ABSTRACT. In this paper, We prove that every \((\epsilon)\)-sasakian manifold is a hypersurface of an indefinite kaehlerian manifold, and give a necessary and sufficient condition for a Riemannian manifold to be an \((\epsilon)\)-sasakian manifold.

KEY WORDS AND PHRASES: \((\epsilon)\)-sasakian manifolds; real hypersurface; indefinite kaehlerian manifolds; \((\epsilon)\)-almost contact structure.

1. INTRODUCTION Let \(M\) be a real \((2n + 1)\)-dimensional differentiable manifold endowed with an almost contact structure \((\phi, \xi, \eta)\). This means that \(\phi\) is a tensor field of type \((1,1)\), \(\xi\) is a vector field and \(\eta\) is a 1-form on \(M\) satisfying:

\[
\phi^2 = -I + \eta \otimes \xi; \quad \eta(\xi) = 1
\]

It follows that

\[
\eta \circ \phi = 0; \phi(\xi) = 0; \text{rank}\phi = 2n
\]

If there exists a semi-Riemannian metric \(g\) on \(M\) that satisfies (see [1])

\[
g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X)\eta(Y) \quad \forall X, Y \in \Gamma(TM)
\]

Where \(\epsilon = \pm 1\), We call \((\phi, \xi, \eta, g)\) an \((\epsilon)\)-almost contact metric structure and \(M\) an \((\epsilon)\)-almost contact metric manifold.

From (3), we have

\[
\eta(X) = \epsilon g(X, \xi) \quad \forall X \in \Gamma(TM)
\]

\[
g(\xi, \xi) = \epsilon
\]

We say that \((\phi, \xi, \eta, g)\) is an \((\epsilon)\)-contact metric structure if we have

\[
g(X, \phi Y) = d\eta(X, Y) \quad \forall X, Y \in \Gamma(TM)
\]
In this case, M is an (e)-contact metric manifold. An (e)-contact metric structure which is normal is called an (e)-sasakian structure. A manifold endowed with an (e)-sasakian structure is called an (e)-sasakian manifold.

In [1], A. Bejancu and K.L. Duggal give a theorem as following:

THEOREM A (see [1] theorem 6)

Let M be an orientable real hypersurface of an indefinite kaehlerian manifold \overline{M}, then the following assertions with respect to the (e)-almost contact metric structure inherited by M are equivalent:

1. M is an (e)-sasakian manifold
2. The (e)-characteristic vector field satisfies
 \[Vx - XfVx \subset (TM) \]
3. The shape operator A satisfies
 \[AX = -eX + (e + \eta(Ax))\eta(X)\xi \quad \forall X \in \Gamma(TM) \]

This produces a problem whether an (e)-sasakian manifold must be a real hypersurface of some indefinite kaehlerian manifold. In sec.2, we prove that the answer to this problem is positive. That is

THEOREM 1.1. Every (e)-sasakian manifold must be a real hypersurface of some indefinite kaehlerian manifold.

In [2], Hatakeyama, Ogewa and Tanno give the condition for a Riemannian manifold to be a K-contact manifold, they prove

THEOREM B (see [2] or [4]) In order that a $(2n + 1)$-dimensional Riemannian manifold M is K-contact, it is necessary and sufficient that the following two conditions are satisfied:

1. M admits a unit killing vector field ξ;
2. The sectional curvatures for plane sections containing ξ are equal to 1 at every point of M.

In sec.3, we generalize Theorem B by giving the necessary and sufficient condition for a Riemannian manifold to be an (e)-sasakian manifold, that is

THEOREM 1.2. In order that a $(2n + 1)$-dimensional Riemannian manifold M is (e)-sasakian manifold, it is necessary and sufficient that the following three conditions are satisfied:

1. M admits a unit killing vector field ξ;
2. The sectional curvature for plane sections containing ξ are equal to 1 or -1 at every point on M.
3. $R(X, Y)\xi = 0 \quad \forall X, Y \perp \xi$

2. THE PROOF OF THEOREM 1.1

Let M be a $(2n + 1)$-dimensional (e)-sasakian manifold with (e)-sasakian structure (ϕ, ξ, η, g). Let R be real line with coordinate t and unit tangent vector $\frac{d}{dt}$. Denote $M \times R$ by \overline{M}, then vector fields on \overline{M} are given by $\overline{X} = (X, f\frac{d}{dt}), \overline{Y} = (Y, h\frac{d}{dt}), \ldots$,
Where $X, Y \ldots$ are vector fields tangent to M and f, h, \ldots are function on M, we define a linear map J on the tangent space of \overline{M} by [5]

$$J\overline{\overline{X}} = J(X, f \frac{d}{dt}) = (\phi X - f \xi, \eta(X) \frac{d}{dt})$$

(7)

From (1) and (2), we have

$$J^2 \overline{\overline{X}} = J(\phi X - f \xi, \eta(X) \frac{d}{dt}) = (\phi^2 X - \eta(X) \xi, -f \frac{d}{dt}) = -\overline{\overline{X}}$$

It shows that J is almost complex structure on \overline{M}, but M is an (ε)-sasakian manifold, this means $N(J) = 0$, then J is a complex structure on \overline{M}, thus $\overline{\overline{M}} = M \times R$ is a complex manifold.

