WEAK CONVERGENCE THEOREM FOR PASSTY TYPE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

B. K. SHARMA, B. S. THAKUR, and Y. J. CHO

(Received 14 March 1996 and in revised form 18 August 1997)

Abstract

In this paper, we prove a convergence theorem for Passty type asymptotically nonexpansive mappings in a uniformly convex Banach space with Fréchet-differentiable norm.

Keywords and phrases. Iteration process, asymptotically nonexpansive mapping, uniformly convex Banach space, Fréchet-differentiable norm, fixed point.

1991 Mathematics Subject Classification. 47H09, 47H10.

1. Introduction. In 1972, Goebel and Kirk [3] introduced the class of asymptotically nonexpansive mappings and proved that every asymptotically nonexpansive self-mapping of a nonempty closed, bounded, and convex subset of a uniformly convex Banach space has a fixed point. After the existence theorem of Goebel and Kirk [3] several authors ($[4,8]$) have shown interest in iterative construction of a fixed point of asymptotically nonexpansive mappings in uniformly convex Banach space. In these papers, Opial's condition [5] was a common tool for such construction.
Now, if we consider a space of type $L_{p}, p \neq 2$, then we find that Opial's condition fails to operate in it. Obviously, new techniques are needed for this more general case. These techniques were provided by Baillon [1] and simplified by Bruck [2], when the norm is Fréchet-differentiable, a property which is shared by both l_{p} and L_{p} spaces for $p \in(1,+\infty)$.
On the other hand, the concept of asymptotically nonexpansive mapping was further extended by Passty [6] to the sequence of mappings which are not necessarily the powers of a given mapping. He has shown that if E has a Fréchet-differentiable norm and if T_{n} is weakly continuous, then a fixed point of T_{n} can be obtained by iterating T_{n} starting at a point of asymptotic regularity.
In this paper, we prove that the sequence

$$
\begin{equation*}
x_{n+1}=\alpha_{n} T_{n}\left(x_{n}\right)+\left(1-\alpha_{n}\right) x_{n} \tag{1}
\end{equation*}
$$

of Mann type iteration process converges weakly to some fixed point of T_{n}. Here T_{n} is a Passty type asymptotically nonexpansive mapping defined in a uniformly convex Banach space equipped with Fréchet-differentiable norm. We emphasis that no asymptotic regularity condition is posed on T_{n}. Our result extends and generalizes the results of Passty [6], Xu [8], and others.
2. Preliminaries. Before presenting our main results of this section, we need the following:

Definition 1. A normed space $(E,\|\cdot\|)$ is said to be uniformly convex if for each $\epsilon>0$, there exists a $\delta>0$ such that if $x, y \in E$ with $\|x\|,\|y\|<1$ and $\|x-y\| \geq \epsilon$, it follows that $\|x+y\| \leq 2(1-\delta)$.

DEFinition 2 ([6]). The sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ of self-mapping of a nonempty subset K of a normed space $(E,\|\cdot\|)$ is said to be asymptotically nonexpansive if

$$
\begin{equation*}
\left\|T_{n} x-T_{n} y\right\| \leq k_{n}\|x-y\| \tag{2}
\end{equation*}
$$

for all x, y in K with $\lim _{n \rightarrow \infty} k_{n}=1$, where $\left\{k_{n}\right\} \in[1,+\infty)^{N}$.
For abbreviation, we denote the set of fixed points of T by $\operatorname{Fix}(T)$, the strong convergence by \rightarrow, and the weak convergence by \xrightarrow{w}, respectively.
We use the following lemmas to prove our main result.
Lemma 1 ([7, Lem. 1.1]). Let $(E,\|\cdot\|)$ be a normed space. Let K be a nonempty and bounded subset of $E,\left\{k_{n}\right\} \in[1,+\infty)^{N}$ with $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<+\infty$ and $T_{n}: K \rightarrow K$ be Lipschitzian with respect to k_{n} for each $n \in N$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists for each $x \in \bigcap_{n \in N} \operatorname{Fix}\left(T_{n}\right)$.

Lemma 2 ([7, Lem. 1.3]). Let $(E,\|\cdot\|)$ be a uniformly convex Banach space with Fréchet-differentiable norm. Let K be a nonempty, bounded, closed and convex subset of $E,\left\{k_{n}\right\} \in[1,+\infty)^{N}$ with $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<+\infty$ and $T_{n}: K \rightarrow K$ be Lipschitzian with respect to k_{n} for each $n \in N$. Suppose that $\left\{x_{n}\right\}$ is given by $x_{1} \in K$ and $x_{n+1}=T_{n} x_{n}$ for all $n \in N$. Then $\lim _{n \rightarrow \infty} J_{E}\left(y_{1}-y_{2}\right)\left(x_{n}\right)$ exists for all $y_{1}, y_{2} \in \bigcap_{n=N} \operatorname{Fix}\left(T_{n}\right)$, where $J_{E}: E \rightarrow 2^{E^{*}}$ denotes the normalized duality mapping, i.e.,

$$
\begin{equation*}
J_{E}(x):=\left\{u \in E^{*} \mid u(x)=\|u\|\|x\| \text { and }\|u\|=\|x\|\right\} \tag{3}
\end{equation*}
$$

for all $x \in E$ and, also, $\left(J_{E} u, u\right)=\|u\|^{2}=\left\|J_{E} u\right\|^{2}$ for all $u \in E$.
Now, we give our main result:
Theorem 3. Let $(E,\|\cdot\|)$ be a uniformly convex Banach space with Fréchet-differentiable norm and K be a nonempty, closed, and convex subset of E. Let F be a subset of K and $S=\left\{T_{n}\right\}_{n=1}^{\infty}$ be an asymptotically nonexpansive sequence of self-mappings of K such that

$$
\begin{equation*}
F \subset \bigcap_{n \in N} \operatorname{Fix}\left(T_{n}\right) \text { for a sequence }\left\{k_{n}\right\} \in[1,+\infty)^{N} \text { with } \sum_{n=1}^{\infty}\left(k_{n}-1\right)<+\infty \text {. } \tag{4}
\end{equation*}
$$

