CONVEX AND STARLIKE CRITERIA

HERB SILVERMAN

(Received 30 April 1997)

Abstract

We investigate an expression involving the quotient of the analytic representations of convex and starlike functions. Sufficient conditions are found for functions to be starlike of a positive order and convex.

Keywords and phrases. Univalent, starlike, convex.
1991 Mathematics Subject Classification. 30C45.

1. Introduction. Let S denote the class of functions f normalized by $f(0)=f^{\prime}(0)-$ $1=0$ that are analytic and univalent in the unit disk $\Delta=\{z:|z|<1\}$. A function f in S is said to be starlike of order $\alpha, 0 \leq \alpha<1$, and is denoted by $S^{*}(\alpha)$ if $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha, z \in \Delta$, and is said to be convex and is denoted by K if $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0, z \in \Delta$. Mocanu [9] studied linear combinations of the representations of convex and starlike functions and defined the class of α-convex functions. In [8], it was shown that if

$$
\begin{equation*}
\operatorname{Re}\left[\alpha\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)+(1-\alpha) z f^{\prime}(z) / f(z)\right]>0 \tag{1.1}
\end{equation*}
$$

for $z \in \Delta$, then f is starlike for α real and convex for $\alpha \geq 1$.
In this note, we investigate the properties of functions defined in terms of the quotient of the analytic representations of convex and starlike functions. In particular, we consider the class G_{b} consisting of normalized functions f defined by

$$
\begin{equation*}
G_{b}=\left\{f:\left|\left(\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}\right)-1\right|<b, z \in \Delta\right\} \tag{1.2}
\end{equation*}
$$

We determine sharp values of b for which $G_{b} \subset S^{*}(\alpha), 1 / 2 \leq \alpha<1$, and also find values of b for which $G_{b} \subset K$. It is known $([7,10])$ that $K \subset S^{*}(1 / 2)$. We show that $G_{1} \subset$ $S^{*}(1 / 2)-K$. We also find values of b for which G_{b} is not starlike and not univalent.

We make use of the following lemma obtained by Jack in [4].
Lemma A. Suppose ω is analytic for $|z| \leq r, \omega(0)=0$ and $\left|\omega\left(z_{0}\right)\right|=\max _{|z|=r}|\omega(z)|$. Then $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right), k \geq 1$.

2. Main results

THEOREM 1. If $0<b \leq 1$ and G_{b} is defined by (1.2), then $G_{b} \subset S^{*}(2 /(1+\sqrt{1+8 b}))$. The result is sharp for all b.

We prove this theorem in an equivalent form, which we write as

Theorem 1a. Set $b=(1-\alpha) / 2 \alpha^{2}, 1 / 2 \leq \alpha<1$. Then $G_{b} \subset S^{*}(\alpha)$, with extremal function $z /(1-z)^{2(1-\alpha)}$.

Proof of Theorem 1a. It is well known that if $\omega(z)$ is analytic in Δ with $\omega(0)=$ 0 , then $\operatorname{Re}\left(\frac{1+(1-2 \alpha) \omega(z)}{1-\omega(z)}\right)>\alpha, z \in \Delta$, if and only if $\omega(z)$ is a Schwarz function, i.e., $|\omega(z)|<1$ for $z \in \Delta$ with $\omega(0)=0$. Set

$$
\begin{equation*}
p(z)=\frac{z f^{\prime}(z)}{f(z)}=\frac{1+(1-2 \alpha) \omega(z)}{1-w(z)} \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}\right)-1\right|=\left|\frac{z p^{\prime}(z)}{(p(z))^{2}}\right|=\left|\frac{2(1-\alpha) z \omega^{\prime}(z)}{(1+(1-2 \alpha) \omega(z))^{2}}\right| . \tag{2.3}
\end{equation*}
$$

If $f \notin S^{*}(\alpha)$, then by Lemma A there is a $z_{0} \in \Delta$ for which $\left|\omega\left(z_{0}\right)\right|=1$ and $z_{0} \omega^{\prime}\left(z_{0}\right) \geq$ $\omega\left(z_{0}\right)$. It then follows from (2.3) that $\left|\frac{z_{0} p^{\prime}\left(z_{0}\right)}{\left(p\left(z_{0}\right)\right)^{2}}\right| \geq \frac{2(1-\alpha)}{(2 \alpha)^{2}}$ which contradicts our hypothesis. This completes the proof.

Corollary 1. $G_{1} \subset S^{*}(1 / 2)$.
Proof. Set $b=1$ in Theorem 1 .
Corollary 2. If $\operatorname{Re}\left(\frac{z f^{\prime}(z) / f(z)}{1+z f^{\prime \prime}(z) / f^{\prime}(z)}\right)>1 / 2$ for $z \in \Delta$, then $f \in S^{*}(1 / 2)$.
Proof. This follows from Corollary 1 upon noting that for any complex value w, $|w-1|<1 \Leftrightarrow \operatorname{Re}(1 / w)>1 / 2$.