Let $\pi : \overline{\overline{M}} = M \times R \to M$ be the projection map, we introduce a metric G on \overline{M} by

$$G = e^{st}(\pi^*g + \varepsilon dt \otimes dt)$$

(8)

As an induced metric of g, we have

$$G((X, 0), (Y, 0)) = g(X, Y) \quad (t = 0)$$

(9)

For any vector fields $\overline{X} = (X, f \frac{d}{dt}), \overline{Y} = (Y, h \frac{d}{dt})$ on \overline{M}, we obtain from (7)(8)

$$G(\overline{X}, \overline{Y}) = e^{st}(g(X, Y) + \varepsilon f h)$$

(10)

$$G(J\overline{X}, \overline{Y}) = e^{st}(g(\phi X, Y) - \varepsilon f \eta(Y) + \varepsilon h \eta(X))$$

(11)

$$G(\overline{X}, J\overline{Y}) = e^{st}(g(X, \phi Y) - \varepsilon h \eta(X) + \varepsilon f \eta(Y))$$

(12)

$$G(J\overline{X}, J\overline{Y}) = G((\phi X - f \xi, \eta(X) \frac{d}{dt}), (\phi Y - h \xi, \eta(Y) \frac{d}{dt}))$$

$$= e^{st}(g(\phi X, \phi Y) + \varepsilon f h + \varepsilon \eta(X) \eta(Y))$$

(13)

From (10)-(13), we see

$$G(\overline{X}, J\overline{Y}) = -G(J\overline{X}, \overline{Y}), \quad G(J\overline{X}, J\overline{Y}) = G(\overline{X}, \overline{Y})$$

Thus G is a Hermitian metric on \overline{M}.

Define a 2–form on \overline{M} by

$$\Phi = e^{st}(\pi^*d\eta + \varepsilon dt \wedge (\pi^*\eta))$$

(14)

Using $\pi^* \circ d = d \circ \pi^*$, we get

$$d\Phi = e^{st}dt \wedge (\pi^*d\eta + \varepsilon dt \wedge (\pi^*\eta)) +$$

$$e^{st}[\pi^*d^2\eta + \varepsilon d^2t \wedge (\pi^*\eta) - \varepsilon dt \wedge \pi^*d\eta] = 0$$

(15)

Therefore, ϕ is a closed 2–form on \overline{M}, by a direct computation, we get

$$\Phi(\overline{X}, \overline{Y}) = \Phi((X, f \frac{d}{dt}), (Y, h \frac{d}{dt}))$$

$$= e^{st}(d\eta(X, Y) + \varepsilon(dt \wedge \pi^*\eta) \langle \overline{X}, \overline{Y} \rangle)$$

$$= e^{st}(d\eta(X, Y) + \varepsilon f \eta(Y) - \varepsilon h \eta(X))$$

(16)
From (12) and (16) we see that
\[\Phi(\overline{X}, \overline{Y}) = G(\overline{X}, J\overline{Y}) \]
(17)
Then from (15) and (17), we know the Φ defined by (14) is the closed fundamental 2–form, thus the G defined by (8) is an indefinite kaehlerian metric on \(\overline{M}^{[2]} \) and hence \(\overline{M} = M \times R \) is an indefinite kaehlerian manifold.

3. THE PROOF OF THEOREM 1.2

First of all, we state some results which we shall need later.

Lemmas 3.1. (see [1] p. 548). An \((e)\)-almost contact metric structure \((\phi, \xi, \eta, g)\) is \((e)\)-sasakian if and only if
\[(\nabla_X \phi) Y = g(X, Y)\xi - \eta(Y)X, \quad \forall X, Y \in \Gamma(TM) \]
(18)
Where \(\nabla \) is the Levi–civita connection with respect to \(g \).
If we replace \(Y \) by \(\xi \) in (18) and from (1) (2) we get
\[\nabla_X \xi = -e\phi X, \quad \forall X \in \Gamma(TM) \]
(19)
Because
\[(L_\xi g)(X, Y) = \xi g(X, Y) - g([\xi, X], Y) - g(X, [\xi, Y]) \]
\[= \xi g(X, Y) - g(\nabla_\xi X - \nabla_X \xi, Y) - g(X, \nabla_\xi Y - \nabla_Y \xi) \]
\[= (\xi g(X, Y) - g(\nabla_\xi X, Y) - g(X, \nabla_\xi Y + g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi) \]
\[= (\nabla_\xi g)(X, Y) + g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi) \]
\[= g(-e\phi X, Y) + g(X, -e\phi Y) \]
\[= -e(g(\phi X, Y) + g(X, \phi Y)) = 0 \quad \forall X, Y \in \Gamma(TM) \]

Then we get

Proposition 3.1. The characteristic vector field \(\xi \) on an \((e)\)-sasakian manifold is a killing vector field.

