THE NEUTRIX CONVOLUTION PRODUCT IN $Z^{\prime}(m)$ AND THE EXCHANGE FORMULA

C.K. L
Department of Mathematics \& Computer Science
University of Lethbridge
Lethbridge, Alberta, CANADA
e-mail: li@cs.uleth.ca

E.L. KOH
Department of Mathematics and Statistics University of Regina
Regina, Saskatchewan, CANADA
e-mail: elkoh@euclid.math.uregina.ca

(Received November 18, 1996 and in revised form February 28, 1997)

Abstract

One of the problems in distribution theory is the lack of definition for convolutions and products of distribution in general. In quantum theory and physics (see e.g. [1] and [2]), one finds that some convolutions and products such as $\frac{1}{x} \cdot \delta$ are in use. In [3], a definition for product of distributions and some results of products are given using a specific delta sequence $\delta_{n}(x)=C_{m} n^{m} \rho\left(n^{2} r^{2}\right)$ in an m-dimensional space. In this paper, we use the Fourier transform on $D^{\prime}(m)$ and the exchange formula to define convolutions of ultradistributions in $Z^{\prime}(m)$ in terms of products of distributions in $D^{\prime}(m)$. We prove a theorem which states that for arbitrary elements \tilde{f} and \tilde{g} in $Z^{\prime}(m)$, the neutrix convolution $\tilde{f} \otimes \tilde{g}$ exists in $Z^{\prime}(m)$ if and only if the product $f \circ g$ exists in $D^{\prime}(m)$. Some results of convolutions are obtained by employing the neutrix calculus given by van der Corput [4].

KEY WORDS AND PHRASES: Distributions, delta sequence, neutrix limit, convolution.
1991 AMS SUBJECT CLASSIFICATION CODES: Primary 46F12.

1. INTRODUCTION

In the following, let $\rho(x)$ be a fixed infinitely differentiable function with the properties
(i) $\rho(x)=0, \quad|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x)=\rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) d x=1$.

We define the function $\delta_{n}(x)$ by $\delta_{n}(x)=n \rho(n x)$ for $n=1,2, \cdots$. It is clear that $\left\{\delta_{n}\right\}$ is a sequence of infinitely differentiable functions converging to the Dirac delta-function δ.

Now let D be the space of infinitely differentiable functions with compact support. If f is an arbitrary distribution in D^{\prime}, we define the function f_{n} by $f_{n}=f * \delta_{n}$. It follows that $\left\{f_{n}\right\}$ is a sequence of infinitely differentiable functions converging to f.

The following definition was given by B. Fisher [5].
DEFINITION 1. Let f and g be distributions in D^{\prime} and let $g_{n}=g * \delta_{n}$. We say that the neutrix product $f \circ g$ of f and g exists and equals h if

$$
N-\lim _{n \rightarrow \infty}\left(f g_{n}, \phi\right)=(h, \phi)
$$

for all ϕ in D, where N is the neutrix (see van der Corput [4]) having domain $N^{\prime}=\{1,2, \cdots, n, \cdots\}$ and range $N^{\prime \prime}$ the real numbers with negligible functions finite linear sums of the functions

$$
n^{\lambda} \ell n^{r-1} n, \quad \ell n^{r} n(\lambda>0, r=1,2, \cdots)
$$

and all functions of n which converge to zero as n tends to infinity.

Let $D^{\prime}(m)$ be the space of distributions defined on the space $D(m)$ of infinitely differentiable functions of the variable $x=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ with compact support.

In order to give a definition for the neutrix product $f \circ g$ of two distributions f and g in $D^{\prime}(m)$, we attempt to define a δ-sequence in $D(m)$ by putting

$$
\delta_{n}\left(x_{1}, x_{2}, \cdots, x_{m}\right)=\delta_{n}\left(x_{1}\right) \cdots \delta_{n}\left(x_{m}\right)
$$

where δ_{n} is defined as above. However, this definition is very difficult to use for distributions in $D^{\prime}(m)$ which are functions of r, where $r=\left(x_{1}^{2}+\cdots+x_{m}^{2}\right)^{1 / 2}$. Therefore an alternative definition was introduced in [3].

