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ABSTRACT. In

s,(a). { (:,,) (:’IA,I),% co}
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1. INTRODUCTION
Let too, c and co be the sets of all bounded, convergent and null squences of

respectively. Let w denote the set of all complex sequences and 1 denote the set of all convergem and

absolutely convergent series.

Let z be any sequence and Y be any subset ofw. Then

Z-1" Y {z 6 u" zz (akz)F 6 Y}.

For any subset X ofw, the sets

X= N (z- e)
zEX

are called the a- and/-duals ofX.

and

and X/ N
zEX

We define the linear operators A, A-] v --, v by

Ax (Axe)?’ (x x+)’,

A-lz A-12:k Z3

such that
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Let

A-l:rl O.

In this paper we extend the space ,5, (A) to ,5 (p, A) in the same manner as co, c, oo were extended
to co(v), c(.v), eoo(p), respectively (cf. [2],[3],[4]). We also determine the a- and/-duals of our new
sequence space. Let p (Pk) be an arbitrary sequence ofpositive reals and r >_ 1, then we define

whe

co(p)’= {x e v-limk...,oo [x[ =0}.
If p e (1, 1, 1 ), then the set S(p, A) reduces to the set S(A). For r O, ,sr (P, A) is the same
as Aco(p) (cf. [5],[6],[71).

We will ncd the following lemmas:

LEMMA 1 (Corollary in [7]). Let (p)oo__ be a sequence of nondccreasing positive reals. Then

,a e (P,)-. ce implies R (P) e (P,)- co where P ak (n 1,2, ...).
k=n+l

LEMMA 2 (Lemma l(b) in [8]). Let p (pk),= be a strictly positive sequence such that p
Then A (co (p), if and only if

Nnite k=

for some integer M > 2.

2. Tim a-AV B-DUALS O1 S,(, A)
TIIEOREM 2.1. Let p (Pk)’ be a strictly positive sequence and r > 1. Then

<) [s(, A)]o -<0’),
N>I

(b)
vC N>I

where

and c is the set of all positive sequences in co.
PROOF. (a) Let a e U D(I)(P) Then

a-s(1/No) 6 el for some No _> 2, (2.1)
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where

k=l \j=

Since,() is increasing, (2.1) implies that

a E 1. (2.2)

Let x e Sr(p,A). Then for a given No 6 N, there exists an M M(No). N such that

suplkrAzk]pk < , and hence [Axk[ --< k- for all k 1,2, and consequently by (2.1) we have
k>_M

k=l 3=1 k=l
(2.3)

Finally, by (2.2) and (2.3), we get

a E [S(p, zx)].
Let a q U D(I)(P) Then we can determine a strictly increasing sequence (k(m))m=, of integers such

N>I

that k(1) 1 and

k(m+1)-I

I1(/(, + 1)) > 1 (rn 1,2,...).
=k(,,,)

We define the sequence z (xk) by

min{k-l,k(i+l)-l} (i d- 1) -1/ps

= =(k(,))
(k(m) _< k _< k(rn + 1)- 1;rn 1,2,...).

Then x E Sr (p, A) and

k(m+l)-I

k=l m=l k=k(m)

which proves that

[s,(, A)].
Hence, [Sr(p, A)] U D(*)(P)"

n>l

(b) Let a E Or(p). Then a E c8, and Abel’s summation by parts yields

(kZk Z RkAZk @ tn AZk + x ak for all x, (n 1, 2, ...).
k=l k=l k=l k=l

(2.4)

Further

r ’/ 1 for some integer No

_
2. (2.5)

Let z E Sr(P, A). Then there is a sequence v E C such that

vllw
IAzI _< -- ( 1,2,...) and IAx, _< N;

l/pk

for all sufficiently large k. Now, by (2.5)
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Hence

RAz

Finally, by Lemma 1, a (Aflvl/’) -1
cs implies that

J:{ (A’lvl/p)-I C

(2.6)

