ON A NEW ABSOLUTE SUMMABILITY METHOD

W.t. SULAIMAN

Department of Mathematics
College of Science
University of Qatar
P.O. Box 2713

Doha, QATAR
(Received July 1993 and in revised form March 21, 1997)

Abstract

A theorem concerning some new absolute summability method is proved. Many other results, some of them known, are deduced.

KEY WORDS AND PHRASES: Absolute summability.
1991 AMS SUBJECT CLASSIFICATION CODES: 40C.

1. INTRODUCTION

Let Σa_{n} be an infinite series with partial sums s_{n} Let σ_{n}^{δ} and η_{n}^{δ} denote the nth Cesàro mean of order $\delta(\delta>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively. The series Σa_{n} is said to be summable $|C, \delta|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty
$$

or equivalently

$$
\sum_{n=1}^{\infty} n^{-1}\left|\eta_{n}^{\delta}\right|^{k}<\infty
$$

Let $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty\left(P_{-i}=p_{-i}=0, i \geq 1\right)
$$

The series Σa_{n} is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (Bor [1]),

$$
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

where

$$
t_{n}=P_{n}^{-1} \sum_{v=0}^{n} p_{v} s_{v}
$$

The series Σa_{n} is said to be summable $\left|R, p_{n}\right|_{k}, k \geq 1$, if Bor [2],

$$
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

If we take $p_{n}=1$, each of the two summabilities $\left|\bar{N}, p_{n}\right|_{k}$ and $\left|R, p_{n}\right|_{k}$ is the same as $|C, 1|_{k}$ summability Let $\left\{\phi_{n}\right\}$ be any sequence of positive numbers. The series Σa_{n} is said to be summable $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}, k \geq 1$, if (Sulaiman [3]),

$$
\sum_{n=1}^{\infty} \phi_{n}^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

It is clear that

$$
\left|\bar{N}, p_{n}, n\right|_{k}=\left|R, p_{n}\right|_{k},\left|\bar{N}, p_{n}, P_{n} / p_{n}\right|_{k}=\left|\bar{N}, p_{n}\right|_{k},\left|\bar{N}, p_{n}, 1\right|_{1}=\left|\bar{N}, p_{n}\right|, \text { and }|\bar{N}, 1, n|_{k}=|C, 1|_{k} .
$$

We assume $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{q_{n}\right\}$ be sequences of positive numbers such that

$$
Q_{n}=\sum_{v=0}^{n} q_{v} \rightarrow \infty .
$$

We prove the following.
THEOREM 1. Let t_{n} denote the $\left(\bar{N}, p_{n}\right)$-mean of the series Σa_{n} and write $T_{n}=\beta_{n}^{1-1 / k} \Delta t_{n-1}$.
If

$$
\begin{align*}
& \sum_{n=v+1}^{\infty} \frac{\alpha_{n}^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}}=O\left\{\frac{\alpha_{v}^{k-1} q_{v}^{k-1}}{Q_{v}^{k}}\right\}, \tag{I}\\
& \sum_{n=1}^{\infty}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{k-1}\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{q_{n}}{Q_{n}}\right)^{k}\left|\epsilon_{n}\right|^{k}\left|T_{n}\right|^{k}<\infty, \\
& \sum_{n=1}^{\infty}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{k-1}\left|\epsilon_{n}\right|^{k}\left|T_{n}\right|^{k}<\infty,
\end{align*}
$$

and

$$
\sum_{n=1}^{\infty}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{k-1}\left(\frac{P_{n-1}}{p_{n}}\right)^{k}\left|\Delta \epsilon_{n}\right|^{k}\left|T_{n}\right|^{k}<\infty,
$$

then the series $\Sigma a_{n} \epsilon_{n}$ is summable $\left|\bar{N}, q_{n}, \alpha_{n}\right|_{k}, k \geq 1$.

2. PROOF OF THEOREM 1

Let τ_{n} be the $\left(\bar{N}, q_{n}\right)$-mean of the series $\Sigma a_{n} \epsilon_{n}$. Then

