ON A SUBGROUP OF THE AFFINE WEYL GROUP $ilde{C}_4$

MUHAMMAD A. ALBAR

(Received 16 March 1999)

ABSTRACT. We study a subgroup of the affine Weyl group \tilde{C}_4 and show that this subgroup is a homomorphic image of the triangle group $\triangle(3,4,4)$.

Keywords and phrases. Group presentation, Reidemeister-Schreier process, Coxeter group, *SQ*-universality.

2000 Mathematics Subject Classification. Primary 20F05.

1. Introduction. In the algebraic structures of the Coxeter groups $\tilde{A}_{n-1}, B_n, D_n$, we observe the following. \tilde{A}_{n-1} is the subgroup of the wreath product $Z2S_n$ such that $\tilde{A}_{n-1} \cong Z^{n-1} \rtimes S_n$, where Z^{n-1} is the subgroup of Z^n consisting of all elements of exponent sum zero [2]; D_n is a subgroup of $B_n \cong Z2S_n$ such that $D_n \cong Z_2^{n-1} \rtimes S_n$ and Z_2^{n-1} is the subgroup of Z_2^n containing all elements of exponent sum zero [4]. We have the following natural question about $\tilde{C}_n \cong D_{\infty}^{n-1} \rtimes S_{n-1}$. What is the subgroup K of \tilde{C}_n , where $K \cong H \rtimes S_{n-1}$ and H is the subgroup of D_{∞}^{n-1} consisting of all elements of exponent sum zero [3]. In this paper we answer the question for n = 4 and find that the subgroup $H \rtimes S_3$ is a factor group of the triangle group $\Delta(3, 4, 4)$.

We begin by giving a presentation for the direct product of three copies of the infinite dihedral group

$$D_{\infty}^{3} = \langle a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \mid a_{i}^{2} = b_{i}^{2} = e, 1 \le i \le 3;$$

$$a_{i}a_{j} = a_{j}a_{i}, 1 \le i < j \le 3;$$

$$b_{i}b_{j} = b_{j}b_{i}, 1 \le i < j \le 3;$$

$$a_{i}b_{j} = b_{j}b_{i} \text{ if } i \ne j, 1 \le i, j \le 3 \rangle.$$
(1.1)

A presentation for the symmetric group of degree 3 is

$$S_3 = \langle x_1, x_2 | x_1^2 = x_2^2 = (x_1 x_2)^3 = e \rangle.$$
(1.2)

In [3], it is shown that \tilde{C}_4 is the semi-direct product $\tilde{C}_4 \cong D^3_{\infty} \rtimes S_3$ with the natural action

$$(a_1, a_2, a_3)^{\chi_1} = (a_2, a_1, a_3), (a_1, a_2, a_3)^{\chi_2} = (a_1, a_3, a_2),$$
(1.3)

$$(b_1, b_2, b_3)^{x_1} = (b_2, b_1, b_3), (b_1, b_2, b_3)^{x_2} = (b_1, b_3, b_2).$$
 (1.4)

We consider the subgroup *H* of D^3_{∞} containing all elements of exponent sum zero. *H* is a normal subgroup of D_{∞} and $D_{\infty}/H \cong \langle a_1 | a_1^2 = e \rangle$. Using the Reidemeister-Schreier

process we find the following presentation for *H*:

$$H = \langle y_1, y_2, y_3, y_4, y_5 | y_1^2 = y_2^2 = y_3^2 = y_5^2 = (y_1 y_2)^2 = (y_2 y_3)^2 = (y_3 y_4)^2$$

= $(y_4 y_5)^2 = (y_5 y_1)^2 = (y_2 y_4)^2 = (y_3 y_5)^2 = (y_1 y_4)^2 = e \rangle,$ (1.5)

where $y_1 = a_1b_3$, $y_2 = a_2a_1$, $y_3 = a_1a_3$, $y_4 = a_1b_1$, $y_5 = a_1b_2$. From the action of S_3 on D^3_{∞} we easily compute the following action of S_3 on H:

$$(y_1, y_2, y_3, y_4, y_5)^{x_1} = (y_2 y_1, y_2, y_2 y_3, y_2 y_5, y_2 y_4),$$
(1.6)

$$(y_1, y_2, y_3, y_4, y_5)^{x_2} = (y_5, y_3, y_2, y_4, y_1).$$
(1.7)

2. The group $H \rtimes S_3$. We use the method of presentation of group extensions described in [1] to find a presentation for $H \rtimes S_3$ with the action computed in Section 1. A presentation for $H \rtimes S_3$ is

$$H \rtimes S_3 = \langle x_1, x_2, y_1, y_2, y_3, y_4, y_5 \mid RH, RS_3, H^{S_3} \rangle,$$
(2.1)

where *RH* are the relations of *H*,*RS*₃ are the relations of *S*₃, the relations H^{S_3} are the action of *S*₃ on *H*. Lengthy computations using Tietze transformations give the following presentation for $H \rtimes S_3$,

$$H \rtimes S_3 = \langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^3 = (bc)^4 = (ca)^4 = (bacac)^3 = e \rangle.$$
(2.2)

We observe that if $\triangle(3,4,4)$ is the hyperbolic triangle group generated by *a*, *b*, and *c* and *N* is the normal closure of $(bcac)^3$ in $\triangle(3,4,4)$, then $H \rtimes S_3$ is the factor group $(\triangle(3,4,4))/N$.

