
Internat. J. Math. & Math. Sci.
VOL. 21 NO. 3 (1998) 533-548

533

GLOBAL CLASSICAL SOLUTIONS TO THE CAUCHY PROBLEM
FOR A NONLINEAR WAVE EQUATION

by

HAROLDO R. CLARK

Universidade Federal Fluminense

Instituto de MatemAtica- GAN

Rua S. Paulo, 30

24.040-110 Niter6i, RJ Brasil

e-mail: ganhrc@vm.uff.br.

(Received August 24, 1995 and in revised form January 3, 1997)

ABSTRACT. In this paper we consider the Cauchy problem

u" + M (IA1/2u[ 2) Au 0 in
\

u(0) uo, u’(0)

where u’ is the derivative in the sense of distributions and IA 1/2 ul is the H-norm of A 1/2 u. We

prove the existence and uniqueness of global classical solution.
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1. INTRODUCTION

In this work we prove the existence and uniqueness of global classical solution to the

Cauchy problem

(1.1) -0"P- M (fn [Vu(x, t)l=dx) /xu 0

(, 0) 0(), o (, 0) (x)

where f is a bounded or unbounded open set of Fin, M(f) is a locally Lipschitz function on

0[0, +o[, A Y’],=I is the Laplace operator and ]Vu(x, t)l 2 ,=1 u77, "2

The equation (1.1)1 to model the small vibrations of an elastic string where we admit

only vertical component for the tension (cf. Carrier [2]).
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The Cauchy problem (1.1) can be written in an abstract framework, if the Laplace oper-

ator is replaced by a self-adjoint positive operator A in a real Hilbert space H. Representing

by A1/2 the square root of A, the problem (1.1) have the following abstract framework

(1.2)
u" + M (]A1/2ul 2) Au 0

,(o) ,o, ,’(o) u,

in ]0, T[

where u’ is the derivative in the sense of distributions and IA 1/2 ul is the H-norm of A 1/2 u.

Several authors have been studing the problem (1.1), among them, we can mention the

following ones: Arosio-Spagnolo [1], Dickey [3], Ebihara et.al. [4], Lions [8], Matos [9], Medeiros
and Milla Miranda [10], Menzala [11], Nishihara [12], Pohozaev [13], Yamada [14]. In Dickey

[3] the problem (1.1) was studied for the case n 1, when f is the positive real line. His result

was generalized for f ’ by Menzala [11]. These two results were obtained by the method

of Fourier transforms and the results proved by Dickey [3] and Menzala [11] was generalized

by Matos [9], as an application of the Diagonalization Theorem by Von Neumann-Dixmier,

e.g. Huet [5] and Lions-Magenes [6].

To treat the abstract case, when one does not have compactness, Lions [7]-[8] proposed

to study the Cauchy problem (1.2) by making use of the Diagonalization Theorem. Therefore,

the main objective of this work is to study the problem (1.2), independent of compactness.

To obtain the global classical solutions we suppose that the initial data are analytic-type.

With this choice for u0 and ul, we follow the ideas of Arosio-Spagnolo [1] that prove the global

existence of a solution to the Cauchy problem (1.2) when the domain D(A) of the operator

A have compact imersion on the real Hilbert space H and the M() is a nonnegative locally

Lipschitz function.

The arguments developed in the present work study the Cauchy problem (1.2) and can

be summarized as follows. We apply formally a diagonalization operator L/ in the problem

(1.2) to obtain

(1.3) { (0) o, (0)

where A is a positive real parameter, e.g., Section 2. The solution of the Cauchy problem for

(1.3) is obtained as the limit v, in an appropriated topology of a sequence (vk)kev where vk,

for each k, is a solution of a "Truncated Problem"; e.g. Section 3. The solution u of (1.2) is

given by u =/4-1(v).
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2. TERMINOLOGY

A field of the Hilbert spaces is, by definition, is a mapping A 7(A), that for each

is associated a Hilbert space 7(A). A vector field on real number is a mapping A

defined on , such that u(A) 6 /(A).

We represent by " the real vector space of all vector fields on and by u a positive real

measure.

A field of Hilbert spaces A --, H(A) is said to be p-measurable when there exists a subspace

M of - satisfying the following conditions:

The mapping A -+ Ilu(A)ltn(.x) is p-measurable for all u 6 ];

If u 6 " and A --, (u(A), v(A))n() is P-measurable for all v 6 , then u 6 .;

There exists in Az a sequence (u,,)n6v such that (un(A)),6v is total on /(A), for each

A6R.

