RESEARCH NOTES

A SUBSET OF METRIC PRESERVING FUNCTIONS

ROBERT W. VALLIN
Department of Mathematics
Slippery Rock University of Pennsylvania
Slippery Rock, Pennsylvania 16057, U.S.A.

(Received April 15, 1996 and in revised form June 17, 1996)

Abstract

In this paper we define a subset of metric preserving functions and give some examples and a characterization of this subset.

KEY WORDS AND PHRASES: Metrics, metric preserving functions, derivatives.
1991 AMS SUBJECT CLASSIFICATION CODE: 54E35.

1. INTRODUCTION

We call a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a metric preserving function if and only if $f(\rho): M \times M \rightarrow \mathbb{R}^{+}$is a metric for every metric $\rho: M \times M \rightarrow \mathbb{R}^{+}$, where (M, ρ) is an arbitrary metric space and \mathbb{R}^{+}denotes the nonnegative reals. We will denote the collection of metric preserving functions by \mathcal{M}. There are many papers out there which deal with these functions (see the references). Of particular interest is the derivative of metric preserving functions. In [1] J. Borsík and J. Doboš show that if $f \in \mathcal{M}$ is differentiable then $\left|f^{\prime}(x)\right| \leq f^{\prime}(0)$. J. Doboš and Z. Piotrowski in [2] construct two examples concerning differentiation and metric preserving functions. The first $f \in \mathcal{M}$ is continuous and nowhere differentiable. The other is metric preserving, differentiable and the derivative is infinite exactly on $\{0\} \cup 2^{-n}, n=1,2,3, \ldots$. In [9] this author answers a question of Doboš and Piotrowski by showing how for any measure zero, \mathcal{G}_{6} set in $[0, \infty)$ there is a continuous metric preserving function whose derivative is infinite on that set union zero.

The subset of metric preserving functions we wish to consider is defined below.
DEFINITION. Let $f \in \mathcal{M}$ be differentiable on ($0, \infty$). Define $g(x)$ as

$$
g(x)= \begin{cases}f^{\prime}(x) & x \in(0, \infty) \tag{1.1}\\ 0 & x=0\end{cases}
$$

We say $f \in \mathcal{D}$ if and only if $f, g \in \mathcal{M}$.
The purpose of this paper is to give examples of these types of functions and to characterize the type of f which can be in \mathcal{D}.

2. MAIN RESULTS

We note here that the set \mathcal{D} is nonempty. It is easy to see that \mathcal{D} contains all functions of the form $f(x)=k x, k>0$. A natural question to then ask is if it is possible that there are functions f such that g defined above is continuous at the origin (which is not that case for $f(x)=k x$). The answer is no and is given in the following theorem.

THEOREM 1. If f is differentiable on $[0, \infty)$ and metric preserving $f^{\prime}(x)$ is not a metric preserving function.

PROOF. If $f^{\prime} \in \mathcal{M}$ then $f^{\prime}(0)$ would have to be zero and $f^{\prime}>0$ on $(0, \infty)$ implies there must be some $[0, \epsilon)$ where f must be strictly convex. Then $f \notin \mathcal{M}$ from Prop. 10 in [1].

Nor can we go in the opposite direction and assume that if g is metric preserving its integral will also be metric preserving.

EXAMPLE. There exists a metric preserving function g whose integral, $\int_{0}^{x} g(t), d t$, is not also metric preserving.

PROOF. Let $g(x)=1-e^{-x}$. Then $\int_{0}^{x} 1-e^{-t} d t$ is strictly convex in a neighborhood of the origin.

Note that $g(x)=2 x$ would also serve in the example above. While both are continuous, $1-e^{-x}$ has the added strength of being bounded. We now can look at some properties of these functions in \mathcal{D}.

THEOREM 2. If $f \in \mathcal{D}, f$ is nondecreasing.
PROOF. This is a consequence of the fact that the function $g(x)$ must be greater than zero since g is metric preserving.