3. The triangle group $\triangle(3,4,4)$ **.** The triangle group $\triangle(3,4,4)$ is given by the presentations

$$\triangle(3,4,4) = \langle a,b,c \mid a^2 = b^2 = c^2 = (ab)^3 = (bc)^4 = (ca)^4 = e \rangle.$$
(3.1)

It is one of the hyperbolic triangle groups. $\triangle(3,4,4)$ is *SQ*-universal [6]. We find the derived subgroup of $\triangle(3,4,4)$ and show that it is *SQ*-universal using a method different from that in [7]. We also compute the growth series (word growth in the sense of Milnor and Gromov) of $\triangle(3,4,4)$. Using the Reidemeister-Schreier process we find that $\triangle'(3,4,4)$ is

$$\triangle'(3,4,4) = \langle x, y, z \mid x^2 = y^4 = (xy)^3 = (yz^{-1})^2 = e \rangle.$$
(3.2)

We consider the map θ : $\triangle(3,4,4) \rightarrow Z_2 = \langle v | v^2 = e \rangle$ defined by $\theta(x) = \theta(y) = \theta(z) = v$. It is easy to see that

$$\ker \theta = \langle a, b, c, d \mid (ab)^2 = c^3 = d^3 = (ab^{-1})^2 = (bd^{-1})^2 = e \rangle.$$
(3.3)

We define another map ϕ : ker $\theta \to Z_2 = \langle u | u^2 = e \rangle$ by $\phi(a) = \phi(b) = u$ and $\phi(c) = \phi(d) = e$. Then ker ϕ has the presentation

$$\ker \phi = \langle x_1, x_2, x_3, x_4, x_5, x_6 | x_3^2 = x_4^3 = x_5^3 = x_6^3 = (x_1 x_2)^2 = (x_1 x_4)^3 = x_2 x_6^{-1} x_3 x_5^{-1} = x_3 x_5^{-1} x_2 x_6^{-1} = e \rangle.$$
(3.4)

Letting $x_1 = x_5 = x_6 = e$ and $x_2 = x_3$ in ker ϕ we get $\langle x_2, x_4 | x_2^2 = x_4^3 = e \rangle = Z_2 * Z_3$. Since the free product $Z_2 * Z_3$ is SQU [7], therefore ker θ is SQU. But ker θ is of finite index in $\triangle(3,4,4)$. Hence $\triangle(3,4,4)$ is SQU [7]. The growth series of $\triangle(3,4,4)$ is computed using exercise 26 in Section 1 of Chapter 4 in Bourbaki [5] as

$$\gamma(t) = \frac{(1+t)(1+t+t^2)(1+t+t^2+t^3)}{1-t^2-2t^3-t^4+t^6}.$$
(3.5)

We observe that zeros of the denominator of $\gamma(t)$ are not in the unit circle which implies that $\triangle(3,4,4)$ does not have a nilpotent subgroup of finite index. This is also known since $\triangle(3,4,4)$ is *SQU*.

REMARK 3.1. It is interesting to know what subgroup of \tilde{C}_n we get for n > 4. We did not find that yet.

ACKNOWLEDGEMENT. The author thanks King Fahd University of Petroleum and Minerals for support.

REFERENCES

- M. A. Albar, On presentation of group extensions, Comm. Algebra 12 (1984), no. 23-24, 2967-2975. MR 86g:20040. Zbl 551.20017.
- [2] _____, On the affine Weyl group of type \tilde{A}_{n-1} , Int. J. Math. Math. Sci. **10** (1987), no. 1, 147-154. MR 88b:20051. Zbl 634.20014.
- [3] M. A. Albar and M. Al-Hamed, *The structure of the affine Weyl group* \tilde{C}_n , To appear in the Royal Irish Academy.
- [4] M. A. Albar and N. A. Al-Saleh, On the affine Weyl group of type B_n, Math. Japon. 35 (1990), no. 4, 599–602. MR 91d:20030. Zbl 790.20048.
- [5] N. Bourbaki, Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et Systèmes de Tits. Chapitre V: Groupes engendrés par des Réflexions. Chapitre VI: Systèmes de Racines, Actualites Scientifiques et Industriellés, No. 1337, Hermann, Paris, 1968. MR 39#1590. Zbl 186.33001.
- [6] J. E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002. Zbl 725.20028.
- P. M. Neumann, *The SQ-universality of some finitely presented groups*, J. Austral. Math. Soc. 16 (1973), 1–6, Collection of articles dedicated to the memory of Hanna Neumann, I. MR 48#11342. Zbl 267.20026.

MUHAMMAD A. ALBAR: DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN 31261, SAUDI ARABIA

783

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

