ON THE DECOMPOSITION OF $x^{d}+a_{e} x^{e}+\cdots+a_{1} x+a_{0}$

JAVIER GOMEZ-CALDERON

(Received 9 July 1998 and in revised form 28 March 1999)

Abstract

Let K denote a field. A polynomial $f(x) \in K[x]$ is said to be decomposable over K if $f(x)=g(h(x))$ for some polynomials $g(x)$ and $h(x) \in K[x]$ with $1<\operatorname{deg}(h)<$ $\operatorname{deg}(f)$. Otherwise $f(x)$ is called indecomposable. If $f(x)=g\left(x^{m}\right)$ with $m>1$, then $f(x)$ is said to be trivially decomposable. In this paper, we show that $x^{d}+a x+b$ is indecomposable and that if e denotes the largest proper divisor of d, then $x^{d}+a_{d-e-1} x^{d-e-1}+\cdots+$ $a_{1} x+a_{0}$ is either indecomposable or trivially decomposable. We also show that if $g_{d}(x, a)$ denotes the Dickson polynomial of degree d and parameter a and $g_{d}(x, a)=f(h(x))$, then $f(x)=g_{t}(x-c, a)$ and $h(x)=g_{e}(x, a)+c$

Keywords and phrases. Polynomials and fields.
2000 Mathematics Subject Classification. Primary 11T06.

Let K denote a field. A polynomial $f(x) \in K[x]$ is said to be decomposable over K if

$$
\begin{equation*}
f(x)=g(h(x)) \tag{1}
\end{equation*}
$$

for some polynomials $g(x)$ and $h(x) \in K[x]$ with $1<\operatorname{deg}(h(x))<\operatorname{deg}(f(x))$. Otherwise $f(x)$ is called indecomposable.

ExAMPLES. (a) $f(x)=x^{m n}, m$ and $n>1$, is decomposable because $f(x)=g(h(x))$ where $h(x)=x^{m}+c$ and $g(x)=(x-c)^{n}$.
(b) $f(x)=x^{p}, p$ a prime, is indecomposable because p does not have proper divisors.
(c) $f(x)=\sum_{i=0}^{n} a_{i} x^{m i}$ is decomposable because $f(x)=g(h(x))$ where $h(x)=x^{m}$ and $g(x)=\sum_{i=0}^{n} a_{i} x^{i}$.

Decompositions such as the one given in (c) are trivial and consequently we say that $f(x)$ is trivially decomposable if $f(x)=g\left(x^{m}\right)$ for some polynomial $g(x)$ with $m>1$.

In this paper, we show that $x^{d}+a x+b$ is indecomposable and that if e denotes the largest proper divisor of d, then $x^{d}+a_{d-e-1} x^{d-e-1}+\cdots+a_{1} x+a_{0}$ is either indecomposable or trivially decomposable. We will also show that if $g_{d}(x, a)$ denotes the Dickson polynomial of degree d and parameter a and $g_{d}(x, a)=f(h(x))$, then $f(x)=g_{t}(x-c, a)$ and $h(x)=g_{e}(x, a)+c$. More precisely, we prove the following.

THEOREM 1. Let K be a field. Let d be a positive integer. If K has a positive characteristic p, assume that $(d, p)=1$.
(a) $x^{d}+a x+b, a \neq 0$, is decomposable.
(b) If e denotes the largest proper divisor of d, then $x^{d}+a_{d-e-1} x^{d-e-1}+\cdots+a_{1} x+$ a_{0} is either indecomposable or trivially decomposable.
(c) If $x^{d}=f(h(x))$ for some polynomials $f(x)$ and $h(x)$ in $K[x]$, then $f(x)=$ $(x-c)^{t}$ and $h(x)=x^{e}+c$ for some $c \in K$ and $d=e t$.
(d) If $g_{d}(x, a)$ denotes the Dickson polynomial of degree d and parameter a and $g_{d}(x, a)=f(h(x))$, then $f(x)=g_{t}(x-c, a)$ and $h(x)=g_{e}(x, a)+c$ for some $c \in K$.
The proof of the theorem need the following lemmas.
Lemma 2. Let $f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ denote a monic polynomial over a field K. If K has a positive characteristic p, assume that $(p, d)=1$. Let the irreducible factorization of $f(x)-f(y)$ be given by

