ON A SUBGROUP OF THE AFFINE WEYL GROUP \tilde{C}_{4}

MUHAMMAD A. ALBAR

(Received 16 March 1999)

AbSTRACT. We study a subgroup of the affine Weyl group \tilde{C}_{4} and show that this subgroup is a homomorphic image of the triangle group $\triangle(3,4,4)$.

Keywords and phrases. Group presentation, Reidemeister-Schreier process, Coxeter group, $S Q$-universality.

2000 Mathematics Subject Classification. Primary 20 F05.

1. Introduction. In the algebraic structures of the Coxeter groups $\tilde{A}_{n-1}, B_{n}, D_{n}$, we observe the following. \tilde{A}_{n-1} is the subgroup of the wreath product $Z 2 S_{n}$ such that $\tilde{A}_{n-1} \cong Z^{n-1} \rtimes S_{n}$, where Z^{n-1} is the subgroup of Z^{n} consisting of all elements of exponent sum zero [2]; D_{n} is a subgroup of $B_{n} \cong Z 2 S_{n}$ such that $D_{n} \cong Z_{2}^{n-1} \rtimes S_{n}$ and Z_{2}^{n-1} is the subgroup of Z_{2}^{n} containing all elements of exponent sum zero [4]. We have the following natural question about $\tilde{C}_{n} \cong D_{\infty}^{n-1} \rtimes S_{n-1}$. What is the subgroup K of \tilde{C}_{n}, where $K \cong H \rtimes S_{n-1}$ and H is the subgroup of D_{∞}^{n-1} consisting of all elements of exponent sum zero [3]. In this paper we answer the question for $n=4$ and find that the subgroup $H \rtimes S_{3}$ is a factor group of the triangle group $\triangle(3,4,4)$.

We begin by giving a presentation for the direct product of three copies of the infinite dihedral group

$$
\begin{align*}
D_{\infty}^{3}=\langle & \left\langle a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right| a_{i}^{2}=b_{i}^{2}=e, 1 \leq i \leq 3 \\
& a_{i} a_{j}=a_{j} a_{i}, 1 \leq i<j \leq 3 \\
& b_{i} b_{j}=b_{j} b_{i}, 1 \leq i<j \leq 3 \tag{1.1}\\
& \left.a_{i} b_{j}=b_{j} b_{i} \text { if } i \neq j, 1 \leq i, j \leq 3\right\rangle
\end{align*}
$$

A presentation for the symmetric group of degree 3 is

$$
\begin{equation*}
S_{3}=\left\langle x_{1}, x_{2} \mid x_{1}^{2}=x_{2}^{2}=\left(x_{1} x_{2}\right)^{3}=e\right\rangle \tag{1.2}
\end{equation*}
$$

In [3], it is shown that \tilde{C}_{4} is the semi-direct product $\tilde{C}_{4} \cong D_{\infty}^{3} \rtimes S_{3}$ with the natural action

$$
\begin{align*}
& \left(a_{1}, a_{2}, a_{3}\right)^{x_{1}}=\left(a_{2}, a_{1}, a_{3}\right),\left(a_{1}, a_{2}, a_{3}\right)^{x_{2}}=\left(a_{1}, a_{3}, a_{2}\right) \tag{1.3}\\
& \left(b_{1}, b_{2}, b_{3}\right)^{x_{1}}=\left(b_{2}, b_{1}, b_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)^{x_{2}}=\left(b_{1}, b_{3}, b_{2}\right) \tag{1.4}
\end{align*}
$$