Lemma 3.2. ([6] p.265) Let \(M \) be a contact metric manifold with contact metric structure \((\phi, \xi, \eta, g)\). Then \(N^{(3)} \equiv (L_\xi \phi) X \) vanishes if and only if \(\xi \) is a killing vector field with respect to \(g \).

Proposition 3.2. Let \(M \) be an \((e)\)-sasakian manifold, then the sectional curvature for plane sections containing \(\xi \) are equal to 1 or -1 at every point on \(M \).

Proof. Let \(X \) be an unit vector field on \(M \) and \(X \perp \xi \), then from (19) we have
\[R(\xi, X)\xi = \nabla_\xi \nabla_X \xi - \nabla_X \nabla_\xi \xi - \nabla_{[\xi, X]} \xi \]
\[= -e \nabla_\xi (\phi X) + \phi(\xi) \]
\[= -e(\nabla_\xi (\phi X) - \phi(\nabla_\xi X - \nabla_X \xi) \]
\[= -e((\nabla_\xi \phi) X + \phi(\nabla_X \xi)) \]
From Lemma 3.1, we get
\[(\nabla_\xi \phi) X = g(\xi, X)\xi - \eta(X)\xi = 0 \]
thus we have
\[R(\xi, X)\xi = -\varepsilon\phi(\nabla_X\xi) = \phi^2 X = -X \quad \text{then} \]
\[g(R(\xi, X)X, \xi) = -g(R(\xi, X)\xi, X) = \pm 1 \]

From (18) and (19), let any \(X, Y \in \Gamma(TM) \) and \(X, Y \perp \xi \) we have
\[
R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X, Y]} \xi \\
= \nabla_X (-\varepsilon\phi Y) - \nabla_Y (-\varepsilon\phi X) + \varepsilon\phi [X, Y] \\
= \varepsilon((\nabla_Y \phi)X - (\nabla_X \phi)Y) \\
= \varepsilon(g(X, Y)\xi - \varepsilon\eta(X)Y - g(X, Y)\xi + \varepsilon\eta(Y)X) \\
= \eta(Y)X - \eta(X)Y = 0
\]

Then, by Proposition 3.1; 3.2, we get the necessary condition of Theorem 2.

Conversely, first, we define a 1-form \(\eta \) and a tensor field of type (1.1) by
\[\eta(X) = g(X, \xi) \quad \phi X = -\nabla_X \xi \]

We know from [4] \((\phi, \xi, \eta, g) \) be an almost contact metric structure, satisfying
\[\phi^2 = -I + \eta \otimes \xi, \quad g(X, \phi Y) = d\eta(X, Y) \]
\[g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \]

Let \(\bar{\xi} = \varepsilon\xi, \bar{\eta} = \varepsilon\eta, \bar{g} = \varepsilon g, \) then
\[\bar{\eta}(X) = \varepsilon g(X, \xi), \quad \phi X = -\varepsilon \nabla_X \bar{\xi} \]
\[\phi^2 = -I + \bar{\eta} \otimes \bar{\xi}, \quad g(X, \phi Y) = d\bar{\eta}(X, Y) \]
\[g(\phi X, \phi Y) = \bar{g}(X, Y) - \varepsilon \eta(X)\eta(Y) \]

Thus \((\phi, \xi, \eta, g) \) be an \((\varepsilon)\)-contact metric structure.

Now we show that \(N^{(1)} = 0 \), from condition (3) of Theorem 2, we obtain
\[(\nabla_X \phi)Y = (\nabla_Y \phi)X, \quad \forall X, Y \perp \xi, \quad \text{thus} \]
\[N_\phi(X, Y) = [\phi, \phi](X, Y) \]
\[= (\nabla_{\phi X} \phi)Y - (\nabla_{\phi Y} \phi)X + \phi((\nabla_Y \phi)X - (\nabla_X \phi)Y) \]
\[= (\nabla_{\phi X} \phi)Y - (\nabla_{\phi Y} \phi)X \quad \forall X, Y \perp \xi \]

By using Lemma 3.1, we get
\[N_\phi(X, Y) = -2\bar{g}(X, \phi Y)\bar{\xi} \]

then
\[N^{(1)}(X, Y) = N_\phi(X, Y) + 2\bar{g}(X, \phi Y)\bar{\xi} = 0 \]
If $X \perp \xi$, we have by Lemma 3.2

$$N^{(1)}(X, \xi) = N_{\phi}(X, \xi) = \varepsilon \phi(L_{\xi} \phi)X = 0$$

Thus, for any vector field X, Y on M, $N^{(1)}(X, Y) = 0$

Hence, the ε–contact metric structure (ϕ, ξ, η, g) is normal, that is, M is an ε–sasakian manifold with an (ε)–sasakian structure (ϕ, ξ, η, g).

Theorem 2 can be improved.

THEOREM 2'. In order that a $(2n + 1)$–dimensional Riemannian manifold M is (ε)–sasakian manifold, it is necessary and sufficient that the following two conditions are satisfied

1. M admits a unit killing vector field ξ
2. $R(X, Y)\xi = \eta(Y)X - \eta(X)Y$ \quad $\forall X, Y \in \Gamma(TM)$

References

Submit your manuscripts at http://www.hindawi.com