$$
\begin{equation*}
f(x)-f(y)=\prod_{i=1}^{s} f_{i}(x, y) \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{i}(x, y)=\sum_{j=0}^{n_{i}} g_{i j}(x, y) \tag{3}
\end{equation*}
$$

be the homogeneous decomposition of $f_{i}(x, y)$ so that $n_{i}=\operatorname{deg}\left(f_{i}(x, y)\right)$ and $g_{i j}(x, y)$ is homogeneous of degree j. Assume $a_{d-1}=a_{d-2}=\cdots=a_{d-r}=0$ for some $r \geq 1$. Then,

$$
\begin{equation*}
g_{i, n_{i}-1}(x, y)=g_{i, n_{i}-2}(x, y)=\cdots=g_{i, R_{i}}(x, y)=0 \tag{4}
\end{equation*}
$$

where

$$
R_{i}= \begin{cases}n_{i}-r & \text { if } n_{i} \geq r_{i} \tag{5}\\ 0 & \text { if } n_{i}<r_{i}\end{cases}
$$

Proof. Let e_{i} denote the second highest degree of $f_{i}(x, y)$ defined by

$$
e_{i}= \begin{cases}\operatorname{deg}\left(f_{i}(x, y)-g_{i, n_{i}}(x, y)\right) & \text { if } f_{i}(x, y) \neq g_{i, n_{i}}(x, y) \tag{6}\\ -\infty & \text { if } f_{i}(x, y)=g_{i, n_{i}}(x, y)\end{cases}
$$

Assume, without loss of generality, that $n_{1}-e_{1} \leq n_{2}-e_{2} \leq \cdots \leq n_{s}-e_{s}$. Let b denote the largest integer i such that $N=n_{1}-e_{1}=n_{2}-e_{2}=\cdots=n_{i}-e_{i}$. Our goal is to show that $N>r$. So, assume that N is finite. Hence, $g_{i, e_{i}}(x, y) \neq 0$ for all $i, 1 \leq i \leq b$ and

$$
\begin{equation*}
a_{d-N}\left(x^{d-N}-y^{d-N}\right)=\sum_{i=1}^{b} g_{i, e_{i}}(x, y) \prod_{\substack{j=1 \\ j \neq i}}^{s} g_{j, n_{j}}(x, y) \tag{7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
x^{d}-y^{d}=\prod_{i=1}^{s} g_{i, n_{i}}(x, y) \tag{8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
a_{d-N} \frac{x^{d-N}-y^{d-N}}{x^{d}-y^{d}}=\sum_{i=1}^{b} \frac{g_{i, e_{i}}(x, y)}{g_{i, n_{i}}(x, y)} \tag{9}
\end{equation*}
$$

As $(d, p)=1, x^{d}-y^{d}$ has no multiple divisors in the algebraic closure of K. So, the denominators in the right-hand side of the above formula are relatively prime to each other, and if the denominator and numerator of each summand have a common factor, it can be canceled out. Hence, the right-hand side of (9) does not vanish. Thus, $a_{d-N} \neq 0$ and consequently $d-N<d-r$. Therefore, $N>r$ and the proof of the lemma is complete.