The objects of A are called p-measurable vector fields. In the following,

represents a p-measurable field of Hilbert spaces and all the vector fields considered are

measurable.

Next we define the space 7"lo fe 7-l(A)du(A) in the following way: a vector field A -u(A) is in 7o if only if

Two vector fields that are equal a.e., in H0, relative to the measure u, will be identified. We

define in /o the scalar product:

(2.1) (u, v)0 =/R(u(A), v(A))(A)du(A), for all u,

With the scalar product (2.1) the vector space /o turns out to be a Hilbert space which is

called the hilbertian integral (or, as called by other authors, measurable hilbertian sum; e.g.

Lions and Magenes [6]) of the field A -, /(A).

Given a real number , denote by /a the Hilbert space of the vector fields u such that

the field A -- Aau(2) is in /o. In /a we define the following norm

I()d(), u e

Let us fix a separable Hilbert space H with scalar product (,) and norm I, I. We consider

in H a selfadjoint operator A such that

(2.3) (Au, u) >_/lul 2, for all u 6 D(A), / > O.
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where D(A) is the domain of A. With this hypothesis, the operator A satisfies the conditions

of the Diagonalization Theorem, e.g. [6]. It then follows that there exists a Hilbertian integral

H0 fo H(A)dv(A), where v is a positive Radon measure with support in ]Ao, /c[, 0 < Ao <

/ (where/ is the constant of (2.3), and a unitary operator/g from H onto /0, such that-

(2.4) bl(Aau) Aab/(u), for all u e D(A’), a >_ 0

(2.5) /d is an isomorphism from D(A’) onto

where D(A) is equipped with the graph norm, i.e.,

lul(a --[u[ / [Aul2, for all u D(A’).

Observe that with the supp(v) C]Ao, +oc[, we have for a _> 3, a and 3 real number, that

(2.6)

(2.7) lu[ _< c(Ao)lull, for all u

where c(Ao) > 0 and 0 < Ao < B.

3. GLOBAL SOLUTIONS: EXISTENCE AND UNIQUENESS

In order to obtain global existence and uniqueness for solution of the Cauchy problem

(1.2) we will introduce the following hypotheses:

(3.1) (Au, u) lul, for all u D(A) and 3 > 0,

(3.2) M is locally lipschitz function on [0, +oo[ and M() _> m0 > 0, for all _> 0,

(3.3) and

for some r/> 0, where e2"xn exp(2At) and H is the unitary operator of (2.4) and (2.5).

We have from the hypothesis (3.1) that supp(v) C]Ao, +c[, 0 < Ao < /. Thus, let us

define the space of the fsuactions that satisfies (3.3) as follows

(3.4) W w H; e2"’7[Ib[(w)ll2dv(A < +oo, for some

The space W is not empty. In fact, the functions of the type bl(w) w, e-("+*), for

0 or w.w, with w LI(0,T; 7(A)) belongs to W. In particular when the Hilbert space
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H is the Euclidean space/R, the operator//is the Fourier transform operator " and u(x) is

the function u(x) +11., a r/+6 > 0, then u belongs to W, because .Tu(x) v/e-’lxl

The convolution w(x) (u v)(x) with w 6 L2(), are also example of functions of W.

Similarly we obtain functions in i", n _> 2.

The vector space V is identified with the Hilbert space:

(3.5) V {v 6 D(A’); IAvl <_ CA m!, for some A > 0, c > 0, m 6 SV}.

The characterization of space W with the space V is given by:

PROPOSITION 3.1: If W and V are spaces defined in (3.4) and (3.5) respectively, then

V=W.

PROOF. We have by (2.5) (Diagonalization Theorem), in particular, that

/2- D (A) 7 is a isomorphism and

Thus, if u 6 W, then from the inequality (2x)" _< e2Xm’ we have

.X" < m! eTM

and

,x"llU(u)ll2d,(,) <_ m! e2llU(u)ll2d,(,) < +.

Therefore, W - V.

Reciprocaly, if u 6 V, we have

or

Therefore,

Thus V ,- W. O

e IlU(u)ll2d(X) < +.

