FIXED POINTS OF ROTATIONS OF *n*-SPHERE

NAGABHUSHANA PRABHU

(Received 18 May 1992)

ABSTRACT. We show that every rotation of an even-dimensional sphere must have a fixed point.

Keywords and phrases. Fixed point, eigenvalue.

1991 Mathematics Subject Classification. 51F10, 51F25, 51M04, 15A18.

The curious "Hairy Ball Theorem" [1] states that *there are no continuous nonvanishing vector fields tangent to the 2k-dimensional sphere* S^{2k} . Hairy Ball Theorem, however, is false for S^{2k-1} (easy to verify), which shows that one can geometrically determine the parity of *n* in S^n .

Here is another geometric and simpler asymmetry between spheres of odd and even dimensions:

THEOREM 1. Every rotation of S^{2n} has at least one fixed point.

Once again, as an example below illustrates, one can construct rotations of S^{2n-1} that have no fixed point.

PROOF. Rotation in \mathbb{R}^k is a linear transformation that preserves distance from the origin. Thus, if *A* denotes the transformation matrix, then for every $x \in \mathbb{R}^k$,

$$\boldsymbol{x}^T \boldsymbol{x} = (A\boldsymbol{x})^T A \boldsymbol{x} = \boldsymbol{x}^T A^T A \boldsymbol{x},\tag{1}$$

which implies that $A^T A = I$ or $A^{-1} = A^T$ (i.e., A is an orthogonal matrix). $A^{-1} = A^T$ implies that det $(A) = \pm 1$. But rotation is a continuous transformation and hence one can find a continuous chain of matrices M(t) such that M(0) = I and M(1) = A and each M(t), $0 \le t < 1$, represents a rotation. $f(t) = \det(M(t))$ is a continuous function of t with f(0) = 1. If f(1) = -1, by intermediate value theorem f(t') = 0 for 0 < t' < 1, which contradicts the assumption that M(t') represents a rotation and is therefore nonsingular. Hence, $\det(A) = +1$ (orthogonal matrices with negative determinant represent reflection). $S^{2n} \subset \mathbb{R}^{2n+1}$. Hence, if A represents a rotation in \mathbb{R}^{2n+1} , then A is an order 2n + 1 matrix. The characteristic polynomial $P(x) = \det(A - xI)$ is hence of degree 2n + 1. Complex roots of P(x) (if any) occur in conjugate pairs. Hence, P(x) has at least one real root. Further, since the determinant of A is the product of its eigenvalues, the product of the roots of P(x) equals +1. The product of a pair of complex conjugates is always nonnegative and hence A must have an even number of negative eigenvalues (counting multiplicity). Since P(x) has 2n + 1 roots in all (counting multiplicity), it has at least one positive eigenvalue, say λ ; the eigenvector γ of λ is real.

$$(Ay)^T Ay = \lambda^2 y^T y = y^T y, \tag{2}$$

which implies that $\lambda = +1$ and Ay = y. Hence, y is a fixed point of the rotation A. \Box

Next, consider the following rotation of $S^{2n-1} \subset \mathbb{R}^{2n}$

$$B(\phi_{1},...,\phi_{n}) = \begin{bmatrix} \cos\phi_{1} & -\sin\phi_{1} & & \\ \sin\phi_{1} & \cos\phi_{1} & & \\ & & \ddots & \\ & & & \cos\phi_{n} & -\sin\phi_{n} \\ & & & & \sin\phi_{n} & \cos\phi_{n} \end{bmatrix}$$
(3)

with $0 < \phi_1, ..., \phi_n < \pi/2$. The eigenvalues of *B* are $e^{\pm i\phi_1}, ..., e^{\pm i\phi_n}$, none of which is real for $0 < \phi_1, ..., \phi_n < \pi/2$. Since +1 is not an eigenvalue of *B*, the rotation *B* cannot have any fixed points.

References

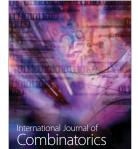
[1] J. Milnor, Analytic proofs of the "hairy ball theorem" and the Brouwer fixed-point theorem, Amer. Math. Monthly **85** (1978), 521–524. MR 80m:55001. Zbl 386.55001.

PRABHU: PURDUE UNIVERSITY, GRISSOM HALL, WEST LAFAYETTE, IN 47907, USA

222

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