Lemma 3. Let $f(x)$ be a monic polynomial over a field K. If K has a positive characteristic p, assume that p does not divide the degree of $f(x)$. Let N denote the number of linear factors of $f(x)-f(y)$ over $\overline{\mathbf{K}}$, the algebraic closure of K. Then, there exists a constant b in K such that

$$
\begin{equation*}
f(x)=g\left((x+b)^{N}\right) \tag{10}
\end{equation*}
$$

for some polynomial $g(x) \in K[x]$.
Proof. Choose b in F such that $f(x-b)=F(x)=x^{d}+a_{d-2} x^{d-2}+\cdots+a_{1} x+a_{0}$. Hence, by Lemma 2, all linear factors of $F(x)-F(y)$ have the form $x-a_{i} y$ for $i=$ $1,2, \ldots, N$. Thus, $F\left(a_{i} x\right)=F(x)$ for all i, and consequently $F\left(a_{i} a_{j} x\right)=F\left(a_{j} x\right)=F(x)$ for all i and j. Therefore, $a_{1}, a_{2}, \ldots, a_{N}$ form a multiplicative cyclic group of order N and $\prod_{i=1}^{N}\left(x-a_{i} x\right)=x^{N}-y^{N}$.
Now write

$$
\begin{equation*}
F(x)=f_{0}(x)+f_{1}(x) x^{N}+f_{2}(x) x^{2 N}+\cdots+f_{m}(x) x^{m N} \tag{11}
\end{equation*}
$$

with $\operatorname{deg}\left(f_{i}(x)\right)<N$ for all i. This decomposition is clearly unique. Thus,

$$
\begin{align*}
F(x) & =f_{0}(x)+f_{1}(x) x^{N}+f_{2}(x) x^{2 N}+\cdots+f_{m}(x) x^{m N} \\
& =f_{0}\left(a_{i} x\right)+f_{1}\left(a_{i} x\right)\left(a_{i} x\right)^{N}+f_{2}\left(a_{i} x\right)\left(a_{i} x\right)^{2 N}+\cdots+f_{m}\left(a_{i} x\right)\left(a_{i} x\right)^{m N} \tag{12}\\
& =f_{0}\left(a_{i} x\right)+f_{1}\left(a_{i} x\right) x^{N}+f_{2}\left(a_{i} x\right) x^{2 N}+\cdots+f_{m}\left(a_{i} x\right) x^{m N}
\end{align*}
$$

for $i=1,2, \ldots, N$ implies that $f_{j}(x)=c_{j} \in K$ for all $0 \leq j \leq m$. Therefore,

$$
\begin{equation*}
F(x)=\sum_{i=0}^{m} c_{i} x^{N i}=g\left(x^{N}\right) \tag{13}
\end{equation*}
$$

where $g(x)=\sum_{i=0}^{m} c_{i} x^{i} \in K[x]$. This completes the proof of the lemma.
Lemma 4. Let d be a positive integer and assume that K contains a primitive nth root ζ of unity. Put

$$
\begin{equation*}
B_{k}=\zeta^{k}+\zeta^{-k}, \quad C_{k}=\zeta^{k}-\zeta^{-k} \tag{14}
\end{equation*}
$$

Then for each $a \in K$ we have
(a) If $d=2 n+1$ is odd

$$
\begin{equation*}
g_{d}(x, a)-g_{d}(y, a)=(x-y) \prod_{i=1}^{n}\left(x^{2}-B_{k} x y+y^{2}+a C_{k}^{2}\right) \tag{15}
\end{equation*}
$$

(b) If $d=2 n$ is even

$$
\begin{equation*}
g_{d}(x, a)-g_{d}(y, a)=\left(x^{2}-y^{2}\right) \prod_{i=1}^{n-1}\left(x^{2}-A_{k} x y+y^{2}+a C_{k}^{2}\right) \tag{16}
\end{equation*}
$$

Moreover for $a \neq 0$ the quadratic factors are different from each other and are irreducible in $K[x, y]$.