With this caracterization the vectors of W are of A-analytic type.
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3.1. THE MAIN RESULT

THEOREM 3.1: We fix T > 0 an arbitrary real number. We have that if the hypothesis

(3.1)-(3.3) are valid, then problem (1.2) has an unique global classical solution u: [0, T[-- H,

satisfying

(3.6) u 6 C2([O,T]; V),

where V is the Hilbert space defined in (3.5).

Suppose (3.1) then by Diagonalization theorem, there exists an unitary operator//from

H onto 7/o such that/d is an isomorphism from D(A’) onto 7/a, for a E/R, and

ll(Au) A//(u), for all u e D(A).

Moreover, u is a solution of the problem (1.2) if and only if v =/d(u) is solution of:

(3.7) { " / M (lvl ) Av O,

v(0) v0

t>O

,’(o) u().

In such a problem, v0 and vl belong to space W.

Now, our goal is to prove the existence and uniqueness of global solution v for (3.7) in

the following class

(3.8)

where T > 0 and a .
3.2. TRUNCATED PROBLEM (LOCAL SOLUTION)

Let k SV and denote by 7/o,k the subspace of 7/0 of the vector fields v(A) such that

v(A) 0, v-a.e, on [k, +o[. It follows that 7/0,k equipped with the norm of 7/0 is a Hilbert

space. For each vector field v 7/, a R, we denote by v the truncated field associated to

v, defined in the following way:

fv, u-a.e, on]Ao, k[,0<A0<fl
Vk

O, u-a.e, on[k,+c[,

where fl > 0 is’ the constant of the (3.1).

It is not difficult to prove that vk 7-lo,: and that vk v strongly in
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The truncated problem

vk" [0, Tk]-- 7-lO,k such that

corresponding to (3.7)-(3.8) consists of finding

(3.9) Vk e C ([0, T]; 7/0,k), T > 0,

satisfying

(3.10) { (vk + M Ivkl1/2
v(O) vo; v(O) v

t>O

Let Vk v then (3.10) it is equivalent to:

(3.11) Vk F(Vk),
y(o) Vo,

t>O

where

[ ] and yok [?)Ok][Vlk

As M is locally Lipschitz function, then F is also locally Lipschitz.

Therefore by Cauchy-Lipschitz-Picard Theorem follows that there exists 0 < Tk < T and

an unique local solution Vk of (3.11) in the class CI([O, Tk]; 7/o,k x 7/0,). Hence, there exist

an unique vk "[0, T] -- 7/0,k solution of (3.10), satisfying

(3.12) v 6 C ([0,

Our next objective will be to obtain estimates in order to extend the solutions v to all

interval [0, T[, T > 0, and to prove that vk converge uniformly to v solution of (3.7).

Estimate "A Priori"

Let us consider the linear equation

(3.13) vk + a(t)Avk O, >_ O,

where a(t) is a real continuous and nonnegative function on [0, T[.

We will assume that all solutions of problem (3.10) also satisfy the linear equation (3.13).

Let us introduce the following function:

(3.14) Ek(t) {111 + 1111=},

where II" II II"
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LEMMA 3.1: If vk is a solution of equation (3.13) on [0, T[, then Ek satisfy:

(3.15) Ek(t) <_ c(T,)Ek(O)exp(A6), for any di > 0.

PROOF. Let us pc(t) a smoothness net with supp(pe) C]0, e[, then one defines ake(t)

(k * Pe) (t) + ae, where

ak, if t[0, T]
ak

0, if > T;

(dk * pe)(t) "k(s)pe(t s)ds and

In this conditions, we have

ak C1([0, T]), ake > 0, ake --+ ak uniformly on [0, T]

and using the inequality

T lake -ak * Pel dt +
T lake- akl dt < dr,

we have by Lebesgue’s Doninated Convergence Theorem that:

T
ake- akl dt 0 when(3.16)
ay/_d

e-+O+.

Let us define the auxiliarity e-functions:

Eke(t) {ll,vll + allvll2},

Differentiating Eke and using (3.13) we obtain

d
Eke llvll ak__ + ((Vk, Vk))[a a],d- a,

hence, by using Eke and standard inequality we have

d-dEke<- lael
___

+ A lake--akl] Eke.