We next give a partial converse to Corollary 1.
Theorem 2. If $f \in S^{*}(1 / 2)$, then $\left|\left(\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}\right)-1\right|<1$ for $|z|<(2 \sqrt{3}-3)^{1 / 2}=$ $0.68 \ldots$. The result is sharp.

Proof. Set $\left.p(z)=z f^{\prime}(z) / f\right)(z)=1 /(1-\omega(z))$, where $\omega(z)$ is a Schwarz function. We need to find the largest disk $|z|<R$ for which $\left.\mid z p^{\prime}(z) / p(z)\right)^{2}\left|=\left|z \omega^{\prime}(z)\right|<1\right.$. Dieudonné [2] found the region of values for the derivative of Schwarz functions. This led to the sharp bound [3],

$$
\left|\omega^{\prime}(z)\right| \leq\left\{\begin{array}{l}
1, \quad r=|z| \leq \sqrt{2}-1 \tag{2.4}\\
\frac{\left(1+r^{2}\right)^{2}}{4 r\left(1-r^{2}\right)}, \quad r \geq \sqrt{2}-1
\end{array}\right.
$$

Since $\left|z \omega^{\prime}(z)\right| \leq\left(1+r^{2}\right)^{2} / 4\left(1-r^{2}\right)=1$ for $r=(2 \sqrt{3}-3)^{1 / 2}$, the proof is complete.
3. A counterexample. The extreme points of the closed convex hull of convex functions and functions starlike of order $1 / 2$ are identical. See [1]. Since $G_{1} \subset S^{*}(1 / 2)$, one might, also, expect to have $G_{1} \subset K$. Surprisingly, this is not the case. We now construct a function $f \in G_{1}-K$.

Theorem 3. $G_{1} \not \subset K$.
Proof. $G_{1} \subset S^{*}(1 / 2)$. Any of $f \in G_{1}$ satisfies $z f^{\prime}(z) / f(z)=1 /(1-\omega(z))$ for some Schwarz function $\omega(z)$. Setting $\alpha=1 / 2$ in (2.3), we see that $f \in G_{1} \Leftrightarrow\left|z \omega^{\prime}(z)\right|<1$ for $z \in \Delta$, which means that $z \omega^{\prime}(z)$ must, also, be a Schwarz function. Since $1+$ $z f^{\prime \prime}(z) / f(z)=\left(1+z \omega^{\prime}(z)\right) /(1-\omega(z))$, it suffices to construct a Schwarz function $\Omega(z)=z \omega^{\prime}(z)$ for which

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1+\Omega(z)}{1-\omega(z)}\right\}<0 \tag{3.1}
\end{equation*}
$$

at some point $z \in \bar{\Delta}$. Let

$$
\begin{equation*}
A=\left\{z \in \Delta:\left|z-z_{0}\right|<10^{-5}, z_{0}=e^{\pi i / 4}=e^{i \theta_{0}}\right\} \tag{3.2}
\end{equation*}
$$

and set

$$
\begin{equation*}
\phi(z)=\left(z_{0}+\bar{z}_{0}\right)\left[\left(1-\bar{z}_{0} z\right)^{1 / N}-1\right], \tag{3.3}
\end{equation*}
$$

where N is large enough so that $|\phi(z) / z|<10^{-4}$ for $z \in \Delta-A$ and $|\operatorname{Im} \phi(z)|<10^{-8}$ for $z \in A$. Define Ω by $\Omega(z)=0.9999(z+\phi(z))$.
We first show that $\Omega(z)$ (and, consequently, $\omega(z)$) is a Schwarz function and then show that inequality (3.1) holds when $z=z_{0}$.
If

$$
\begin{equation*}
z \in \Delta-A \tag{3.4}
\end{equation*}
$$

then

$$
\begin{equation*}
|\Omega(z)| \leq 0.9999(|z|+|\phi(z)|) \leq 0.9999(1.0001)<1 \tag{3.5}
\end{equation*}
$$

If $z \in A$, set $z=z_{0}-\epsilon e^{i \beta}, 0<\epsilon<10^{-5}$, and note that $-2 \cos \theta_{0} \leq \operatorname{Re} \phi(z) \leq 0$. If $\operatorname{Re}(z+\phi(z)) \geq 0$, then $|z+\operatorname{Re} \phi(z)| \leq|z|<1$. If $\operatorname{Re}(z+\phi(z))<0$, then

$$
\begin{equation*}
|z+\operatorname{Re} \phi(z)| \leq \sqrt{\left(\cos \theta_{0}+\epsilon\right)^{2}+\left(\sin \theta_{0}+\epsilon\right)^{2}}<\sqrt{1+4 \epsilon}<1+2 \epsilon<1.0001 \tag{3.6}
\end{equation*}
$$

