ON DIRICHLET CONVOLUTION METHOD

INDULATA SUKLA
Department of Mathematics
Sambalpur University Jyoti Vihar, Sambalpur
Orissa, INDIA

(Received February 8, 1991 and in revised form April 20, 1995)

Abstract

In this paper we have proved limitation theorem for ($D, h(n)$) summability methods and have shown that it is best possible.

KEY WORDS AND PHRASES: Summability, Dirichlet convolution methods
1991 AMS SUBJECT CLASSIFICATION CODES: $11,11 \mathrm{~N}$

1. INTRODUCTION

In his studies on the prime number theorem, Ingham [1] defined a novel summability method called (I) This was generalized by Segal [2] and he defined the notion of ($D, h(n)$) summability, where $h: N \rightarrow R$ denotes a function with $h(1)=1 \quad$ We define the "Dirichlet inverse" $h^{*}(n)$ of $h(n)$ by $\sum_{d \mid n}$ $h(d) h^{*}(n / d)=\left\{\begin{array}{l}1, n=1 \\ 0, n>2\end{array}\right.$. A series $\sum a_{n}$ is said to be $(D, h(n))$ summable to L if and only if

$$
\begin{equation*}
n \xrightarrow{\operatorname{lm}} \infty \frac{1}{n} \sum_{v=1}^{n} v \sum_{d \mid v} a_{d} h(v / d)=L \tag{array}
\end{equation*}
$$

Given a series $\sum a_{n}$ and a specific $h(n)$, define the function

$$
\begin{equation*}
D(t)=\frac{1}{t} \sum_{n<t} n \sum_{d \mid n} a_{d} h(n / d) \tag{1.2}
\end{equation*}
$$

Since $D([t])=\frac{t}{[t]} D(t)$, it clearly makes no difference to the existence or value of the limit (12) whether $t \rightarrow \infty$ is through real values or integers. Ingham's method corresponds to the case $h(n)=\frac{1}{n}$

Segal [3] proved the limitation theorem for (I) summability. If $\sum a_{n}$ is (I) summable, then $\sum_{n<x} a_{n}=o(\log x)$ and has shown in the following theorem that his result is best possible

THEOREM A [4] Let $\in(x)$ be any positive function decreasing to 0 monotonically but arbitrarily slowly as $x \rightarrow \infty$. Then there exists a series $\sum a_{n}$ which is (I) summable and such that

$$
\sum_{n<x} a_{n} \neq 0(\in(x) \log x) \quad \text { as } \quad x \rightarrow \infty
$$

Sukla [5] has shown an analogous limitation theorem for $(D, h(n))$ summability.
THEOREM B. If $\sum a_{n}$ is $(D, h(n))$ summable then $\sum_{n<x} a_{n}=O(\log x)$ if

$$
\begin{equation*}
H^{*}(r)=\sum_{n<r} h^{*}(n)=O(1) \tag{i}
\end{equation*}
$$

and
(ii)

$$
\sum_{v=1}^{n}\left|h^{*}(v)\right|=O(\log n)
$$

It is remarked in that paper that the condition (ii) cannot be dropped However if we replace (i) by a slightly stronger condition then we get the result to be true without assuming (ii) In section 4 we show that our revised version of Theorem A is best possible.
2. MAIN RESULTS

THEOREM 1. If $\sum a_{n}$ is $(D, h(n))$ summable then
if

$$
\begin{gather*}
\sum_{n \leq x} a_{n}=O\left(\sum_{n<x}\left|h^{*}(n)\right|\right) \tag{21}\\
\sum_{n \leq r} h^{*}(n)=O\left((\log r)^{-1-\epsilon}\right) \text { as } r \rightarrow \infty \tag{array}
\end{gather*}
$$