By Gronwall’s inequality, we conclude

(3.17)

As ake is inferiorly bounded by e on [0, T], then we may compare Ek with Eke, that is,

(3.18) cl(e)Ek(t) < Eke(t) < c2(e)Ek(t). (cl(e) > 0).
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Moreover,
d

is bounded on [0, T], therefore

T lae___ dt <_ C C(T,e).
ake

Hence, from (3.17) and (3.18) we infer that

(3.19) Ek(t) <_ c(T,e)Ek(O)exp A

Using (3.16) in (3.19) it follows:

E}(t) <_ c(T, 5)E(O) exp (A), for all > 0

and > 0. As required.

The next step is to obtain a estimate of the Vk in H1/2.
Taking scalar product of both sides in (3.10) with v we have

(v’, v)o + M(Ivl)(Av, v)0 0, for all 0 _< < Tk.

Taking l(a) f M(s)ds, we obtain

where

E(t) {Ivkl;.; +/tr([v[)}.
Integrating from 0 to <_ Tk it follows

E(t) E(0).

But, by hypothesis (3.2), l’I([vkl) > molvkl2_}, thus

(3.20) I,I,(t)lo= + molv(t)l <_ I,1o + (Ivol) II,ll=d,(A) + M(s)ds.

On the other hand, from (3.3) it follows
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and

eX’llvoll2dv(X) < +oo.

IVOkl
As M is locally lipschitz, fo M(s)ds < +o. Hence, we conclude from (3.20) that

(3.21) Iv(t)lo / Iv(t)l < c, for all > O,

where c is a positive constant that depends only on the initial data.

Multiplying (3.15) by A _> A0 > 0 and integrating in relation the measure v on ]Ao, +oc[,

by using the hypothesis (3.3) we obtain

(3.22) Iv:l + Ivl < c(T,(f) e"Zllvl 2dv(,k)+ eZllvo,:lld,()

_< c, for all [0, T[.

REMARK 3.1: From (3.21) we conclude that the solution vk of (3.10) can be extended to

the whole [0, T[, for any T > 0. Therefore, it follows from (3.12) that vk satisfies (3.9). [3

Limit of the Truncated Solutions

In order to take the limit in (3.10) when k o it is necessary to prove the following

result.

LEMMA 3.2: The sequence of the functions (v)et is the Cauchy in "Ra, cr E t.

PROOF. If vk and v, for k > j are solutions of the (3.13), then w v v satisfy

(3.23) w +aw (a a)

Associated to the equation (3.23), let us denote by Fk(t) the function given by

1{Fm(t) 5 Ilwk’ll2 2
n() + llwl

It is immediate that,

(3.24) F(0) O, for all k

Our next goal is to prove that F(t) --+ 0 when k - oc. In’fact, as in the proof of Lemma 3.1,

let p(t) a smoothness sequence with supp(p) C]0,[ and ak,(t) (’d, p)(t) + a,,, where

"a,={ a,, if t[0, T]
0, if > T;
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,

In this conditions (e.g. (3.10)), we have

T lake --ael dt -- 0 when e - 0+ for fix k.(3.25)

Associated to the ake we define the function:

1

Deriveting F with respect to time, we obtain

F )allkl + Aa((wk, wk’)) + ((w’’,wk’)).

Using the equation (3.23), we have:

It follows that

From (3.15) we have that [[vii[ <_ c, for all j E 5r. Thus, integrating from 0 to <_ T and

applying Gronwall inequality, we get in the similar way as Lemma 3.1 that

Fk(t) <_ c(T, 5)Fke(O) exp (&5) + c(T, 5) exp (&5)lak ;I(o,T)-

Using (3.18) and (3.24) it follows that

F(t) < c(T, 5) exp(AS)la a.l :L2(O,T)

By hypothesis (3.3) and for 5 > 0, small enough, we have

2eXF(t) <_ c(T, 5)e2Xla -a]L2(O,T),

where e
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From (3.21) and (3.22) it follows

vk E C ([0, T]; 71/2).

Thus, the sequence of function Ck(t) [vk(t)[ is continuous in [0, T]. On the other

hand, given s, E [0, T], we get

ICe(t)- (s)l _< cl(t)- (s)l <_ c I,()l]dn <_ clt- sl =

for all k and 0 < t, s <_ T.

Hence, by Arzel-/scoli Theorem there exists a subsequence (k)keV, which we yet

denote by (k)kev, C([0, T]; El) such that

bk - , uniformely in C([0, T];).