Proof. See [1, page 46].
Proof Of The theorem. (a) Assume $x^{d}+a x+b=f(h(x))$ with $1<\operatorname{deg}(h(x))<$ d and $a \neq 0$. Let $\overline{\mathbf{K}}$ denote the algebraic closure of K. Let the irreducible factorization of $f(x)-f(y)$ over $\overline{\mathbf{K}}$ be given by

$$
\begin{equation*}
f(x)-f(y)=(x-y) \prod_{i=1}^{m} G_{i}(x, y) . \tag{17}
\end{equation*}
$$

Then,

$$
\begin{equation*}
x^{d}+a x-y^{d}-a y=(h(x)-h(y)) \prod_{i=1}^{m} G_{i}(h(x), h(y))=\prod_{i=1}^{r} f_{i}(x, y) \tag{18}
\end{equation*}
$$

for some irreducible polynomials $f_{i}(x, y) \in \overline{\mathbf{K}}[x, y]$ with $\operatorname{deg}\left(f_{i}(x, y)\right) \leq d-2$ for $1 \leq i \leq r$. Hence, applying Lemma 2 , each of the factors $f_{i}(x, y)$ has a second highest degree of $-\infty$. Therefore, considering only the highest degree terms in (18),

$$
\begin{equation*}
x^{d}-y^{d}=\prod_{i=1}^{r} f_{i}(x, y) \tag{19}
\end{equation*}
$$

and consequently $a x-a y=0$. Since this is clearly a contradiction, then $h(x)$ has either degree 1 or d.
(b) Let e denotes the largest proper divisor of d. Assume that the polynomial $g_{e}(x)=$ $x^{d}+a_{d-e-1} x^{d-e-1}+\cdots+a_{1} x+a_{0}$ is decomposable. So, $g_{e}(x)=f(h(x))$ for some $h(x) \in K[x]$ with $1<\operatorname{deg}(h(x)) \leq e$. Let the irreducible factorization of $f(x)-f(y)$ over $\overline{\mathbf{K}}$ be given by

$$
\begin{equation*}
f(x)-f(y)=(x-y) \prod_{i=1}^{r} f_{i}(x, y) . \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
g_{e}(x)-g_{e}(y)=(h(x)-h(y)) \prod_{i=1}^{r} f_{i}(h(x), h(y)) . \tag{21}
\end{equation*}
$$

Hence, by Lemma 2, $h(x)-h(y)$ is homogeneous and consequently a factor of $x^{d}-$ y^{d}. So, $h(x)-h(y)$ is a product of homogeneous linear factors and, by Lemma 3, $h(x)=x^{m}+c$ for some $c \in K$. Thus, $g_{e}(x)=f\left(x^{m}+c\right)=f_{2}\left(x^{m}\right)$ where $f_{2}(x)=$ $f(x+c)$. Therefore, $g_{e}(x)$ is either indecomposable or trivially decomposable.
(c) If $x^{d}=f(h(x))$ then, we did this before,

$$
\begin{align*}
x^{d}-y^{d} & =f(h(x))-f(h(y)) \\
& =(h(x)-h(y)) \prod_{i=1}^{m} G_{i}(h(x), h(y))=\prod_{i=0}^{d-1}\left(x-\zeta^{i} y\right) \tag{22}
\end{align*}
$$

for some d th primitive root of unity ζ in K. Thus, $h(x)=x^{e}+c$ for some $c \in K$ and $e \mid d$.

Therefore,

$$
\begin{align*}
f(h(x))-f(h(y)) & =\left(x^{e}\right)^{d / e}-\left(y^{e}\right)^{d / e}=\prod_{j=1}^{d / e}\left(x^{e}-\zeta^{e j} y^{e}\right) \\
& =\prod_{j=1}^{d / e}\left(h(x)-c-\zeta^{e j}(h(y)-c)\right) \tag{23}
\end{align*}
$$

and $f(x)=(x-c)^{d / e}$.
(d) Similar to (c) using Lemma 4.

Acknowledgement. The author thanks the referee for his suggestions which improved the final version of the paper.

REFERENCES

[1] R. Lidl, G. L. Mullen, and G. Turnwald, Dickson Polynomials, Longman Scientific \& Technical, Harlow, 1993. MR 94i:11097. Zbl 823.11070.

Calderon: Department of Mathematics, New Kensington Campus, Pennsylvania State University, New Kensington, PA, 15068, USA

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

