COMMUTATIVITY RESULTS FOR SEMIPRIME RINGS WITH DERIVATIONS

MOHAMAD NAGY DAIF

Department of Mathematics Faculty of Science Al-Azhar University Nasr City 11884 Cairo, EGYPT

(Received March 8, 1996 and in revised form October 10, 1996)

ABSTRACT. We extend a result of Herstein concerning a derivation d on a prime ring R satisfying [d(x),d(y)] = 0 for all $x,y \in R$, to the case of semiprime rings. An extension of this result is proved for a two-sided ideal but is shown to be not true for a one-sided ideal. Some of our recent results dealing with U^{*}- and U^{**}- derivations on a prime ring are extended to semiprime rings. Finally, we obtain a result on semiprime rings for which d(xy) = d(yx) for all x,y in some ideal U.

KEY WORDS AND PHRASES: Semiprime ring, derivation, commutator, and central ideal. 1991 AMS SUBJECT CLASSIFICATION CODES: 16W25, 16U80, 16N60.

1. INTRODUCTION

In his note on derivations, Herstein [1] showed that if a prime ring R of characteristic not 2 admits a nonzero derivation d such that [d(x),d(y)] = 0 for all x,y in R, then R is commutative. Here, we give an easy but elegant extension of this result in the case when R is semiprime. Moreover, by making use of a more recent result of Bell and Martindale [2], we can get a more general theorem for a semiprime ring, which requires the condition [d(x),d(y)] = 0 to hold only on some ideal of R. We notice that a one-sided ideal would not work in this new theorem, the example given by Bell and Daif [3] is a counter-example.

Recently, Bell and Daif [3] introduced the notions of U*- and U**- derivations d on a prime ring R, where U is a nonzero right ideal of R. If d is a derivation on R such that d(x)d(y) + d(xy) =d(y)d(x) + d(yx) for all $x, y \in U$, we say that d is a U*- derivation; and if d(x)d(y) + d(yx) = d(y)d(x)+ d(xy) for all $x, y \in U$, we call d a U**- derivation. We proved that if d is a nonzero U*- or U**derivation, then either R is commutative or $d^2(U) = d(U)d(U) = \{0\}$. This result yielded a result of Bell and Kappe [4]. We also studied derivations d satisfying d(xy) = d(yx) for all $x, y \in U$. For formal reasons, we call d a U**- derivation if it satisfies this condition. In this note, we extend these results to the semiprime case. We will show for a nonzero U*- or U**- derivation d that d(U) centralizes [U,U]. In the event that U is a two-sided ideal, we show that R contains a nonzero central ideal. The same conclusion is obtained when R admits a U***- derivation which is nonzero on U.

For the ring R, Z will denote the center of R. For elements $x, y \in R$, the commutator xy - yx will be written as [x,y]; and for a subset U of R, the set of all commutators of elements of U will be written as [U,U]. We will make extensive use of the familiar commutator identities [x,yz] = y[x,z] + [x,y]z and [xy,z] = x[y,z] + [x,z]y.

M. N. DAIF

To achieve our purposes, we mention the following results.

- (A) [1, Theorem 1] Let R be any ring and d a derivation of R such that $d^3 \neq 0$. Then the subring of R generated by all d(r), $r \in R$, contains a nonzero ideal of R.
- (B) [2, Theorem 3] Let R be a semiprime ring and U a nonzero left ideal. If R admits a derivation d which is nonzero on U and centralizing on U, then R contains a nonzero central ideal.
- (C) [5, Lemma 1] Let R be a semiprime ring and U a nonzero two-sided ideal of R. If $x \in R$ and x centralizes [U,U], then x centralizes U.

2. EXTENSIONS OF HERSTEIN'S THEOREM

THEOREM 2.1. Let R be a semiprime ring and d a derivation of R with $d^3 \neq 0$. If [d(x),d(y)] = 0 for all $x,y \in R$, then R contains a nonzero central ideal.

PROOF. By (A), the subring generated by d(R) contains a nonzero ideal U of R. By our hypothesis, U is commutative; hence $U^2 \subseteq Z$. But R is semiprime, hence $U \neq \{0\}$ implies $U^2 \neq \{0\}$, which completes the proof.

Now we aim to extend the theorem of Herstein in the situation when the ring is semiprime and the condition [d(x),d(y)] = 0 is mercly satisfied on an ideal of the ring.