From now on we let $\rho(s)$ be a fixed infinitely differentiable function defined on $R^{+}=[0, \infty)$ having the properties

$$
\text { (i) } \rho(s)=0, \quad s \geq 1, \quad \text { (ii) } \rho(s) \geq 0
$$

Define the function $\delta_{n}(x)$, with $x \in R^{m}$, by

$$
\delta_{n}(x)=C_{m} n^{m} \rho\left(n^{2} r^{2}\right)
$$

for $n=1,2, \cdots$, where C_{m} is a constant such that

$$
\int_{R^{m}} \delta_{n}(x) d x=1
$$

DEFINITION 2. Let f and g be distributions in $D^{\prime}(m)$ and let

$$
g_{n}(x)=\left(g * \delta_{n}\right)(x)=\left(g(x-t), \delta_{n}(t)\right)
$$

where $t=\left(t_{1}, t_{2}, \cdots, t_{m}\right)$. We say that the neutrix product $f \circ g$ of f and g exists and is equal to h on the open interval (a, b), where $a=\left(a_{1}, \cdots, a_{m}\right)$ and $b=\left(b_{1}, \cdots, b_{m}\right)$, if

$$
N-\lim _{n \rightarrow \infty}\left(f g_{n}, \phi\right)=(h, \phi)
$$

for all test functions ϕ is $D(m)$ with support contained in the interval (a, b).

2. FOURIER TRANSFORM ON $\boldsymbol{D}^{\prime}(\boldsymbol{m})$

As in Gel'fand and Shilov [6], we define the Fourier transform of a function ϕ in $D(m)$ by

$$
F(\phi)(\sigma)=\psi(\sigma)=\int_{R^{m}} \phi(x) e^{i(x, \sigma)} d x
$$

where (x, σ) denotes $x_{1} \sigma_{1}+\cdots+x_{m} \sigma_{m}$.
The bounded support of $\phi(x)$ makes it possible for ψ to be continued to complex values of its argument $s=\left(s_{1}, \cdots, s_{m}\right)=\left(\sigma_{1}+i \tau_{1}, \cdots, \sigma_{n}+i \tau_{m}\right)$:

$$
\psi(s)=\int_{R^{m}} \phi(x) e^{i(x, s)} d x
$$

Our new function $\psi(s)$, defined on C^{m}, in the space of functions of m complex variables, is continuous and analytic in each of its variable s_{k}. If $\phi(x)$ vanishes for $\left|x_{k}\right|>a_{k}, k=1, \cdots, m$, then $\psi(s)$ satisfies the inequality

$$
\begin{equation*}
\left|s_{1}^{q_{1}} \cdots s_{m}^{q_{m}} \psi\left(\sigma_{1}+i \tau_{1}, \cdots, \sigma_{m}+i \tau_{m}\right)\right| \leq C_{q} \exp \left(a_{1}\left|\tau_{1}\right|+\cdots+a_{m}\left|\tau_{m}\right|\right) \tag{1}
\end{equation*}
$$

Conversely, every entire function $\psi\left(s_{1}, \cdots, s_{m}\right)$ satisfying the above inequality is the Fourier transform of some $\phi\left(x_{1}, \cdots, x_{m}\right)$ in $D(m)$ which vanishes for $\left|x_{k}\right|>a_{k}, k=1,2, \cdots, m$.

The set of all entire analytic functions $Z(m)$ with the property (1) is in fact the space

$$
F(D(m))=\{\psi: \exists \phi \in D(m) \text { such that } F(\phi)=\psi\}
$$

Convergence in $Z(m)$ is defined via convergence in $D(m)$: a sequence $\left\{\psi_{n}\right\}$ tends to zero in $Z(m)$ if the sequence $\left\{\phi_{n}\right\}$ tends to zero in $D(m)$, where $F\left(\phi_{n}\right)=\psi_{n}$. The Fourier transform \tilde{f} of a distribution in $D^{\prime}(m)$ is an ultradistribution in $Z^{\prime}(m)$, i.e., a continuous linear functional on $Z(m)$. It is defined by Parseval's equation

$$
(\tilde{f}, \tilde{\phi})=2 \pi(f, \phi), \quad \phi \in D(m)
$$

3. CONVOLUTION IN $\boldsymbol{Z}^{\prime}(\boldsymbol{m})$

In order to define a convolution product in $Z^{\prime}(m)$, we introduce the Fourier transform $F\left(\delta_{n}\right)$ of δ_{n} (where $\delta_{n}(x)=C_{m} n^{m} \rho\left(n^{2} r^{2}\right)$) and write