We will show that (31) is a best possible result
THEOREM 2. Let $\in(x)$ be any positive function decreasing to 0 monotonically but arbitrarily slowly as $x \rightarrow \infty$. Then there exists a series $\sum a_{n}$ which is ($D, h(n)$) summable and (32) holds and

$$
\begin{equation*}
\sum_{1 \leq d \leq \frac{r}{\left[r^{1 / 2}\right]+1}}\left|h^{*}(d)\right| / \sum_{n \leq r}\left|h^{*}(n)\right| \tag{23}
\end{equation*}
$$

does not tend to zero as $r \rightarrow \infty$ holds and such that

$$
\sum_{n \leq x} a_{n} \neq o\left(\epsilon(x) \sum_{n \leq x}\left|h^{*}(n)\right|\right) \quad \text { as } \quad x \rightarrow \infty
$$

PROOF OF THEOREM 1. For $m \geq 0$, let

$$
K(m)= \begin{cases}m D(m) & \text { if } m \geq 1 \\ 0 & \text { if } m=0\end{cases}
$$

then by (11) and (1.2) it follows that

$$
\begin{gather*}
K(m)=O(m), \quad \text { as } \quad n \rightarrow \infty, \quad \text { and } \tag{24}\\
\sum_{n \leq r} a_{n}=\sum_{d \leq r} \frac{K(d)}{d} d\left(\frac{H^{*}\left(\frac{r}{d}\right)}{d}-\frac{H^{*}\left(\frac{r}{d+1}\right)}{d+1}\right)
\end{gather*}
$$

By (24) it is enough to show that

$$
\begin{equation*}
\sum_{d \leq r} d\left|\frac{H^{*}\left(\frac{r}{d}\right)}{d}-\frac{H^{*}\left(\frac{r}{d+1}\right)}{d+1}\right|=O\left(\sum_{n \leq r}\left|h^{*}(n)\right|\right) \tag{25}
\end{equation*}
$$

The left hand side of (2.5) is maximized by

$$
\begin{equation*}
\sum_{d \leq r}\left|H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right|+\sum_{d \leq r} \frac{\left|H^{*}\left(\frac{r}{d+1}\right)\right|}{d+1} \tag{2.6}
\end{equation*}
$$

Now

$$
\sum_{d \leq r}\left|H^{*}\left(\frac{r}{d}\right)\right|-H^{*}\left(\frac{r}{d+1}\right)=\sum_{d \leq r}\left|\sum_{\frac{r}{d+1} \leq v \leq \frac{r}{d}} h^{*}(v)\right| \leq \sum_{1 \leq v \leq r}\left|h^{*}(v)\right|
$$

and

$$
\sum_{d \leq r}\left|\frac{H^{*}\left(\frac{r}{d+1}\right)}{d+1}\right|=O\left(\sum_{d \leq r-2}\left(\log \frac{r}{d+1}\right)^{-1-\epsilon} \frac{1}{d+1}\right)=O(1)
$$

since $H^{*}(x)=O$ for $x<1$
PROOF OF THEOREM 2. Define b_{n} by

$$
\begin{equation*}
b_{n}=\sum_{d!n} h^{*}\left(\frac{n}{d}\right)\left(\frac{d D(d)-(d-1) D(d-1)}{d}\right), \quad \text { where } \quad D(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{27}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{t} \sum_{n<t} n \sum_{d \mid n} b_{d} h\left(\frac{n}{d}\right)=\frac{1}{t} \sum_{n<t} n \sum_{d \mid n} h\left(\frac{n}{d}\right) \sum_{r \mid d} h^{*}\left(\frac{r}{d}\right)\left(\frac{r D(r)-(r-1) D(r-1)}{r}\right)=D(t) \tag{28}
\end{equation*}
$$

Since $D(t) \rightarrow 0, \sum b_{n}$ is $(D, h(n))$ summable to 0 .

