHN, J.H.E., The diophantine equation $x^{2}+c=y^{n}$, Acta Arith. 65 (4) (1993), 367-381

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