$$
\tau_{n}(\sigma)=F\left(\delta_{n}\right)(\sigma)
$$

which is a function in $Z(m)$ for $n=1,2, \cdots$.
From Parseval's equation

$$
\begin{aligned}
\left(\tau_{n}, \psi\right)=2 \pi\left(\delta_{n}, \phi\right) \xrightarrow{n \rightarrow \infty} 2 \pi(\delta, \phi)=2 \pi \phi(0) & =2 \pi \frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(\sigma) d \sigma \\
& =(1, \psi)
\end{aligned}
$$

where $\psi=\tilde{\phi}$.
Therefore $\left\{\tau_{n}\right\}$ is a sequence in $Z(m) \subset Z^{\prime}(m)$ converging to 1 in $Z^{\prime}(m)$.
Now let \tilde{f} be an arbitrary ultradistribution in $Z^{\prime}(m)$. Then there exists a distribution f in $D^{\prime}(m)$ such that $\tilde{f}=F(f)$. Setting $\tilde{f}_{n}=F\left(f * \delta_{n}\right)=F\left(f_{n}\right)$, we have

$$
\left(\tilde{f}_{n}, \psi\right)=2 \pi\left(f_{n}, \phi\right) \rightarrow 2 \pi(f, \phi)=(\tilde{f}, \psi) \quad n \rightarrow \infty
$$

where $\psi=\tilde{\phi}$ in $Z(m)$.
LEMMA 1. Let \tilde{g} be an arbitrary ultradistribution in $Z^{\prime}(m)$ and let $\tilde{g}_{n}=F\left(g * \delta_{n}\right)$. Then the function

$$
\Theta_{n}(\nu)=\left(\tilde{g}_{n}(\sigma), \psi(\sigma+\nu)\right)
$$

is in $Z(m)$ for all ψ in $Z(m)$.
Indeed,

$$
\begin{aligned}
\Theta_{n}(\nu) & =\left(F\left(g_{n}\right), F\left(e^{i x \nu} \phi(x)\right)(\sigma)\right) \\
& =2 \pi\left(g_{n}, e^{i x \nu} \phi(x)\right)=2 \pi F\left(g_{n} \phi\right)(\nu)
\end{aligned}
$$

Now the result of the lemma follows on noting that $g_{n} \phi$ is in $D(m)$.
We now modify the definition for the convolution product of two distributions in $D^{\prime}(m)$ given by Gel'fand and Shilov with

DEFINITION 3. Let \tilde{f} and \tilde{g} be ultradistributions in $Z^{\prime}(m)$ such that the function $(\tilde{g}(\sigma), \psi(\sigma+\nu))$ is in $Z(m)$ for all ψ in $Z(m)$. Then the convolution product $\tilde{f} * \tilde{g}$ is defined by

$$
((\tilde{f} * \tilde{g})(\sigma), \psi(\sigma))=(\tilde{f}(\nu),(\tilde{g}(\sigma), \psi(\sigma+\nu)))
$$

for all ψ in $Z(m)$.
It follows that $\tilde{f} * \tilde{g}$ exists if $g \phi$ is in $D(m)$. (This condition is not always true for all $g \in D^{\prime}(m)$. If $\tilde{g} \in Z(m)$, then $g \phi \in D(m)$.) Indeed

$$
(\tilde{g}(\sigma), \psi(\sigma+\nu))=2 \pi\left(g, e^{i x \nu} \phi(x)\right)=2 \pi F(g \phi)(\nu)
$$

where $\tilde{g}=F(g)$ and $\psi=F(\phi)$.
The following theorem then holds:
THEOREM 1. Let \tilde{f} and \tilde{g} be ultradistributions in $Z^{\prime}(m)$ and suppose that the convolution product $\tilde{f} * \tilde{g}$ exists. Then

$$
\begin{align*}
& (\tilde{f} * \tilde{g})^{\prime}=\tilde{f} * \tilde{g}^{\prime}, \tag{2}\\
& (\tilde{f} * \tilde{g})^{\prime}=\tilde{f}^{\prime} * \tilde{g} . \tag{3}
\end{align*}
$$