$$
\begin{aligned}
\sum_{n \leq r} b_{n} & =\sum_{n<r} \sum_{d \mid n} h^{*}\left(\frac{n}{d}\right)\left(\frac{d D(d)-(d-1) D(d-1)}{d}\right) \\
& =\sum_{d \leq r}\left(\frac{d D(d)-(d-1) D(d-1)}{d}\right) \sum_{m \leq \frac{r}{d}} h^{*}(m) \\
& =\sum_{d \leq r} D(d)-D(d-1) H^{*}\left(\frac{r}{d}\right)+\sum_{d \leq r} \frac{D(d-1)}{d} H^{*}\left(\frac{r}{d}\right)=\sum_{1}+\sum_{2}
\end{aligned}
$$

Now

$$
\sum_{1}=\sum_{d \leq r} D(d)\left[H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right]
$$

Since $H^{*}(x)=0$ for $x<1$

$$
\sum_{2}=O\left(\sum_{d \leq r} \frac{1}{d}\left|H^{*}\left(\frac{r}{d}\right)\right|\right)=O(1) \quad \text { as } \quad \mathrm{r} \rightarrow \infty \quad \text { by }(2.2)
$$

We have now

$$
\begin{equation*}
\sum_{1}=\sum_{n \leq r} b_{n}+O(1) \tag{29}
\end{equation*}
$$

Suppose the theorem does not hold then

$$
\sum_{n \leq r} b_{n}=o\left(\epsilon(r) \sum_{n \leq r}\left|h^{*}(n)\right|\right)
$$

So (29) becomes

$$
\begin{equation*}
\sum_{1}=o\left(\epsilon(r) \sum_{n \leq r}\left|h^{*}(n)\right|\right) \tag{210}
\end{equation*}
$$

Since $D(d) \rightarrow 0$ as $n \rightarrow \infty$, let

$$
\alpha_{r, d}=\frac{1}{\epsilon(r) \sum_{n \leq r}\left|h^{*}(n)\right|}\left[H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right]
$$

It is well known that in order for $\alpha_{r, d}$ to transform all sequences tending to 0 into sequences tending to 0 ,

$$
\frac{1}{\epsilon(r) \sum_{n \leq r}\left|h^{*}(n)\right|} \sum_{d \leq r}\left|H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right|<c
$$

must hold for all r where c is independent of r

$$
\sum_{d \leq r}\left|H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right|=\sum_{d \leq r}\left|\sum_{\frac{r}{d+1}<m \leq \frac{r}{d}} h^{*}(m)\right| \geq \sum_{r^{2} / 2<d \leq r}\left|\sum_{\frac{r}{d+1}<m \leq \frac{r}{d}} h^{*}(m)\right| .
$$

Since in this last sum $\frac{r}{d}-\frac{r}{d+1}<1$ the inner sum contains at most one term, and so

$$
\frac{1}{\epsilon(r) \sum_{n \leq r}\left|h^{*}(n)\right|} \sum_{d \leq r}\left|H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right| \geq \frac{1}{\epsilon(r)}\left(\frac{\sum_{1<d \leq \frac{r_{r}}{r^{1 / 2} \mid+:}}\left|h^{*}(d)\right|}{\sum_{n \leq r}\left|h^{*}(n)\right|}\right)
$$

tends to infinity as $r \rightarrow \infty$ since by (2.3) the expression in the bracket does not tend to zero as $r \rightarrow \infty$ This completes the proof of Theorem 2

Agnew [6] showed directly that, for $r>0$ the Cesáro and Riesz transforms $C_{r}(n), R_{r}(n)$ respectively of a given series $\sum a_{n}$ are equiconvergent i.e $C_{r}(n), R_{r}(n)$ exist for each n and

$$
r \xrightarrow{\operatorname{lm}} \infty\left(C_{r}(n)-R_{r}(n)\right)=0
$$

These concepts are applied to arithmetic summation methods (I) and ($D, h(n)$) for particular values of $h(n)$ by Jukes [7] He has found different conditions under which the equiconvergence of $\frac{6}{\pi^{2}}(I)$ and $\left(D, \frac{\mu^{2}(n)}{n}\right)$ have been established. The $\left(D, \frac{\mu^{2}(n)}{n}\right)$ and $\frac{6}{\pi^{2}}(I)$ transform are given by