$$
\begin{aligned}
\Delta \tau_{n-1}= & -\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n} Q_{v-1} a_{v} \epsilon_{v} \\
= & -\frac{q_{n}}{Q_{n} Q_{n-1}}\left\{\sum_{v=1}^{n-1} \sum_{r=1}^{n} P_{r-1} a_{r} \Delta\left(P_{v-1}^{-1} Q_{v-1} \epsilon_{v}\right)+\left(\sum_{r=1}^{n} P_{r-1} a_{r}\right) P_{n-1}^{-1} Q_{n-1} \epsilon_{n}\right\} \\
= & -\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v} P_{v-1}}{p_{v}} \beta_{v}^{1 / k-1} T_{v}\right)\left(-q_{v} P_{v-1}^{-1} \epsilon_{v}+\frac{p_{v}}{P_{v} P_{v-1}} Q_{v} \epsilon_{v}+Q_{v} P_{v}^{-1} \Delta \epsilon_{v}\right) \\
& +\left(\frac{P_{n}}{p_{n}}\right)\left(\frac{q_{n}}{Q_{n}}\right) \epsilon_{n} \beta_{n}^{1 / k-1} T_{n} \\
= & -\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1}\left(-\frac{P_{v}}{p_{v}} q_{v} \epsilon_{v} \beta_{v}^{1 / k-1} T_{v}+Q_{v} \epsilon_{v} \beta_{v}^{1 / k-1} T_{v}+\frac{P_{v-1}}{p_{v}} Q_{v} \Delta \epsilon_{v} \beta_{v}^{1 / k-1} T_{v}\right) \\
& +\left(\frac{P_{n}}{p_{n}}\right)\left(\frac{q_{n}}{Q_{n}}\right) \epsilon_{n} \beta_{n}^{1 / k-1} T_{n} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \text { say. }
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \alpha_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad r=1,2,3,4
$$

Applying Hölder's inequality, with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left|T_{n, 1}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\left|\sum_{v=1}^{n-1}-\frac{P_{v}}{p_{v}} q_{v} \epsilon_{v} \beta_{v}^{1 / k-1} T_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} q_{v}\left|\epsilon_{v}\right|^{k} \beta_{v}^{1-k}\left|T_{v}\right|^{k}\left\{\frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v}\right\}^{k-1} \\
& \leq 0(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} q_{v}\left|\epsilon_{v}\right|^{k} \beta_{v}^{1-k}\left|T_{v}\right|^{k} \sum_{n=v+1}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1} \\
& \leq 0(1) \sum_{v=1}^{m}\left(\frac{\alpha_{v}}{\beta_{v}}\right)^{k-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{q_{v}}{Q_{v}}\right)^{k}\left|\epsilon_{v}\right|^{k}\left|T_{v}\right|^{k} \text {. } \\
& \sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left|T_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\left|\sum_{v=1}^{n-1} \frac{Q_{v}}{q_{v}} q_{v} \epsilon_{v} \beta_{v}^{1 / k-1} T_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1} \sum_{v=1}^{n-1}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|\epsilon_{v}\right|^{k} \beta_{v}^{1-k}\left|T_{v}\right|^{k}\left\{\frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v}\right\}^{k-1} \\
& \leq 0(1) \sum_{v=1}^{m}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|\epsilon_{v}\right|^{k} \beta_{v}^{1-k}\left|T_{v}\right|^{k} \sum_{n=v+1}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1} \\
& \leq 0(1) \sum_{v=1}^{m}\left(\frac{\alpha_{v}}{\beta_{v}}\right)^{k-1}\left|\epsilon_{v}\right|^{k}\left|T_{v}\right|^{k} \text {. } \\
& \begin{aligned}
\sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =\sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\left|\sum_{v=1}^{n-1}-\frac{P_{v-1}}{p_{v}} \frac{Q_{v}}{q_{v}} q_{v} \Delta \epsilon_{v} \beta_{v}^{1 / k-1} T_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1} \sum_{v=1}^{n-1}\left(\frac{P_{v-1}}{p_{v}}\right)^{k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|\Delta \epsilon_{v}\right|^{k} \beta_{v}^{1-k}\left|T_{v}\right|^{k}\left\{\frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v}\right\}^{k-1} \\
& \leq 0(1) \sum_{v=1}^{m}\left(\frac{P_{v-1}}{p_{v}}\right)^{k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|\Delta \epsilon_{v}\right|^{k} \beta_{v}^{1-k}\left|T_{v}\right|^{k} \sum_{n=v+1}^{m+1} \alpha_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1} \\
& \leq 0(1) \sum_{v=1}^{m}\left(\frac{\alpha_{v}}{\beta_{v}}\right)^{k-1}\left(\frac{P_{v-1}}{p_{v}}\right)^{k}\left|\Delta \epsilon_{v}\right|^{k}\left|T_{v}\right|^{k} .
\end{aligned} \\
& \sum_{n=1}^{m} \alpha_{n}^{k-1}\left|T_{n, 4}\right|^{k}=\sum_{n=1}^{m} \alpha_{n}^{k-1}\left|\left(\frac{P_{n}}{p_{n}}\right)\left(\frac{q_{n}}{Q_{n}}\right) \epsilon_{n} \beta_{n}^{1 / k-1} T_{n}\right|^{k} \\
& \leq 0(1) \sum_{n=1}^{m}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{k-1}\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{q_{n}}{Q_{n}}\right)^{k}\left|\epsilon_{n}\right|^{k}\left|T_{n}\right|^{k} .
\end{aligned}
$$