PROOF. If $F(\phi)=\psi$, we have

$$
\psi^{\prime}(\sigma)=F(i x \phi(x))(\sigma) .
$$

Hence $Z^{\prime}(m)$ is closed under differentiation.
Certainly

$$
\begin{aligned}
\left((\tilde{f} * \tilde{g})^{\prime}, \psi\right) & =-\left(\tilde{f} * \tilde{g}, \psi^{\prime}\right)=-\left(\tilde{f}(\nu),\left(\tilde{g}(\sigma), \psi^{\prime}(\sigma+\nu)\right)\right) \\
& =\left(\tilde{f}(\nu),\left(\tilde{g}^{\prime}(\sigma), \psi(\sigma+\nu)\right)\right)=\left(\tilde{f} * \tilde{g}^{\prime}, \psi\right)
\end{aligned}
$$

for all ψ in $Z(m)$. Equation (2) follows.
From the fact that if $F(\phi)$, we get

$$
\psi^{\prime}(\sigma+\nu)=F\left(i x \phi(x) e^{i x \nu}\right)(\sigma) .
$$

It follows that

$$
\begin{aligned}
\left(\tilde{g}(\sigma), \psi^{\prime}(\sigma+\nu)\right) & =2 \pi\left(g(x), i x \phi(x) e^{i x \nu}\right) \\
& =2 \pi \frac{d}{d \nu}\left(g(x), \phi(x) e^{i x \nu}\right) \\
& =\frac{d}{d \nu}(\tilde{g}(\sigma), \psi(\sigma+\nu))
\end{aligned}
$$

Hence

$$
\left((\tilde{f} * \tilde{g})^{\prime}, \psi\right)=\left(\tilde{f}^{\prime}(\nu),(\tilde{g}(\sigma), \psi(\sigma+\nu))\right)=\left(\tilde{f}^{\prime} * \tilde{g}, \psi\right)
$$

for all ψ in $Z(m)$ and Equation (3) follows.
Note that $\tilde{f}^{\prime} \neq F\left(f^{\prime}\right)$ is general.
We now note that if \tilde{f} and \tilde{g} are arbitrary ultradistributions in $Z^{\prime}(m)$, then the convolution product $\tilde{f} * \tilde{g}_{n}$ always exists by the above definition (3) since by Lemma $1,\left(\tilde{g}_{n}(\sigma), \psi(\sigma+\nu)\right)$ is in $Z(m)$ for all ψ in $Z(m)$. This leads us to the following definition.

DEFINITION 4. Let \tilde{f} and \tilde{g} be ultradistributions in $Z^{\prime}(m)$ and let $\tilde{g}_{n}=\tilde{g} \tau_{n}$. Then the neutrix convolution product $\tilde{f} \otimes \tilde{g}$ is defined to be the neutrix limit of the sequence $\left\{\tilde{f} * \tilde{g}_{n}\right\}$, provided the neutrix limit \tilde{h} exists in the sense that

$$
N-\lim _{n \rightarrow \infty}\left(\tilde{f} * \tilde{g}_{n}, \psi\right)=(\tilde{h}, \psi) \quad \text { for all } \psi \text { in } Z(m)
$$

Definition 4 is indeed a generalization of Definition 3 , since if the convolution product $\tilde{f} * \tilde{g}$ exists by Definition 3, then $(\tilde{g}(\sigma), \psi(\sigma+\nu)) \in Z(m)$, i.e., $g \phi \in D(m)$ for all $\phi \in D(m)$. This implies $g \in C^{\infty}(m)$.

Therefore $\left(\tilde{g}_{n}(\sigma), \psi(\sigma+\nu)\right)=2 \pi F\left(g_{n} \phi\right)(\nu)$ converges to $(\tilde{g}(\sigma), \psi(\sigma+\nu))$ in $Z(m)$. This is because $g_{n} \phi \rightarrow \phi$ (if $f \in C^{\infty}$, then $f_{n} \phi$ (where $f_{n}=f * \delta_{n}$) converges to f_{ϕ} uniformly on the support of $\phi)$ in $D(m)$, and $N-\lim _{n \rightarrow \infty}\left(\tilde{f} * \tilde{g}_{n}, \psi\right)=(\tilde{f} * \tilde{g}, \psi)$ for all ψ in $Z(m)$.