(2.7)

and consquently

n-1

k=l

From a cs, (2.4), (2.6) and (2.8), we conclude that

akZk RkAZk + :r.1 ak (2.9)
k=l k=l k=l

and az ca. Thus a [Sr(p, A)]. Now, let a [S,(p, A)]. Then az cs for all z S,(p, A) and

’e Sr(p,A). This implies that a cs. Let v c be given. Then z A71v1/’ Sr(p,A). Hence
a (A71vl/)-I ca, and by Lemma 1, we get (2.7). Therefore (2.8) holds for all z Sr(p,A). By

Since z S,(p,A) if and only ifv A,z (krAzk)= co(), this(2.4), we get RAx cs.

implies that

for some integer N > 2 (cf. [9], Theorem 6). Hence [,.%(p, A)] C’r(p).

3. MATRIX TRANSFORMATIONS
For any infinite complex matrix A write A. for sequence in the nthak),.k=1, we ak k= the

row of A. Let X and Y be two subsets of w. By (X, Y), we denote the class of all matrices A such

that the series A,(z)= a,kzk converges for all x X and each n N, and the sequence
k=l

Az (A,(x)),= Y for all x X.
THEOREM 3.1. Let p= (pk) be a strictly positive sequnce and r _> 1. Then

A (s,0, A),eoo) tfand only if

=sup EOkE
k-’l 3=1

(ii) Dr(M)" supn (k=l IPk M1/pr ] <OO forsomimger M2,

wherek k for 1 nd k, d
k+l

(fii) D" p JAn(e)] p k < .
[k=l
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PROOF. Let the conditions (i), (ii) and (iii) be true and x e Sr(p,A). By Theorem 2.1(b),
conditions (i) and (ii) imply that A, [Sr(p, A)]a for n 1,2,.... for a given M N, there exists a

M’ M’(M) N such that sup IkrAxl <_ -, where M _> 2 is the integer in (ii). By (2.9), we have
k>_M’

IA,(z)] D,.(M)+ IxlD (n 1,2

and hence Ax oo. Conversely, let A (S,.(p,A),oo). Since Z AI)1/p ’r(p,A) for all
v c, condition (i) follows immediately. Also the necessity of (iii) follows from the fact that

x e S(p, A). Now, by (i), (iii) and (2.9),

(:) _,Rk +A,,(e) (, ,2, ...).
k=l

Since Ax Coo and ZlAe Coo, therefore (RnAz)n%l Coo. Since z S(p,A) if and only if

((k"Ax,)= co(p), and (Rnk/kr)(krAxk) too for all (k Ax),=l co(p), this implies
k=l

that D,.(M) < x for some integer M _> 2, and (ii) holds.
TIIEOREM 3.2. Let p (Pk) be a strictly positive sequence such that p too, and r _> 1. Then

A (S(p, A), g ifand only if

(i) CI) () sup
N N

sup

A. (a;d/’)

k-1 vl/p

n.N k=l j=l

for all sequences v

(ii)

for some integer M _> 2, and

(iii) D(3)" vSUPN A,(e) <oo.
Ni

PROOF. Let conditions (i), (ii) and (iii) hold. Then A,, [S(p, A)]a. Let xS,.(p, A). For a iven
M N there exists a M’= M’(M) lI such that sup IkAxlpk < . Now, by (2.9) and the

k>M’

inequality in 10], p. 33, we have

la.(z)l < 4(C2)(M)4-IXllD3)) < oo.
r--1

Since m N is arbitrary, we have Az el. Conversely, let A (qr(p, A),el). Then

nN An(x’) E]An(:F’)]k=I < O0

for all z S(p, A) and for all finite subsets N of N. Therefore the necessity of (iii) and (i) follows

immediately, since e and x A7lvl/r" S,.(p, A) for every sequence v c. Further we have
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and hence (ii) holds bya2.
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