THEOREM 2.2. Let R be a two-torsion-free semiprime ring and U a nonzero two-sided ideal of R. If R admits a derivation d which is nonzero on U and [d(x),d(y)] = 0 for all $x,y \in U$, then R contains a nonzero central ideal.

PROOF. We are given that

$$[\mathbf{d}(\mathbf{x}),\mathbf{d}(\mathbf{y})] = 0 \text{ for all } \mathbf{x},\mathbf{y} \in \mathbf{U}.$$

$$(2.1)$$

Replacing y by yz, we therefore obtain

$$d(y)[d(x),z] + [d(x),y]d(z) = 0 \text{ for all } x,y,z \in U.$$
Putting $z = zr$ where $z \in U$ and $r \in R$, we now get
$$(2.2)$$

 $d(y)z[d(x),r] + [d(x),y]zd(r) = 0 \text{ for all } x,y,z \in U, r \in \mathbb{R}.$ (2.3) Now substitute $r = d(t), t \in U$, to get

$$[d(x),y]z d^{2}(t) = 0 \text{ for all } x,y,z,t \in U.$$
(2.4)

Let $\{P_{\alpha}: \alpha \in \Lambda\}$ be a family of prime ideals of R such that $\bigcap_{\alpha} P_{\alpha} = \{0\}$. Now (2.4) yields

 $[d(x),y]zRd^{2}(t) = \{0\}$ for all x,y,z,t $\in U$; hence for each P_{α} , we either have

(a) $[d(x),y]U \subseteq P_{\alpha}$ for all $x,y \in U$,

or

(b)
$$d^2(U) \subseteq P_{\alpha}$$
.

Call P_{α} an (a)-prime ideal or (b)-prime ideal according to which of these conditions is satisfied.

Note that $[d(x),y]RU \subseteq P_{\alpha}$ for each (a)-prime P_{α} , so either $[d(x),y] \in P_{\alpha}$ for all $x,y \in U$ or $U \subseteq P_{\alpha}$. In either event,

$$[d(x),y] \in P_{\alpha}$$
 for all $x,y \in U$ and all (a)-prime P_{α} . (2.5)

Now consider (b)-prime ideals. Taking $x,y \in U$, we have $d^2(xy) = d^2(x)y + xd^2(y) + 2d(x)d(y) \in P_{\alpha}$, so $2d(x)d(y) \in P_{\alpha}$ for all $x,y \in U$. Replacing y by zy shows that

472

$$2d(x)zd(y) \in P_a$$
 for all $x,y,z \in U;$ (2.6)

hence

$$2d(x)Rzd(y) \subseteq P_{\alpha}$$
 and $2d(x)zRd(y) \subseteq P_{\alpha}$ for all $x,y,z \in U$. (2.7)

It follows that either $d(U) \subseteq P_{\alpha}$, or 2d(x)y and $2yd(x) \in P_{\alpha}$ for all $x,y \in U$. In either case,

$$2[d(x),y] \in P_{\alpha} \text{ for all } x,y \in U \text{ and } (b)\text{-prime } P_{\alpha}.$$
(2.8)

Thus, for all $x, y \in U$ we have (by (2.5) and (2.8)) that $2[d(x), y] \in \bigcap_{\alpha} P_{\alpha} = \{0\}$; and since R is 2-torsionfree, [d(x), y] = 0 for all $x, y \in U$. In particular, [d(x), x] = 0 for all $x \in U$, so the theorem follows by (B).

REMARK. We notice that Theorem 2.2 is not true in the case when U is one-sided. Let R be the ring of all 2x2 matrices over a field F; let $U = \begin{bmatrix} i \\ i \\ i \end{bmatrix}^n R$. Let d be the inner derivation given by $d(x) = x \begin{bmatrix} i \\ i \\ i \end{bmatrix}^n = \begin{bmatrix} i \\ i \\ i \end{bmatrix}^n x$ for all $x \in R$. For any two elements x and y in U, we have that [d(x),d(y)] = 0, but the conclusion of the theorem is not true.

3. EXTENDING RESULTS ON U*- AND U**- DERIVATIONS

THEOREM 3.1. Let R be a semiprime ring and U a nonzero right ideal of R. If R admits a nonzero U*-derivation d, then d(U) centralizes [U,U].