Thus, if $z \in A$,

$$
\begin{equation*}
|\Omega(z)| \leq 0.9999|z+\operatorname{Re} \phi(z)|+|\operatorname{Im} \phi(z)|<0.9999(1.0001)+10^{-8}=1 . \tag{3.7}
\end{equation*}
$$

Therefore, $\Omega(z)$ is a Schwarz function.
We now show that (3.1) holds at $z=z_{0}$ for this choice of $\Omega(z)$. Since

$$
\begin{equation*}
\left|\frac{\Omega(z)}{z}-1\right|=\left|\omega^{\prime}(z)-1\right|<0.0002 \text { for } z \in \Delta-A \tag{3.8}
\end{equation*}
$$

we may write $\omega(z)=z+\eta(z)$, where $|\eta(z)|<0.0003$ for $z \in A$. Note that

$$
\begin{align*}
\left(\left|1-\omega\left(z_{0}\right)\right|^{2}\right) \operatorname{Re}\left(\frac{1+\Omega\left(z_{0}\right)}{1-\Omega\left(z_{0}\right)}\right) & =\operatorname{Re}\left\{\left(1-\Omega\left(z_{0}\right)\right)\left(1+\overline{\omega\left(z_{0}\right)}\right)\right\} \\
& =\operatorname{Re}\left\{\left(1-0.9999 \bar{z}_{0}\right)\left(1-\bar{z}_{0}-\overline{\eta\left(z_{0}\right)}\right)\right\} \tag{3.9}\\
& \leq 1-1.9999 \cos \theta_{0}+0.9999 \cos 2 \theta_{0}+2\left|\eta\left(z_{0}\right)\right| \\
& <1-1.9999 \cos (\pi / 4)+0.0006<0 .
\end{align*}
$$

Hence, the function f for which $1+z f^{\prime \prime}(z) / f^{\prime}(z)=(1+\Omega(z)) /(1-\omega(z))$ must be in $G_{1}-K$.
4. Convexity. Since $G_{1} \not \subset K$, we can ask if $G_{b} \subset K$ for some $b<1$. In general, $S^{*}(\alpha) \not \subset K$ even for α arbitrary close to 1 (b close to 0). To see this, we note that $f_{n}(z)=z+a_{n} z^{n}$ is in $S^{*}(\alpha)$ if and only if $\left|a_{n}\right| \leq(1-\alpha) /(n-\alpha)$ and $f_{n}(z) \in K$ if and only if $\left|a_{n}\right| \leq 1 / n^{2}$. Thus, $f(z)=z+(1-\alpha) /(n-\alpha) z^{n} \in S^{*}(\alpha)-K$ for $n>2 /(1-\alpha)$.
We next show that there are values of b for which the functions in G_{b} must be convex.

ThEOREM 4. $G_{b} \subset K$ for $b \leq \sqrt{2} / 2$.
Proof. Since $f \in G_{b} \subset G_{1} \subset S^{*}(1 / 2)$, we may write $z f^{\prime}(z) / f(z)=1 /(1-\omega(z))$, where ω is a Schwarz function. For $f \in G_{b}$, we take $\alpha=1 / 2$ in (2.3) to obtain $\left|z \omega^{\prime}(z)\right|$ $<\sqrt{2} / 2$ and, consequently, $|\omega(z)|<\sqrt{2} / 2, z \in \Delta$. We need to show that

$$
\begin{equation*}
\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}=\operatorname{Re}\left\{\frac{\left(1+z \omega^{\prime}(z)\right)}{(1-\omega(z))}\right\}>0 . \tag{4.1}
\end{equation*}
$$

Since

$$
\begin{align*}
\left|\arg \left(\frac{1+z \omega^{\prime}(z)}{1-\omega(z)}\right)\right| & \leq\left|\arg \left(1+z \omega^{\prime}(z)\right)\right|+|\arg (1-\omega(z))| \tag{4.2}\\
& \leq \frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2},
\end{align*}
$$

the result follows.
In [6], MacGregor found the radius of convexity for $S^{*}(1 / 2)$ to be $(2 \sqrt{3}-3)^{1 / 2}=$ $0.68 \ldots$. Since $G_{1} \subset S^{*}(1 / 2)$, we know that the radius of convexity is at least this large. The following consequence of Theorem 4 is that functions in G_{1} are convex in the disk $|z|<\sqrt{2} / 2$.