The following theorem holds for the neutrix convolution product.
THEOREM 2. Let \tilde{f} and \tilde{g} be ultradistributions in $Z^{\prime}(m)$ and suppose that their neutrix convolution product exists. Then the neutrix convolution product $\tilde{f} \otimes \tilde{g}$ exists and

$$
(\tilde{f} \otimes \tilde{g})^{\prime}=\tilde{f}^{\prime} \otimes \tilde{g}
$$

PROOF. We have

$$
\left(\left(\tilde{f} * \tilde{g}_{n}\right)^{\prime}, \psi\right)=\left(\tilde{f}^{\prime} * \tilde{g}_{n}, \psi\right)=-\left(\tilde{f} * \tilde{g}_{n}, \psi^{\prime}\right)
$$

and it follows that

$$
N-\lim _{n \rightarrow \infty}\left(\tilde{f}^{\prime} * \tilde{g}_{n}, \psi\right)=-N-\lim _{n \rightarrow \infty}\left(\tilde{f} * \tilde{g}_{n}, \psi\right)=-\left(\tilde{f} \otimes \tilde{g}, \psi^{\prime}\right)
$$

for arbitrary ψ in $Z(m)$. The result of the theorem follows.
Note that $(\tilde{f} \otimes \tilde{g})^{\prime}=\tilde{f} \otimes \tilde{g}^{\prime}$ iff $N-\lim _{n \rightarrow \infty}\left(\tilde{f} *\left(\tilde{g} \tau_{n}\right), \psi\right)=0$ for all ψ in $Z(m)$.
We now prove our main result, the exchange formula.
THEOREM 3. Let \tilde{f} and \tilde{g} be ultradistributions in $Z^{\prime}(m)$. Then the neutrix convolution product $\tilde{f} \otimes \tilde{g}$ exists in $Z^{\prime}(m)$ iff the neutrix product $f \circ g$ exists in $D^{\prime}(m)$ and the exchange formula

$$
\tilde{f} \otimes \tilde{g}=2 \pi F(f \circ g)
$$

is then satisfied.
PROOF. Let $\psi=F(\phi)$ be an arbitrary function in $Z(m)$ and let

$$
\Theta_{n}(\nu)=\left(\tilde{g}_{n}(\sigma), \psi(\sigma+\nu)\right)=2 \pi F\left(g_{n} \phi\right)(\nu) .
$$

Then on using Parseval's equation we have

$$
\left(\tilde{f}(\nu), \Theta_{n}(\nu)\right)=2 \pi\left(\tilde{f}(\nu), F\left(g_{n} \phi\right)(\nu)\right)=(2 \pi)^{2}\left(f g_{n}, \phi\right) .
$$

If the neutrix convolution product $\tilde{f} \otimes \tilde{g}$ exists then

$$
\begin{aligned}
(\tilde{f} \otimes \tilde{g}, \phi) & =N-\lim _{n \rightarrow \infty}\left(\tilde{f}(\nu), \Theta_{n}(\nu)\right)=(2 \pi)^{2} N-\lim _{n \rightarrow \infty}\left(f g_{n}, \phi\right) \\
& =(2 \pi)^{2}(f \circ g, \phi)=2 \pi(F(f \circ g), F(\phi)) .
\end{aligned}
$$

The neutrix product $f \circ g$ therefore exists and the exchange formula is satisfied.
Conversely, the existence of the neutrix product $f \circ g$ implies the existence of the neutrix convolution product and the exchange formula.

4. SOME RESULTS

The following Fourier transforms of the functions r^{λ} and $\Delta^{k} \delta(x)$ were given in [6]

$$
F\left(r^{\lambda}\right)=2^{\lambda+m} \pi^{m / 2} \frac{\Gamma\left(\frac{\lambda+m}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)} \rho^{-\lambda-m}
$$

where $\lambda \neq-m,-m-2, \cdots$ and $\rho=\sqrt{\sum_{i=1}^{m} \sigma_{i}^{2}}$, and

$$
F\left[P\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{m}}\right) f(x)\right]=P\left(-i s_{1}, \cdots,-i s_{m}\right) F(f)
$$

