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Abstract. We prove the necessary and sufficient conditions for an infinity matrix to be
a mapping, from absolutely convergent series to convergent sequences, which is treated
as general weighted mean summability methods. The results include a classical result by
Hardy and another by Moricz and Rhoades as particular cases.

Keywords and phrases. Weighted mean matrix, matrix transformation.

2000 Mathematics Subject Classification. Primary 40C10, 40D25, 40G05.

1. Introduction. A series
∞∑

k=0
xk (1.1)

of complex numbers is said to be summable (C,1) if the sequence

1
n+1

n∑

k=0

k∑

i=0
xi, n= 0,1,2, . . . (1.2)

converges to a finite limit as n→∞.
In [1] Hardy proved the following theorem.

Theorem 1.1. The series (1.1) is summable (C,1) to a finite number L if and only
if the series

∞∑

n=0

∞∑

k=n

xk
k+1 (1.3)

converges to the same limit.

For a sequence of positive numbers (pn), let Pn :=
∑n
k=0pn. A weighted mean matrix

N̄ is an infinity lower triangular matrix with entries (see [2])

ank := pkPn , k= 0,1,2, . . . ,n, n= 0,1,2, . . . . (1.4)

The series (1.1) is said to be summable N̄ if the following sequence:

1
Pn

n∑

k=0
pk

k∑

i=0
xi, n= 0,1,2, . . . , (1.5)

converges to a finite limit as n→∞.
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It is clear that summable (C,1) is a special case of summable N̄ , where

pk = 1, k= 0,1,2, . . . . (1.6)

Based on the above idea, Moricz and Rhoades [2] established a result for a broad
class of summability methods, which include the method of summability (C,1) as a
particular case.

Theorem 1.2. Let N̄ be a weighted mean matrix determined by a sequence (pn) of
positive numbers such that the following conditions are satisfied:

Pn �→∞, pn
Pn

�→ 0 as n �→∞,

sup
n≥0



pn+1pn−1
pnPn+1

+Pn
∞∑

k=n

1
Pn+1

∣∣∣∣∣
pk+1
pk

− pk+2Pk
pk+1Pk+2

∣∣∣∣∣


<∞, (1.7)

sup
n≥0



pn
pn+1

+ 1
Pn

n∑

k=0

∣∣∣∣∣
pkPk+1
pk+1

− pk−1Pk−1
pk

∣∣∣∣∣


<∞,

with the agreement that

p−1 = P−1 := 0. (1.8)

Then the series (1.1) is summable N̄ to a finite number L if and only if the series

∞∑

n=0

∞∑

k=n

pn
Pk
xk (1.9)

converges to the same limit L.

In this paper, we will study the matrix transformations from the space of absolutely
convergent series of complex numbers, l1, to the space of convergent sequences of
complex numbers, c. Then we shall establish a more general result for a broader class
of weighted mean methods, which includes the method of summable N̄ as a particular
case if the series (1.1) is absolutely convergent.

2. Matrix transformations from l1 to c. Let A = (ank) be an infinity matrix with
complex entries and let l denote the linear space of complex number sequences. For
a sequence x = (xn)∈ l, Ax is in l and its entries are given by

(Ax)n =
∞∑

k=0
ankxk, n= 0,1,2, . . . (2.1)

provided the series converges to a finite complex number.
The following result is well known (see [3, 4]); we list it as a proposition.

Proposition 2.1. Let a = (ak) be a sequence of complex numbers. If for every
x = (xn)∈ l1, the series

∞∑

k=0
akxk (2.2)
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converges to a finite complex number, then

sup
k≥0

{∣∣ak
∣∣}<∞. (2.3)

From Proposition 2.1, we have the following interesting result.

Proposition 2.2. Let a = (ak) be a sequence of complex numbers. If for every
x = (xn)∈ l1, the series

∞∑

k=0
akxk (2.4)

converges to a finite complex number, then the linear functional fa defined on l1 by

fa(x)=
∞∑

k=0
akxk (2.5)

is a continuous (bounded) linear functional on l1, such that

‖fa‖ = sup
k≥0

{∣∣ak
∣∣}. (2.6)

From Proposition 2.1, we know that A is well defined as a mapping from l1 to l, if
and only if

sup
k≥0

{∣∣ank
∣∣}<∞, for n= 0,1,2, . . . . (2.7)

The following result has been proved in [4] by using functional analysis techniques.
It is also proved by summabilitymethods. We list the following theoremwithout proof.

Theorem 2.3. Let A = (ank) be an infinity matrix with complex entries. Then A is
a mapping from l1 to c, if and only if the following conditions are satisfied:
(i) for every fixed k = 0,1,2, . . . , the sequence (ank) converges to a finite limit as
n→∞,

(ii) supn,k≥0{|ank|}<∞.

Furthermore, ifA= (ank) satisfies conditions (i) and (ii), then for everyx = (xn)∈ l1,
we have

lim
n→∞(Ax)n = limn→∞

∞∑

k=0
ankxk =

∞∑

k=0

(
lim
n→∞ank

)
xk. (2.8)

The following corollary follows from Theorem 2.3 and (2.8).