Suppose that $\left\{\alpha_{n}\right\} \in[0,1]$ and $\epsilon \leq \alpha_{n} \leq 1-\epsilon$ for all $n \in N$ and some $\epsilon>0$. Assume, also, that there exists a sequence $\left\{x_{n}\right\}$ in K given by $x_{1} \in K$ and

$$
\begin{equation*}
x_{n+1}=\alpha_{n} T_{n}\left(x_{n}\right)+\left(1-\alpha_{n}\right) x_{n} \tag{5}
\end{equation*}
$$

for all $n \in N$, for which

$$
\begin{equation*}
x_{n_{i}} \xrightarrow{w} z \text { implies } z \in F . \tag{6}
\end{equation*}
$$

Then either
(i) $F=\varnothing$ and $\left\|x_{n}\right\| \longrightarrow+\infty$ or
(ii) $F \neq \varnothing$ and $x_{n} \xrightarrow{w}$ an element of F.

Proof. Suppose that some subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ defined by (5) is bounded. Since E is reflexive (every uniformly convex Banach space is reflexive), the subsequence $\left\{x_{n_{i}}\right\}$ must converge weakly to an element $z \in E$ and, hence, $z \in F$ by (6). Thus, $F=\varnothing$ implies $\left\|x_{n}\right\| \rightarrow+\infty$.
On the other hand, if $F \neq \varnothing$, then there is some $y_{0} \in F$ and, by Lemma 1 , $\left\{\| x_{n}-\right.$ $\left.y_{0} \|\right\}$ is bounded, say, by R. Let $C=\left\{x \in K \mid\left\|x-y_{0}\right\| \leq R\right\}$. Then C is closed, convex, bounded, and nonempty. Furthermore, $x_{n} \in C$ for all $n \in N$. In order to apply Lemma 2, we define

$$
\begin{equation*}
U_{n}=\alpha_{n} T_{n}+\left(1-\alpha_{n}\right) I \tag{7}
\end{equation*}
$$

for all $n \in N$ where I denotes the identity mapping. Then $U_{n}(C) \subset C$ for all $n \in N$ because C is convex and $T_{n}(C) \subset C$. Additionally, we have

$$
\begin{align*}
\left\|U_{n} x-U_{n} y\right\| & \leq \alpha_{n}\left\|T_{n} x-T_{n} y\right\|+\left(1-\alpha_{n}\right)\|x-y\| \\
& \leq\left[\alpha_{n} k_{n}+\left(1-\alpha_{n}\right)\right]\|x-y\| \tag{8}\\
& \leq k_{n}\|x-y\|
\end{align*}
$$

for all $n \in N$ and $x, y \in C$. Furthermore,

$$
\begin{equation*}
x_{n+1}=U_{n} x_{n} \tag{9}
\end{equation*}
$$

for all $n \in N$ and

$$
\begin{equation*}
\bigcap_{n \in N} \operatorname{Fix}\left(T_{n}\right)=\bigcap_{n \in N} \operatorname{Fix}\left(U_{n}\right) \tag{10}
\end{equation*}
$$

because $\operatorname{Fix}\left(U_{n}\right)=\operatorname{Fix}\left(T_{n}\right)$ for all $n \in N$. Lemma 2 shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{E}\left(y_{1}-y_{2}\right)\left(x_{n}\right) \tag{11}
\end{equation*}
$$

exists for all $y_{1}, y_{2} \in F$ and so, if z_{1} and z_{2} are two weak subsequential limits of $\left\{x_{n}\right\}$, then $J_{E}\left(y_{1}-y_{2}\right)\left(z_{1}-z_{2}\right)=0$. By (6), z_{1} and z_{2} are in F. Thus, we may take $y_{i}=z_{i}$ for $i=1,2$ and so

$$
\begin{equation*}
0=J_{E}\left(z_{1}-z_{2}\right)\left(z_{1}-z_{2}\right)=\left\|z_{1}-z_{2}\right\|^{2} . \tag{12}
\end{equation*}
$$

Since all weak subsequential limits of bounded sequence $\left\{x_{n}\right\}$ are, thus, equal, $\left\{x_{n}\right\}$ must converge weakly to an element of F. This completes the proof.

References

[1] J. B. Baillon, Ph.D. thesis, Université de Paris.
[2] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), no. 2-3, 107-116. MR 80j:47066. Zbl 423.47024.
[3] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. MR 45 7552. Zbl 256.47045.
[4] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolin. 30 (1989), no. 2, 249252. MR 90g:47097. Zbl 686.47045.
[5] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. MR 35\#2183. Zbl 179.19902.
[6] G. B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), no. 2, 212-216. MR 83a:47065. Zbl 489.47035.
[7] J. Schu, Weak convergence to fixed point of asymptotically nonexpansive mappings in uniformaly convex Banach spaces with a Fréchet-differentiable norm, RWTH Aachen, Preprint in Lehrstuhl C für mathematik no.21,1990.
[8] H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), no. 12, 1139-1146. MR 92h:47089. Zbl 747.47041.

Sharma and Thakur: School of Studies in Mathematics, Pt. Ravishankar Shukla UniVERSITY, RAIPUR 492010, IndiA

Cho: Department of Mathematics, Gyeongsang national University, Chinju 660-701, Korea

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