$$
b_{n k}=\frac{k}{n} \sum_{r \leq \frac{n}{k}} \mu^{2}(r), \quad C_{n k}=\frac{6}{\pi^{2}} \frac{k}{n}\left[\frac{n}{k}\right]
$$

respectively Let $M_{2}=\lim _{n} \sup \sum k\left|\Delta\left(\frac{b_{n k}-c_{n k}}{k}\right)\right|$

$$
A_{2}=\lim _{n} \sup \left|\sum_{k=\infty}^{n} \frac{k a_{k}}{(n+1)}\right|
$$

THEOREM C [7] Tauherian constants M_{2} do not exist for comparisons of conservative matrices with non-conservative matrices

THEOREM D [7] The $\left(D, \frac{\mu^{2}(n)}{n}\right)$ and $6 / \pi^{2}(I)$ transform are not equiconvergent whenever $A_{2}<\infty$

We have proved (see Kuttner and Sukla [8]) that
THEOREM E. The $(D, h(n))$ is conservative if and only if $\sum_{n=1}^{\infty}|h(n)|<\infty \quad$ It is to note that if part of the above theorem was proved earlier by Jukes [9] See S. L. Segal, Math. Reviews 86e 11093 (May 1986, p 1864)

THEOREM 3. The $(D, h(n))$ and (I) are not equiconvergent whenever $A_{2}<\infty$ and $\sum|h(n)|<\infty$

PROOF. By Theorem C since (I) is not conservative and $(D, h(n))$ is conservative for $\left.\sum \mid h(n)\right) \mid<\infty$ whenever $A_{2}<\infty(D, h(n))$ and (I) are not equiconvergent

From Theorem E also we get that the following theorem of Jukes as corollaries
COROLLARY 1. The methods $\left(D, \frac{\mu(n)}{n}\right)$ and $\left(D, \frac{\lambda(n)}{n}\right)$ are not conservative
PROOF. Since $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}$ and $\sum_{n=1}^{\infty} \frac{\lambda(n)}{n}$ are not absolutely convergent So by Theorem 3 the result follows.

COROLLARY 2. $\left(D, \mu^{2}(n) / n\right)$ and $\left(D, \in \lambda(n) / \pi^{2}(n)\right)$ transforms are not equiconvergent whenever $A_{2}<\infty$.

ACKNOWLEDGMENT. We are thankful to the referee for his valuable suggestions for the improvement of the paper

REFERENCES

[1] INGHAM, A E, Some Tauberian theorems connected with prime number theorem, J. of London Math. Soc. 20 (1945), 171-80.
[2] SEGAL, S L , Summability by Dirichlet convolution roc, Camb. Phll. Soc. 63 (1967), 393-400
[3] SEGAL, S.L , On the Ingham summation methods, Canadian J. of Math. 18 (1966), 97-105
[4] SEGAL, S L., A second note on Ingham's summation methods, Canadıan Math. Bulletın 22 (1) (1979), 117-20.
[5] SUKLA, I.L., Limitation theorem for $(D, h(n))$ summability, J. of Indıan Math. Soc. 48 (1984), 101-105
[6] ANGEW, R.P, Equiconvergence of Cesare and Riesz transforms of series, Duke Math. J. 22 (1955), 451-60
[7] JUKES, K.A , Equiconvergence of matrix transformation, Proc. Amerı. Math. Soc. 69 (2) (1978), 261-70
[8] KUTTNER, B and SUKLA, I.L, On $(D, h(n))$ summability methods, Proc. Camb. Phil. Soc. 97 (1985), 189-93
[9] JUKES, K A , On the Ingham and $(D, h(n))$ summation methods, J. of London Math. Soc. (R) 3 (1971), 699-710

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