Corollary 2.4. Let A = (ank) be an infinity matrix with complex entries. If A is a
mapping from l1 to c, then the linear operatorA is continuous (bounded) linear operator
such that

‖A‖ = sup
n,k≥0

{∣∣ank
∣∣}. (2.9)
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3. Applications to summable (C,1) and summable N̄ . The following corollary
comes immediately from Theorem 2.3, which describes an equivalent reformulation
of summability by more general weighted mean methods which are matrix transfor-
mations.

Corollary 3.1. Let A = (ank), B = (bnk) be two infinity matrices with complex
entries. Suppose A,B are mapping from l1 to c, that is A,B satisfying conditions (i), (ii)
of Theorem 2.3. Then for every x = (xn)∈ l1,

lim
n→∞(Ax)n = limn→∞(Bx)n (3.1)

if and only if for every fixed k= 0,1,2, . . . ,

lim
n→∞ank = limn→∞bnk. (3.2)

Proof. SinceA,B satisfy conditions (i), (ii) of Theorem 2.3, then from (2.8), we have

lim
n→∞(Ax)n = limn→∞

∞∑

k=0
ankxk =

∞∑

k=0

(
lim
n→∞ank

)
xk, (3.3)

lim
n→∞(Bx)n = limn→∞

∞∑

k=0
bnkxk =

∞∑

k=0

(
lim
n→∞bnk

)
xk, (3.4)

for any x = (xn) ∈ l1. From (2.8) and (3.4), we see that (3.2) implies (3.1). Now, for
every fixed k= 0,1,2, . . . , define x = (xi) by

xi =


1, if i= k,
0, if i≠ k.

(3.5)

It is clear that x ∈ l1. Equations (2.8) and (3.4) imply

lim
n→∞(Ax)n = limn→∞ank, lim

n→∞(Bx)n = limn→∞bnk. (3.6)

From (3.6), we see that (3.1) implies (3.2).

Recall that for a sequence of positive numbers (pn), Pn =
∑n
k=0pk. The series (1.1)

is said to be summable N̄ if the following sequence:

1
Pn

n∑

k=n
pk

k∑

i=0
xi, n= 0,1,2, . . . (3.7)

converges to a finite limit as n→∞.
To generalize Theorem 1.2, we shall construct two weighted mean matrices accord-

ing to the summability (3.7) and the following summability method:

∞∑

n=0

∞∑

k=n

pn
Pk
xk. (3.8)
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Based on the sequence of positive numbers (pn), define two infinity matrices A =
(ank) and B = (bnk), by

ank =


0, if k >n,
Pn−Pk−1
Pn

, if k≤n, (3.9)

bnk =



Pn
Pk
, if k >n,

1, if k≤n,
(3.10)

where we agree that P−1 = 0.
It can be seen that any sequence of positive numbers (pn), B = (bnk) defined by

(3.10), always satisfies the conditions (i) and (ii) of Theorem 2.3 and A= (ank) defined
by (3.9) always satisfies the conditions (ii) of Theorem 2.3. Furthermore, A = (ank)
will satisfies the conditions (i) of Theorem 2.3 if the sequence (pn) satisfies

Pn �→∞ as n �→∞. (3.11)

Hence we have the following corollary of Theorem 2.3.

Corollary 3.2. For any sequence of positive numbers (pn), B = (bnk) defined by
(3.10) is always a mapping from l1 to c. If (pn) satisfying (3.11), then A= (ank) defined
by (3.9) is a mapping from l1 to c.

The following corollary will give the Moricz and Rhoades’s result, Theorem 1.2, if
the series (1.1) is absolutely convergent.

Corollary 3.3. Let (pn) be a sequence of positive numbers satisfying (3.11). Let
A = (ank), B = (bnk) be defined by (3.9) and (3.10). Then for any x = (xn) ∈ l1, we
have

lim
n→∞(Ax)n = limn→∞(Bx)n =

∞∑

k=0
xk. (3.12)

Proof. Notice that under condition (3.11), we have that for every fixed k=0,1,2, . . . ,

lim
n→∞ank = limn→∞bnk = 1. (3.13)

Then the proof of this corollary follows Corollary 3.2 and the equalities (2.8) and (3.4)
immediately.

From the definitions (3.9) and (3.10), we see that for every fixed n= 0,1,2, . . . ,

(Ax)n = 1
Pn

n∑

k=0
pk

k∑

i=0
xi, (Bx)n =

n∑

m=0

∞∑

k=m

pn
Pk
xk. (3.14)

Corollary 3.3 shows that if the sequence of positive numbers (pn) satisfies condi-
tion (3.11), then for any x = (xn)∈ l1, we have

lim
n→∞

1
Pn

n∑

k=0
pk

k∑

i=0
xi =

∞∑

n=0

∞∑

k=n

pn
Pk
xk =

∞∑

k=0
xk. (3.15)
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In a particular case, as mentioned by Moricz and Rhoades [2], taking pk = 1, for k=
0,1,2, . . . , we find the Hardy’s result, Theorem 1.1, if that the series (1.1) is absolutely
convergent, that is, for any x = (xn)∈ l1,

lim
n→∞

1
n+1

n∑

k=0

k∑

i=0
xi =

∞∑

n=0

∞∑

k=n

xk
k+1 =

∞∑

k=0
xk. (3.16)
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