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ON EXISTENCE OF PERIODIC SOLUTIONS OF THE RAYLEIGH
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Abstract. In this paper, we give two sufficient conditions on the existence of periodic
solutions of the non-autonomous Rayleigh equation of retarded type by using the coinci-
dence degree theory.
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1. Introduction. In [1, 2], the authors studied the existence of periodic solutions
of the differential equation

x′′(t)+f (x′(t))+h(t,x(t))= 0. (1.1)

In this paper, we discuss the existence of periodic solutions of the non-autonomous
Rayleigh equation of related type

x′′(t)+f (t,x′(t−τ))+g(t,x(t−σ))= p(t), (1.2)

where τ , σ ≥ 0 are constants, f and g ∈ C(R2,R), f(t,x) and g(t,x) are functions
with period 2π for t, f(t,0)= 0 for t ∈ R, p ∈ C(R,R), p(t)= p(t+2π) for t ∈ R and∫ 2π
0 p(t) = 0. Using coincidence degree theory developed by Mawhin [2], we find two
sufficient conditions for the existence of periodic solutions of (1.2).

2. Main results

Theorem 2.1. Suppose there are positive constants K, D, and M such that
(i) |f(t,x)| ≤K for (t,x)∈ R2;
(ii) xg(t,x) > 0 and |g(t,x)|>K for t ∈ R and |x| ≥D;
(iii) g(t,x)≥−M for t ∈ R and x ≤−D;
(iv) sup(t,x)∈R×[−D,D] |g(t,x)|<+∞.

Then (1.2) has at least a periodic solution with period 2π .

Proof. Consider the equation

x′′(t)+λf (t,x′(t−τ))+λg(t,x(t−σ))= λp(t), (2.1)

where λ∈ (0,1). Suppose that x(t) is a periodic solution with period 2π of (2.1). Since
x(0)= x(2π), there is some t0 ∈ [0,2π] such that x′(t0)= 0. In view of (2.1), we see

http://ijmms.hindawi.com
http://www.hindawi.com


66 G. WANG AND J. YAN

that for any t ∈ [0,2π],

∣∣x′(t)∣∣=
∣∣∣∣
∫ t

t0
x′′(s)ds

∣∣∣∣≤
∫ 2π
0

∣∣x′′(s)∣∣ds
≤ λ

∫ 2π
0

∣∣f (s,x′(s−τ))∣∣ds+λ
∫ 2π
0

∣∣g(s,x(s−σ))∣∣ds+λ
∫ 2π
0

∣∣p(s)∣∣ds
≤ 2πK+

∫ 2π
0

∣∣g(s,x(s−σ))∣∣ds+2π max
0≤s≤2π

∣∣p(s)∣∣.
(2.2)

We assert that ∫ 2π
0

∣∣g(s,x(s−σ))∣∣ds ≤ 2πK+4πD1 (2.3)

for some positive number D1. Indeed, integrating (2.1) from 0 to 2π and noting con-
dition (i), we see that∫ 2π

0

{
g
(
t,x(t−σ))−K}dt ≤

∫ 2π
0

{
g
(
t,x(t−σ))−∣∣f (t,x′(t−τ))∣∣}dt

≤
∫ 2π
0

{
f
(
t,x′(t−τ))+g(t,x(t−σ))}dt = 0.

(2.4)

Thus letting

E1 =
{
t ∈ [0,2π] | x(t−σ) >D

}
, E2 = [0,2π]\E1. (2.5)

By applying (ii), (iii), and (iv), we have∫
E2

∣∣g(t,x(t−σ))∣∣dt ≤ 2πmax
{
M, sup

(t,x)∈R×[−D,D]

∣∣g(t,x)∣∣
}
, (2.6)

∫
E1

{∣∣g(t,x(t−σ))∣∣−K}dt
≤
∫
E1

∣∣g(t,x(t−σ))−K∣∣dt =
∫
E1

{
g
(
t,x(t−σ))−K}dt

≤−
∫
E2

{
g
(
t,x(t−σ))−K}dt ≤

∫
E2

∣∣g(t,x(t−σ))∣∣dt+
∫
E2
Kdt.