Hence it follows that

$$
F\left(\Delta^{k} \delta(x)\right)=\rho^{2 k} F(\delta)=\rho^{2 k},
$$

where Δ denotes the Laplace operator.
THEOREM 4. The neutrix convolution products $\rho^{2 k-m} \otimes 1$ and $\rho^{2 k-1-m} \otimes 1$ exist and

$$
\rho^{2 k-m} \otimes 1=\frac{\Gamma(k) 2^{k-m+1} \rho^{2 k}}{\Gamma\left(\frac{m-2 k}{2 k}\right) \pi^{m / 2-1} k!m(m+2) \cdots(m+2 k-2)}
$$

for $k=1,2, \cdots,\left[\frac{(m-1)}{2}\right]$ and

$$
\rho^{2 k-1-m} \otimes 1=0
$$

for $k=1,2, \cdots,\left[\frac{m}{2}\right]$.
PROOF. We have the following neutrix product (see [3]),

$$
r^{-2 k} \cdot \delta(x)=\frac{\Delta^{k} \delta(x)}{2^{k} k!m(m+2) \cdots(m+2 k-2)}
$$

for $k=1,2, \cdots,\left[\frac{(m-1)}{2}\right]$ and

$$
r^{1-2 k} \cdot \delta(x)=0
$$

for $k=1,2, \cdots,\left[\frac{m}{2}\right]$.
By the exchange formula

$$
\begin{aligned}
F\left(r^{-2 k}\right) \otimes F(\delta) & =2 \pi F\left(r^{-2 k} \cdot \delta\right) \\
& =2 \pi \frac{F\left(\Delta^{k} \delta\right)}{2^{k} k!m(m+2) \cdots(m+2 k-2)} \\
& =2 \pi \frac{\rho^{2 k}}{2^{k} k!m(m+2) \cdots(m+2 k-2)} .
\end{aligned}
$$

Thus

$$
2^{-2 k+m} \pi^{m / 2} \frac{\Gamma\left(\frac{m-2}{2}\right)}{\Gamma\left(\frac{2 k}{2}\right)} \rho^{2 k-m} \otimes 1=\frac{2 \pi \rho^{2 k}}{2^{k} k!m(m+2) \cdots(m+2 k-2)} .
$$

It follows that

$$
\rho^{2 k-m} \otimes 1=\frac{\Gamma(k) 2^{k-m+1} \rho^{2 k}}{\Gamma\left(\frac{m-2 k}{2}\right) \pi^{m / 2-1} k!m(m+2) \cdots(m+2 k-2)} .
$$

The second equation follows easily.
The following neutrix product is also given in [3]

$$
r^{-2 k} \cdot \Delta \delta(x)=\frac{\Delta^{k+1} \delta(x)}{2^{k}(k+1)!(m+2) \cdots(m+2 k)}
$$

for $k=1,2, \cdots,\left[\frac{(m-1)}{2}\right]$ and

$$
r^{1-2 k} \cdot \Delta \delta(x)=0
$$

for $k=1,2, \cdots,\left[\frac{m}{2}\right]$.
Hence we obtain
THEOREM 5. The neutrix convolution product $\rho^{2 k-m} \otimes \rho^{2}$ and $\rho^{2 k-1-m} \otimes \rho^{2}$ exist and

$$
\rho^{2 k-m} \otimes \rho^{2}=\frac{\Gamma(k) 2^{k-m+1}}{\Gamma\left(\frac{m-2 k}{2}\right) \pi^{m / 2-1}(k+1)!(m+2) \cdots(m+2 k)}
$$

for $k=1,2, \cdots,\left[\frac{(m-1)}{2}\right]$ and

$$
\rho^{2 k-1-m} \otimes \rho^{2}=0
$$

for $k=1,2, \cdots,\left[\frac{m}{2}\right]$.
ACKNOWLEDGEMENT. This research is partially supported by the University of Lethbridge Research Fund.

REFERENCES

[1] BREMERMANN, J.H., Distributions, Complex Variables, and Fourier Transforms, AddisonWesley, Reading, Massachusetts, 1965.
[2] CHEN, Q.Y., A survey of the budding nonlinear theory of distributions (in Chinese), J. of Math., 1 (1981), 127-133.
[3] LI, C.K. and FISHER, B., Examples of the neutrix product of distributions on R^{m}, Rad. Mat., 6 (1990), no. 1, 129-137.
[4] VAN DER CORPUT, J.G., Introduction to the neutrix calculus, J. Analyse Math., 7 (1959-60), 291398.
[5] FISHER, B., On defining the convolution of distributions, Math. Nachr., 106 (1982), 261-269.
[6] GEL'FAND, I.M. and SHILOV, G.E., Generalized Functions I, Academic Press, New York, 1964.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