PROOF. The condition that d is a U*- derivation yields

$$[d(x),d(y)] = [d(y),x] + [y,d(x)] \text{ for all } x,y \in U.$$
(3.1)

Proceeding exactly as in [3], we see that

$$[d(x),x]UR(d(x) + d^{2}(x)) = \{0\} \text{ for all } x \in U.$$
(3.2)

Since R is semiprime, it must have a family $\{P_{\alpha}: \alpha \in \Lambda\}$ of prime ideals such that $\bigcap_{\alpha} P_{\alpha} = \{0\}$. Let

P be a typical one of these. By (3.2) we see that for each $x \in U$, either $[d(x),x]U \subseteq P$ or $d(x) + d^2(x) \in P$. We now use the kind of argument employed in the proof of Theorem 2.2, in effect performing the calculations of [3] modulo P; we arrive at the conclusion that

either
$$d(U)U \subseteq P$$
 or $[x + d(x), R] \subseteq P$ for all $x \in U$. (3.3)

In the first case, we can again employ the argument of [3] modulo P, obtaining the result that

either
$$U \subseteq P$$
 or $[d(x),d(t)] \in P$ for all $x,t \in U$. (3.4)

Returning to the second possibility in (3.3), we assume that $[x + d(x), R] \subseteq P$. We then have $[x,d(t)] + [d(x),d(t)] \in P$ for all $x,t \in U$. But from (3.1) we have [d(x),d(t)] + [x,d(t)] = [t,d(x)], hence we have

$$[t,d(x)] \in P \text{ for all } x,t \in U.$$

$$(3.5)$$
Putting t = td(y) and using (3.5), we get

$$[d(y),d(x)] \in P \text{ for all } x,y,t \in U.$$
(3.6)

From (3.6) we have $UR[d(y),d(x)] \subseteq P$ for all $x,y \in U$. Consequently, either $U \subseteq P$ or $[d(x),d(t)] \in P$ for all $x,t \in U$, which are the same alternatives as in (3.4).

If we consider the case $U \subseteq P$, then from (3.1) we get $[d(x),d(t)] \in P$ for all $x,t \in U$. Therefore, we always have $[d(x),d(t)] \in P$ for all $x,t \in U$. Now using the fact that $\bigcap_{\alpha} P_{\alpha} = \{0\}$, we conclude that [d(x),d(t)] = 0 for all $x,t \in U$. From our hypothesis, we have d(xt) = d(tx) for all $x,t \in U$. This means that d([x,t]) = 0 for all $x,t \in U$. But d([x,t]z) = d(z[x,t]), hence [x,t]d(z) = d(z)[x,t] for all $x,z,t \in U$. Thus d(U) centralizes [U,U] as required.

Similar conclusions as in the proof of Theorem 3.1 lead us to the same conclusion in the case that d is a U^{**} - derivation. Therefore, we have

THEOREM 3.2. Let R be a semiprime ring and U a nonzero right ideal of R. If R admits a nonzero U^{**}- derivation, then d(U) centralizes [U,U].

COROLLARY. Let R be a semiprime ring and U a nonzero two-sided ideal of R. If R admits a U*- or U**- derivation d which is nonzero on U, then R contains a nonzero central ideal.

PROOF. By Theorems 3.1 and 3.2, d(U) centralizes [U,U]. By (C), we get that d(U) centralizes U. The result now follows by (B).

THEOREM 3.3. Let R be a semiprime ring and U a nonzero two-sided ideal of R. If R admits a U***- derivation d which is nonzero on U, then R contains a nonzero central ideal.

PROOF. Since d(xy) = d(yx) for all $x,y \in U$, the argument at the end of the proof of Theorem 3.1 shows that d(U) centralizes [U,U]. The result now follows as in the proof of the Corollary.

ACKNOWLEDGEMENT. I am truly indebted to Prof. Howard E. Bell for his sincere suggestions and great help which made the paper in its present form.

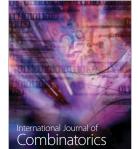
REFERENCES

- [1] HERSTEIN, I. N., "A note on derivations," Canad. Math. Bull. 21(1978), 369-370.
- [2] BELL, H. E. and MARTINDALE, W. S. III, "Centralizing mappings of semiprime rings," Canad. Math. Bull. 30(1987), 92-101.
- [3] BELL, H. E. and DAIF, M. N., " On derivations and commutativity in prime rings," Acta Math. Hungar. 66(4)(1995), 337-343.
- [4] BELL, H. E. and KAPPE, L. C., "Rings in which derivations satisfy certain algebraic conditions," Acta Math. Hungar. 53(1989), 339-346.
- [5] DAIF, M. N. and BELL, H. E., "Remarks on derivations on semiprime rings," Internat. J. Math. & Math. Sci. 15(1992), 205-206.

474

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