(2.7)

Therefore∫ 2π
0

∣∣g(t,x(t−σ))∣∣dt ≤ 2πK+4πmax
{
M, sup

(t,x)∈R×[−D,D]

∣∣g(t,x)∣∣
}
, (2.8)

and so (2.3) holds. Combining (2.2) and (2.3), we see that∣∣x′(t)∣∣≤D2, t ∈ [0,2π] (2.9)

for some positive number D2. Next, note that the last equality in (2.4) implies

f
(
t1,x′(t1−τ)

)+g(t1,x(t1−σ))= 0 (2.10)

for some t1 in [0,2π]. Thus in view of condition (i), we have∣∣g(t1,x(t1−σ))∣∣= ∣∣f (t1,x′(t1−τ))∣∣≤K, (2.11)

and in view of (ii), we have ∣∣x(t1−σ)∣∣<D. (2.12)
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Since x(t) is a periodic solution with period 2π of (2.1), we infer that |x(t2)|<D for
some t2 in [0,2π]. Therefore,

∣∣x(t)∣∣=
∣∣∣∣x(t2)+

∫ t

t2
x′(t)dt

∣∣∣∣≤D+
∫ 2π
0

∣∣x′(t)∣∣dt ≤D+2πD2, t ∈ [0,2π]. (2.13)

Let X be the Banach space of all continuous differentiable functions of the form
x = x(t), defined on R such that x(t+2π) = x(t) for all t, and endowed with the
norm ‖x‖1 =max0≤t≤2π{|x(t)|,|x′(t)|}. Let Y be the Banach space of all continuous
functions of the form y = y(t), defined on R such that y(t+2π) = y(t) for all t,
and endowed with the norm ‖y‖0 =max0≤t≤2π |y(t)|, and let Ω be the subspace of
X containing functions of the form x = x(t), such that |x(t)| < D̄ and |x′(t)| < D̄,
where D̄ is a fixed number greater than D+2πD2. Now, let L : X∩C(2)(R,R)→ Y be
the differential operator defined by (Lx)(t) = x′′(t) for t ∈ R, and let N : X → Y be
defined by

(Nx)(t)=−f (t,x′(t−σ))−g(t,x(t−τ))+p(t), t ∈ R. (2.14)

We know that ker L = R. Furthermore if we define the projections P : X → ker L and
Q : Y → Y/ ImL by

Px = 1
2π

∫ 2π
0

x(t)dt,

Qy = 1
2π

∫ 2π
0

y(t)dt,
(2.15)

respectively, then ker L = ImP and kerQ = ImL. Furthermore, the operator L is a
Fredholm operator with index zero, and the operator N is L-compact on the closure
Ω̄ of Ω (see, e.g., [2, p. 176]). In terms of valuation of bound of periodic solutions as
above, we know that for any λ ∈ (0,1) and any x = x(t) in the domain of L, which
also belongs to ∂Ω, Lx ≠ λNx. Since for any x ∈ ∂Ω∩ker L, x = D̄ or x =−D̄, then in
view of (ii), (iii), and

∫ 2π
0 p(t)dt = 0, we have

QNx = 1
2π

∫ 2π
0

[
−f (t,x′(t−τ))−g(t,x(t−σ))+p(t)]dt

= 1
2π

∫ 2π
0

[
−f(t,0)−g(t,x(t−σ))]dt

= 1
2π

∫ 2π
0

[
−g(t,x(t−σ))]dt

=− 1
2π

∫ 2π
0

g(t,x)dt ≠ 0.

(2.16)

In particular, we see that

− 1
2π

∫ 2π
0

g
(
t,−D̄)dt > 0,

− 1
2π

∫ 2π
0

g
(
t,D̄

)
dt < 0.

(2.17)
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This shows that

deg
{
QNx,Ω∩ker L, 0}≠ 0. (2.18)

In view of Mawhin continuation theorem [2, p. 40], there exists a periodic solution
with period 2π of (1.2). This completes the proof.

Theorem 2.2. Suppose that there are positive constants K, D, and M such that
(i) |f(t,x)| ≤K for (t,x)∈ R2;
(ii) xg(t,x) > 0 and |g(t,x)|>K for t ∈ R, |x| ≥D;
(iii) g(t,x)≤M for t ∈ R, x ≥D;
(iv) sup(t,x)∈R×[−D,D] |g(t,x)|<+∞.

Then (1.2) has at least a periodic solution with period 2π .

The proof of Theorem 2.2 is similitude of Theorem 2.1, and so, we omit the details
here.
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