As M is locally lipschitz it follows that

M(Ivl) - M() in C([0, T]; E).

Taking k, j - oc and remarking that ak(t) M(Iv]) it follows

Thus,

(3.26) enF(t) - O, for allt _> O.

Therefore, (vk)kev is a Cauchy sequence in "Ra, a Et. rn

Integrating (3.26) in relation to the measure u on ]Ao, +oc[, we obtain

(3.27) vk -- v strongly in C([0, T];

As M is locally Lipschitz, follows from (3.27) that

(3.28) M(lvl) -, M(Ivl) em C([0, T];

Using (3.27) and (3.28) in (3.10), we have

(3.29) v --+ v" strongly in C([0, T];

Therefore, from (3.27)-(3.29) we conclude that v L/(u) satisfies (3.7) and (3.8). E!
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PROOF OF THEOREM 3.1

The operator/d- D(A) -- Na, cr 6 i, is an isomorphism. Thus, from (3.7) and (3.8)
we have that the vector function u [0, T[-- H defined by u =/g-l(v) satisfies the problem

(1.2) and

(3.30) u e C([0, T]; D(A)).

Now, let us verify that the vector field u(t) belongs to Hilbert space V defined in (3.5).
Thus, we affirm that the application

[[u(t)[[ e Cg([0, T]).

In fact, from Proposition 3.1 is sufficient to prove that u 6 W, is that,

e"llZg(u)ll2dw(A) < -4-o.

The function E(t) is given by

1 1 ]2E(t) {llv’ll + livll2) {IiU()’I + [lU(u)l },

and from Lemma 3.1, follows

eII(u)ll2d()< eZE(t)d(A)

< c(T, 1) eTM {llU(u)ll / IlU(uo)ll 2 ) de(A)

c c(U(); u(0)).

Therefore, u

In order to accomplish the Proof of Theorem 3.1, let us prove that the solution of Problem

(1.2) is unique. Or equivalently, that the solution of Problem (3.7) is unique. In fact, if Vl

and v2 are two solutions of problem (3.7), then w vl v2 satisfy

(3.31)
,2

(0) ’(0) 0

From (3.31) let us define a function

(3.32) .}G(t) {llw’(t)l +a(t)Xllw(t)ll
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Deriveting Ge (t), we obtain

G’e(t) ((w’, w")) + a’(t)AIIwll + a(t)A((w’, w)),

using the equation (3.31) 1, we get

(3.33)
((,, ’)) + ’(t)llll.

As M is locally Lipschitz, follows

(3.34) for allt [O,T].

By the substitution of (3.34) in (3.33) and using (3.32), we obtain

ae(t) M(Ivl)] Ge(t)+ la’(t)lG’e(t) <_
ae(t)

G,(t) + ,Xll,xll IIw’ll Iwl1/2.

Taking

and multiplying (3.35) for e-fo’ r,(8)ds, we have

dt
G,(t)e-fo"(’)a" < llv, II IIw’ll 111/2 fo ,()a

Integrating from 0 to t,

f0Ge(t)e- fo .(s)as <_ cA Ilvxll IIw’ll Iwl1/2e- fo

or, still

Ge(t) < cA I111 IIw’ll Iwl1/2d.

Integrating in relation to the measure on ]Ao,+c[ and denoting by J(t)

fxo Ge(t)d(A), we obtain

(3.36) J(t) <_ c Iwl1/2- AIIvll IIw’lld(A)

Using the HSlder inequality and the estimate (3.21), it follows that

,,Xlloxli IIw’lld’(),) _< II’ll=d(X) <_ c Z(t).
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Substituting in (3.36) we conclude that

(3.37) fo foJ(t) <_ c Iw[1/2 v/() d <_ "d J()d.

Using the Gronwall’s inequality, we get

J(t) 0, for all; _> 0.

Therefore,

w(t) O, for all > O.

REMARK 3.2: Without the hypothesis (2.3), i.e., considering only (Au, u) >_ O, Vu q D(A),

our main result (Theorem 3.1) can be proved. In this case, we take the operator Ae A + I,

where I represents the identity operator and > 0, which satisfies the conditions of the

Diagonalization Theorem. The solution to (1.2) would be obtain as a limit of ue solution to

u + M Aul Au O

(0) o, (0) .
If the operator A -A in " we have to consider Ae -A+eI to apply the Diagonalization

Theorem.
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