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ABSTRACT. A theorem concerning some new absolute summability method is proved. Many other
results, some of them known, are deduced.
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1. INTRODUCTION
Let T a, be an infinite series with partial sums s, Let o and n} denote the nth Cesaro mean of

order 6(6 > — 1) of the sequences {s,} and {na,} respectively. The series  a, is said to be summable
IC, 6|, k> 1, if

n*of - Uf.—llk < 00,

s

3
Il
-

or equivalently
- k
Zn‘l|nf,| < oo.
n=1
Let {p,} be a sequence of positive numbers such that
P,.,=Zp,,-—»oo as n—ooo(P,=p.,=0,i>1).
v=0
The series T a, is said to be summable | N, p,|,, k > 1, if (Bor [1]),
00
Y (Pa/pa) Mt = taoal* < 00,
n=1
where
t, = P! Zp,,s,,.
v=0
The series L a,, is said to be summable |R, p,|,, k > 1, if Bor [2],

= k
an—lltn - tn—l‘ < 00,
n=1
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If we take p, =1, each of the two summabilities |N,p,|, and |R,p.|; is the same as |C, 1|,
summabililty Let {¢,} be any sequence of positive numbers. The series X a,, is said to be summable
N, Pn, $nl» k > 1, if (Sulaiman [3]),

o k
>ttt — taa|f < 0.
n=1

It is clear that
|N,pn, 7|, = R, Palis [N, Pry Pa /Pl = [N, Balys [N, Bns 1], = | N, pn|, and |N,1,n[, =|C, 1],

We assume {a,}, {6,} and {g.} be sequences of positive numbers such that

n
Qn= Z qy — 00.
v=0
We prove the following.
THEOREM 1. Let ¢, denote the (IV, p,)-mean of the series £ a,, and write T;, = B VEA L, ;.
If
i ak1gk _O{ak 1gk- 1}’ O
o Q5Qns Q%
00 k-1 k k
) () () rme
; (ﬁn Pn/ \Qn "
=) an k-1 X .
"Z=; E Ieﬂl |Tn| < m,
and

o0 a k-1 P._ k
Z(bf) ( ;,,1) A el ITult < oo,

n=1
then the series  a, €, is summable |N, gn, an,, & > 1.

2. PROOF OF THEOREM 1
Let 7, be the (N, g,,)-mean of the series T a,, €,. Then

Aty = Q Q o EQv—lavev

- Q an ) {Z ZPr—larA( -le—letl) + (z R"]a"') n_—IIQn-len}

v=1 r=1 r=1

n—1
In PP, - -1
- - g & (R AT (- erde s ghs eer e an)
nlyn-1 757 v-1

B &g) 1/k-1
() (&)

n-1
dn P 1/k-1 1/k—1 v— 1/k-1 )
= — Y = 2 e T, + Qe T,+—Q.A¢, T
o M G Al T, WA

1=

ﬁ n 1/k-1
+(2) (&)«

=1in + Tn,2 + Tn,3 + TﬂA: say.

To prove the theorem, by Minkowski's inequality, it is sufficient to show that
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YT F <00, r=1,2,3,4.

NgE

[
—

Applying Holder's inequality, with indices k and k', where 1 + % = 1, we have

m+1 k
S et =F ot I(Q,,é'n- )

n=2 n=2

k-1 PRV AL Kotk k) 1 R =
<Star Q,.-,Z(—-) allaHn S5,
n n=l y=1

n=2

n-1 P k
Z - Ey QUeuﬁg}/k_]Tu

v=1

m P m+1 _ - k _
<omy p)ml aHnt 3 o (&) oy
v=1 n=v+1 n

#) () (&) ermt

m+1 . x m+1 k|n— 1 k
Z an-llTn,Zl = Z a:_l Q. Q ) z q evﬂv/h lT
n=2 n=

n— k-1
<Y k! % ;lIZ(Q ) aole|* B IT | {Qn_ un}

&) |€ |kﬁl le‘ X:l l(&'_)kQ_l
% b = o\Q.)

n=v+1

S et Taslt = 3 ok gn i _ P ng Ae,BVIT,
- " ™ oy " QnQn-1 =1 P g Y
m+1 q k-1
S (2) 0 8 (B2) (@) waerame - Fe
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m m+1
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()7 (&) merm
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3. APPLICATIONS
THEOREM 2. If

an =0(8,), Pugn = 0(pnQn),

and (I) is satisfied, then the series T a, is summable |N, g, a,|,, whenever it is summable |N, p,, 5, |,
k> 1, (thatis |N, po, Bal, = |V, gn, anl,).

PROOF. Follows from Theorem 1 by putting €, = 1.

COROLLARY 1 (Bor [1] and [4]). If
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Ngn = O(Qn): Qn = O(nqu)1

then the series T a,, is summable | N, g, |, iff it is summable |C, 1|, k > 1

PROOF. Applying Theorem 2 with a, = Qn/gn, B =n, and p, = 1. We have a, = 0(G,),
P.gn = 0(p.Q,), and (I) is satisfied. Therefore |C,1|, = |N,qn|,. Now the same application of
Theorem 2 with a, = n, §, = P,/p,, we obtain the other way round.

COROLLARY 2 (Bor and Thorpe [5]). If

P.gn = 0(ann)r ann = O(anﬂ) (I

then the series T a,, is summable [V, g, |, iff it is summable |N,p,|,, k > 1.

PROOF. Applying Theorem 2 with a, = Qn/gn, Bn = Pa/pn. Clearly a, = 0(6,) and (I) is
satisfied. Therefore [N, p,|, = |V, ga|,. The result is still valid if we interchange {p,} and {g.}

COROLLARY 3. Suppose that (I) is satisfied for p and g, (II) is also satisfied and that {g,/pn} is
nonincreasing, then the series T a,, is summable |R, g,|, iff it is summable |R, p,|, k > 1.

PROOF. Applying Theorem 2 with a, = 8, =n. It is clear that |R, p,|, = |R, gnl,. For the
other direction, it needs to be shown that (I) is satisfied if we are replacing g, by p, Since {gn/p.} is
nonincreasing, we have, using (II),

S BB =0 3 (2 ot (22)

n=v+1 n=v+1

() o

'Ukl Uk—l k—1
_°(l)< ) o5 '0{ =3 }

It may be mentioned that Corollary 3 gives an alternative proof to the sufficiency part of the theorem in
(2]
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