A NOTE ON CENTRALIZERS

HOWARD E. BELL

(Received 3 January 2000)

Abstract

For prime rings R, we characterize the set $U \cap C_{R}([U, U])$, where U is a right ideal of R; and we apply our result to obtain a commutativity-or-finiteness theorem. We include extensions to semiprime rings.

Keywords and phrases. Prime rings, semiprime rings, centralizers.
2000 Mathematics Subject Classification. Primary 16N60, 16U80.

Let R be an arbitrary ring with center Z. For $x, y \in R$, denote by $[x, y]$ the commutator $x y-y x$; and for an arbitrary nonempty subset S of R, denote by $[S, S]$ the set $\{[x, y] \mid x, y \in S\}$. Denote by $C_{R}(S)$ the centralizer of S in R-i.e., the set $\{x \in R \mid[x, s]=0$ for all $s \in S\}$.
It is proved in [2] that if R is semiprime and I is a nonzero ideal of R, then $C_{R}([I, I]) \subseteq$ $C_{R}(I)$. It follows that $C([I, I]) \cap I \subseteq Z$, since in a semiprime ring R the center of a nonzero right ideal is contained in the center of R. The first goal of this note is to study the subring $H=C_{R}([U, U]) \cap U$, where R is prime or semiprime and U is a nonzero right ideal. The information obtained is used to prove commutativity-or-finiteness results extending [1, Theorem 3].

1. Preliminaries. We shall use standard notation for annihilators-that is, for a nonempty subset S of $R, A_{l}(S)$ and $A(S)$ will be the left and two-sided annihilators of S. A subring S will be said to have finite index in R if $(S,+)$ is of finite index in $(R,+)$. We shall use without explicit mention the commutator identities $[x y, z]=$ $x[y, z]+[x, z] y$ and $[x, y z]=y[x, z]+[x, y] z$.
We begin with a revealing example.
Example 1.1. Let F be an arbitrary field, let R be the ring of 2×2 matrices over F, and let $U=e_{11} R$. Then R is prime, U is a right ideal, and $[U, U]=F_{e_{12}}$. Note that $C_{R}([U, U]) \cap U=F e_{12}=A([U, U]) \cap U$, and note that this set does not centralize U. Thus, the result in [2] for two-sided ideals does not hold for one-sided ideals, even in the case of prime rings.

2. The case of R prime

Theorem 2.1. Let R be a prime ring, U a right ideal of R, and $H=C_{R}([U, U]) \cap U$. Then either $H=U \cap Z$, or H is a zero ring and $H=A([U, U]) \cap U$. In any case, H is a commutative subring of R.

Proof. We begin as in the proof of [2, Lemma 1]. Let $z \in C_{R}([U, U])$. Then for all $x, y \in U, z[x, x y]=[x, x y] z$; hence $z x[x, y]=x[x, y] z=x z[x, y]$ and therefore $[z, x][x, y]=0$. Replacing y by $y z$, we get $[z, x] U[z, x]=\{0\}$ for all $x \in U$; and since $[z, x] U$ is a nilpotent right ideal, we have $[z, x] U=\{0\}$ for all $z \in C_{R}([U, U])$ and $x \in U$. Taking $z \in H$, we obtain $[z, x] z=0=z[z, x]$ for all $z \in H$ and $x \in U$; and replacing x by $x r$ for arbitrary $r \in R$ yields $z U[z, r]=\{0\}$, hence

$$
\begin{equation*}
z U R[z, r]=\{0\} \quad \text { for all } z \in H \text { and } r \in R . \tag{2.1}
\end{equation*}
$$

Since R is prime, (2.1) shows that either $z \in Z$ or $z U=\{0\}$; hence $H=(H \cap Z) \cup$ $\left(H \cap A_{l}(U)\right.$). Since the abelian group H cannot be the union of two proper subgroups, we have $H=H \cap Z$ or $H=H \cap A_{l}(U)$, so that $H \subseteq Z$ or $H \subseteq A_{l}(U)$. In the first case, H is clearly equal to $U \cap Z$, so suppose $H \subseteq A_{l}(U)$. Since $H \subseteq U, H^{2}=\{0\}$; moreover, $H \subseteq A_{l}([U, U]) \cap C_{R}([U, U])$, so $H \subseteq A([U, U])$ and hence $H=A([U, U]) \cap U$.
We now proceed to a commutativity-or-finiteness result.
Theorem 2.2. Let R be a prime ring and U a right ideal of finite index in R. If $[U, U]$ is finite, then R is either finite or commutative.

Proof. Suppose that $[U, U]=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. For each $i=1,2, \ldots, m$ define Φ_{i} : $U \rightarrow U$ by $\Phi_{i}(x)=\left[x_{i}, x\right]$ for all $x \in U$. Then $\Phi_{i}(U)$ is finite, hence $\operatorname{Ker} \Phi_{i}$ is of finite index in U. Letting $H=\bigcap_{i=1}^{m} \operatorname{Ker} \Phi_{i}$, we see that $H=U \cap C_{R}([U, U])$ and that H is of finite index in U. Now U is of finite index in R, so H is of finite index in R. It follows by a theorem of Lewin [3] that H contains an ideal I of R which is also of finite index in R. If $I=\{0\}$, then R is finite; if $I \neq\{0\}$, Theorem 2.1 implies that R has a nonzero commutative ideal and hence R is commutative.
3. The case of R semiprime. Let R be semiprime, U a right ideal, and $H=U \cap$ $C_{R}([U, U])$. Let $\left\{P_{\alpha} \mid \alpha \in \Lambda\right\}$ be a collection of prime ideals such that $\cap P_{\alpha}=\{0\}$. Now (2.1) holds in R, hence for each $\alpha \in \Lambda$ and each $z \in H$, either $[z, R] \subseteq P_{\alpha}$ or $z U \subseteq P_{\alpha}$. Since each of these conditions defines an additive subgroup of H, we see that $[H, R] \subseteq$ P_{α} or $H U \subseteq P_{\alpha}$; therefore $[H, H] \subseteq P_{\alpha}$ for all $\alpha \in \Lambda$. Thus [H,H]=\{0\}-that is, H is a commutative subring of R.
Revisiting the proof of Theorem 2.2, we see that in the semiprime case, either R is finite or R contains a nonzero commutative ideal I. But in a semiprime ring, a commutative ideal is central; hence we have the following extension of Theorem 2.2.

Theorem 3.1. Let R be a semiprime ring and U a right ideal of finite index in R. If [U, U] is finite, then either R is finite or R contains a nonzero central ideal.

References

[1] H. E. Bell and A. A. Klein, On rings with Engel cycles. II, Results Math. 21 (1992), no. 3-4, 264-273. MR 93d:16039. Zbl 786.16015.
[2] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. CMP 1143 947. Zbl 746.16029.
[3] J. Lewin, Subrings of finite index in finitely generated rings, J. Algebra 5 (1967), 84-88. MR 34\#196. Zbl 143.05303.

Howard E. Bell: Department of Mathematics, Brock University, ST. Catharines, Ontario L2S 3A1, CANADA

E-mail address: hbe11@spartan.ac.brocku.ca

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