3. APPLICATIONS

THEOREM 2. If

$$
\alpha_{n}=0\left(\beta_{n}\right), \quad P_{n} q_{n}=0\left(p_{n} Q_{n}\right)
$$

and (I) is satisfied, then the series Σa_{n} is summable $\left|\bar{N}, q_{n}, \alpha_{n}\right|_{k}$, whenever it is summable $\left|\bar{N}, p_{n}, \beta_{n}\right|_{k}$, $k \geq 1$, (that is $\left|\bar{N}, p_{n}, \beta_{n}\right|_{k} \Rightarrow\left|\bar{N}, q_{n}, \alpha_{n}\right|_{k}$).

PROOF. Follows from Theorem 1 by putting $\epsilon_{n}=1$.
COROLLARY 1 (Bor [1] and [4]). If

$$
n q_{n}=0\left(Q_{n}\right), \quad Q_{n}=0\left(n q_{n}\right),
$$

then the series Σa_{n} is summable $\left|\bar{N}, q_{n}\right|_{k}$ iff it is summable $|C, 1|_{k}, k \geq 1$
PROOF. Applying Theorem 2 with $\alpha_{n}=Q_{n} / q_{n}, \beta_{n}=n$, and $p_{n}=1$. We have $\alpha_{n}=0\left(\beta_{n}\right)$, $P_{n} q_{n}=0\left(p_{n} Q_{n}\right)$, and (1) is satisfied. Therefore $|C, 1|_{k} \Rightarrow\left|\bar{N}, q_{n}\right|_{k}$. Now the same application of Theorem 2 with $\alpha_{n}=n, \beta_{n}=P_{n} / p_{n}$, we obtain the other way round.

COROLLARY 2 (Bor and Thorpe [5]). If

$$
\begin{equation*}
P_{n} q_{n}=0\left(p_{n} Q_{n}\right), \quad p_{n} Q_{n}=0\left(P_{n} q_{n}\right) \tag{II}
\end{equation*}
$$

then the series Σa_{n} is summable $\left|\bar{N}, q_{n}\right|_{k}$ iff it is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
PROOF. Applying Theorem 2 with $\alpha_{n}=Q_{n} / q_{n}, \beta_{n}=P_{n} / p_{n}$. Clearly $\alpha_{n}=0\left(\beta_{n}\right)$ and (I) is satisfied. Therefore $\left|\bar{N}, p_{n}\right|_{k} \Rightarrow\left|\bar{N}, q_{n}\right|_{k}$. The result is still valid if we interchange $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$

COROLLARY 3. Suppose that (I) is satisfied for p and q, (II) is also satisfied and that $\left\{q_{n} / p_{n}\right\}$ is nonincreasing, then the series Σa_{n} is summable $\left|R, q_{n}\right|_{k}$ iff it is summable $\left|R, p_{n}\right|_{k}, k \geq 1$.

PROOF. Applying Theorem 2 with $\alpha_{n}=\beta_{n}=n$. It is clear that $\left|R, p_{n}\right|_{n} \Rightarrow\left|R, q_{n}\right|_{k}$. For the other direction, it needs to be shown that (I) is satisfied if we are replacing q_{n} by p_{n} Since $\left\{q_{n} / p_{n}\right\}$ is nonincreasing, we have, using (II),

$$
\begin{aligned}
\sum_{n=v+1}^{\infty} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} P_{n-1}} & =0(1) \sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} Q_{n-1}^{-1}\left(\frac{q_{n-1}}{p_{n-1}}\right) \\
& =0(1)\left(\frac{q_{v}}{p_{v}}\right) \sum_{n=v=1}^{\infty} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \\
& =0(1)\left(\frac{q_{v}}{p_{v}}\right) \frac{v^{k-1} q_{v}^{k-1}}{Q_{v}^{k}}=0\left\{\frac{v^{k-1} p_{v}^{k-1}}{P_{v}^{k}}\right\} .
\end{aligned}
$$

It may be mentioned that Corollary 3 gives an alternative proof to the sufficiency part of the theorem in [2].

REFERENCES

[1] BOR, H., On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149
[2] BOR, H., On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), 1009-1012.
[3] SULAIMAN, W T., On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), 313-317.
[4] BOR, H., A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986), 81-84.
[5] BOR, H. and THORPE, B., On some absolute summability methods, Analysis 7 (1987), 145-152

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