LEMMA. Let $f \in \mathcal{M}$ and $\limsup \sup _{x \rightarrow 0^{+}} f(x)=a$. Then for all $x \in[0, \infty), f(x) \geq a / 2$.
PROOF. This is a property of f being metric preserving. See Corollary 1 in [1].
THEOREM 3. Let $f(x)=x^{k}$. Only $f \in \mathcal{D}$ if and only if $k=1$.
PROOF.
If $k>1$ then $f \notin \mathcal{M}$ since f would be strictly convex around the origin.
If $k \in(0,1)$ then g violates the lemma above.
If $k=0$ then $g \notin \mathcal{M}$ since g would be identically zero.
If $k<0$ then f violates the lemma above.
In order to characterize functions in the set \mathcal{D} we need the notion of a triangle triplet. The 3-tuple $(a, b, c) \in\left(\mathbb{R}^{+}\right)^{3}$ is called a triangle triplet if $a \leq b+c, b \leq a+c$, and $c \leq a+b$. This is another way to determine if a function is metric preserving (see F . Terpe [8]). A function f is a metric preserving function if and only if $f(0)=0$ and $(f(a), f(b), f(c))$ is a triangle triplet whenever (a, b, c) is one. This gives us a way to describe these functions in \mathcal{D}.

THEOREM 4. Let $g(x): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a function satisfying

$$
\begin{equation*}
\forall a>0 \int_{0}^{a} g(x) d x \geq \int_{b}^{c} g(x) d x \text { where } c-b=a \tag{2.1}
\end{equation*}
$$

If there exists an $A>0$ such that

$$
\begin{equation*}
A \leq N+M g(x) \leq 2 A \tag{2.2}
\end{equation*}
$$

then both $G(x)=\left\{\begin{array}{ll}N+M g(x) & x>0 \\ 0 & x=0\end{array}\right.$ and $F(x)=\int_{0}^{x} G(t) d t$ are in \mathcal{M}.
PROOF. The condition (2.2) gives us $G(x)$ is metric preserving (Proposition 3 in [1]). Condition (2.1) assures that $F(x)$ will satisfy the triangle triplet condition. Assume $a<b<c$. Then $F(a) \leq F(b)+F(c)$ and $F(b) \leq F(a)+F(c)$ are automatic. Lastly,

$$
\begin{equation*}
F(c)=F(b)+\int_{b}^{c} G(t) d t \leq F(b)+\int_{0}^{a} G(t) d t=F(a)+F(b) \tag{2.3}
\end{equation*}
$$

This describes such examples in \mathcal{D} using $1+e^{-x}, 3+\frac{1}{2} \cos (1 / x)$, and $3+e^{-x} \cos x$ for $N+M g(x)$.
To close we note that this gives another way to create metric preserving functions.
COROLLARY. If $g(x)$ meets condition (2.1) and $0 \leq g(x)$ almost everywhere then $g(x)$ need not be in \mathcal{M}, but $\int_{0}^{x} g(t) d \lambda$ is in \mathcal{M} where λ denotes Lebesgue measure.

REFERENCES

[1] BORŚIK, J. and DOBOŠ, J., On metric preserving functions, Real Analysis Exchange, 13 (1987-88), 285-293.
[2] DOBOŠ, J. and PIOTROWSKI, Z., Some remarks on metric preserving functions, Real Analysis Exchange, 19 (1993-94), 317-320.
[3] DOBOŠ, J. and PIOTROWSKI, J., A note on metric preserving functions, Internat. J. Math. and Math. Sci., 19 (1996), 199-200.
[4] JUZA, M., A note on complete metric spaces, Matematicko-fyzikálny Cáasopis Save, 6 (1956), No. 3, 143-148.
[5] POKORNÝ, I., Some remarks on metric preserving functions, Tatra Mountains Math. Publ., 2 (1993), 66-68.
[6] SHIRAI, T., On the relations between the set and its distances, Mem. Coll. Sci. Kyoto Imp. Univ. Serv., 22 (1939), 369-275.
[7] SREENISAVA, T.K., Some properties of distance functions, J. Indian Math. Soc., 11 (1947), 38-43.
[8] TERPE, F., Metric preserving functions, Proc. Conf. Topology and Measure IV, Greifswald (1984), 189-197.
[9] VALLIN, R.W., On metric preserving functions and infinite derivatives (submitted).
[10] WILSON, W.A., On certain types of continuous transformations of metric spaces, Amer. J. Math, 57 (1935), 62-68.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