Corollary. If $f \in G_{b}, \sqrt{2} / 2 \leq b \leq 1$, then f is convex in the disk $|z|<\sqrt{2} / 2 b$.
Proof. If $\left|z \omega^{\prime}(z)\right|<1$ for $z \in \Delta$, then $\left|z \omega^{\prime}(z)\right|<t$ for $|z|<t<1$. If $f \in G_{b}$, then $\left|z \omega^{\prime}(z)\right|<b$ for $z \in \Delta$. Hence, $\left|z \omega^{\prime}(z)\right|<\sqrt{2} / 2$ when $|z|<\sqrt{2} / 2 b$.
5. Examples. Theorem 1 gives a sharp order of starlikeness for G_{b} when $0<b \leq 1$, with $G_{1} \subset S^{*}(1 / 2)$. Our methods do not extend to $b>1$, but we expect the order of starlikeness to decrease from $1 / 2$ to 0 as b increases from 1 to some value b_{0} after which functions in G_{b} need not be starlike. We do not have a sharp result for $b>1$, but our next example shows that the univalent functions in G_{b} are not necessarily starlike for $b \geq 11.66$.
The function $h(z)=z(1-i z)^{i-1}$ is spiral-like [11] and, hence, in S because

$$
\begin{equation*}
\operatorname{Re}\left\{e^{\pi i / 4} \frac{z h^{\prime}(z)}{h(z)}\right\}=\frac{1}{\sqrt{2}}\left(\frac{1-|z|^{2}}{|1-i z|^{2}}\right)>0, \quad z \in \Delta . \tag{5.1}
\end{equation*}
$$

Since $z h^{\prime}(z) / h(z)=(1+z) /(1-i z)$, we see that h is not starlike for $|z|<a, \sqrt{2} / 2<$ $a<1$. Thus, $f(z)=f_{a}(z)=h(a z) / a$ is not starlike for $z \in \Delta$. Setting $p(z)=z f^{\prime}(z) /$ $f(z)=(1+a z) /(1-a i z)$, we have

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{(p(z))^{2}}\right|=\left|\frac{(1+i) a z}{(1+a z)^{2}}\right| \leq \frac{\sqrt{2} a}{(1-a)^{2}}<11.66 \tag{5.2}
\end{equation*}
$$

for a sufficiently close to $\sqrt{2} / 2$. Hence, $f \in G_{b}-S^{*}(0)$ for $b=11.66$.
Finally, we show that the functions in G_{b} need not be univalent. In [5], it is shown for $h(z)=z(1-i z)^{i-1}$ that $g(z)=\int_{0}^{z} h(t) / t d t=(1-i z)^{i}-1$ is not in S because $g\left(z_{0}\right)=g\left(-z_{0}\right)$ for $z_{0}=i\left(e^{2 \pi}-1\right) /\left(e^{2 \pi}+1\right),\left|z_{0}\right|=0.996 \ldots$. We, thus, conclude that for $f(z)=g(c z) / c, c=0.997, f \in G_{b}-S$ for b sufficiently large.

Acknowledgement. This paper was completed while the author was on a sabbatical leave as a visiting scholar at the University of California at San Diego. I would like to express my deep appreciation to Professor Carl FitzGerald for enlightening discussions, especially for his insight and guidance on the example in Theorem 3.

References

[1] L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1974), 413-428. MR 49 3102. Zbl 278.30021.
[2] J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynômes et aux fonctiones bornées d'une variable complexe, Ann. Sci. École Norm. Sup. 48 (1931), 247-358 (French). Zbl 003.11904.
[3] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 259, Springer-Verlag, New York, 1983. MR 85j:30034. Zbl 514.30001.
[4] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), no. 2, 469-474. MR 43\#7611. Zbl 224.30026.
[5] J. Krzyz and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. 11 (1963), 447-448. MR 27\#3791. Zbl 137.05202.
[6] T. H. MacGregor, The radius of convexity for starlike functions of order $1 / 2$, Proc. Amer. Math. Soc. 14 (1963), 71-76. MR 27\#283. Zbl 113.05505.
[7] A. Marx, Unintersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932), 40-67 (German). Zbl 005.10901.
[8] S. S. Miller, P. Mocanu, and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554. MR 47 2044. Zbl 258.30012.
[9] P. T. Mocanu, Une propriété de convexité generalisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (1969), no. 34, 127-133 (French). MR 42\#7881. Zbl 195.36401.
[10] E. Strohhäcker, Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356380 (German). Zbl 007.21402.
[11] L. Špačk, Contribution à la theorie des fonctions univalents, Časopis Pěst. Mat. 62 (1932), 12-19 (French). Zbl 006.06403.

Silverman: Department of Mathematics, University of Charleston, Charleston, SC 29424, USA

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