We consider the subgroup H of D_{∞}^{3} containing all elements of exponent sum zero. H is a normal subgroup of D_{∞} and $D_{\infty} / H \cong\left\langle a_{1} \mid a_{1}^{2}=e\right\rangle$. Using the Reidemeister-Schreier
process we find the following presentation for H :

$$
\begin{gather*}
H=\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right| y_{1}^{2}=y_{2}^{2}=y_{3}^{2}=y_{5}^{2}=\left(y_{1} y_{2}\right)^{2}=\left(y_{2} y_{3}\right)^{2}=\left(y_{3} y_{4}\right)^{2} \\
\left.=\left(y_{4} y_{5}\right)^{2}=\left(y_{5} y_{1}\right)^{2}=\left(y_{2} y_{4}\right)^{2}=\left(y_{3} y_{5}\right)^{2}=\left(y_{1} y_{4}\right)^{2}=e\right\rangle, \tag{1.5}
\end{gather*}
$$

where $y_{1}=a_{1} b_{3}, y_{2}=a_{2} a_{1}, y_{3}=a_{1} a_{3}, y_{4}=a_{1} b_{1}, y_{5}=a_{1} b_{2}$. From the action of S_{3} on D_{∞}^{3} we easily compute the following action of S_{3} on H :

$$
\begin{align*}
& \left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)^{x_{1}}=\left(y_{2} y_{1}, y_{2}, y_{2} y_{3}, y_{2} y_{5}, y_{2} y_{4}\right), \tag{1.6}\\
& \left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)^{x_{2}}=\left(y_{5}, y_{3}, y_{2}, y_{4}, y_{1}\right) . \tag{1.7}
\end{align*}
$$

2. The group $H \rtimes S_{3}$. We use the method of presentation of group extensions described in [1] to find a presentation for $H \rtimes S_{3}$ with the action computed in Section 1. A presentation for $H \rtimes S_{3}$ is

$$
\begin{equation*}
H \rtimes S_{3}=\left\langle x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \mid R H, R S_{3}, H^{S_{3}}\right\rangle, \tag{2.1}
\end{equation*}
$$

where $R H$ are the relations of $H, R S_{3}$ are the relations of S_{3}, the relations $H^{S_{3}}$ are the action of S_{3} on H. Lengthy computations using Tietze transformations give the following presentation for $H \rtimes S_{3}$,

$$
\begin{equation*}
H \rtimes S_{3}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{3}=(b c)^{4}=(c a)^{4}=(b a c a c)^{3}=e\right\rangle . \tag{2.2}
\end{equation*}
$$

We observe that if $\triangle(3,4,4)$ is the hyperbolic triangle group generated by a, b, and c and N is the normal closure of $(b c a c)^{3}$ in $\triangle(3,4,4)$, then $H \rtimes S_{3}$ is the factor group $(\triangle(3,4,4)) / N$.
3. The triangle group $\triangle(3,4,4)$. The triangle group $\triangle(3,4,4)$ is given by the presentations

$$
\begin{equation*}
\Delta(3,4,4)=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{3}=(b c)^{4}=(c a)^{4}=e\right\rangle . \tag{3.1}
\end{equation*}
$$

It is one of the hyperbolic triangle groups. $\triangle(3,4,4)$ is $S Q$-universal [6]. We find the derived subgroup of $\triangle(3,4,4)$ and show that it is $S Q$-universal using a method different from that in [7]. We also compute the growth series (word growth in the sense of Milnor and Gromov) of $\triangle(3,4,4)$. Using the Reidemeister-Schreier process we find that $\triangle^{\prime}(3,4,4)$ is

$$
\begin{equation*}
\triangle^{\prime}(3,4,4)=\left\langle x, y, z \mid x^{2}=y^{4}=(x y)^{3}=\left(y z^{-1}\right)^{2}=e\right\rangle . \tag{3.2}
\end{equation*}
$$

We consider the map $\theta: \Delta(3,4,4) \rightarrow Z_{2}=\left\langle v \mid v^{2}=e\right\rangle$ defined by $\theta(x)=\theta(y)=$ $\theta(z)=v$. It is easy to see that

$$
\begin{equation*}
\operatorname{ker} \theta=\left\langle a, b, c, d \mid(a b)^{2}=c^{3}=d^{3}=\left(a b^{-1}\right)^{2}=\left(b d^{-1}\right)^{2}=e\right\rangle . \tag{3.3}
\end{equation*}
$$

We define another map $\phi: \operatorname{ker} \theta \rightarrow Z_{2}=\left\langle u \mid u^{2}=e\right\rangle$ by $\phi(a)=\phi(b)=u$ and $\phi(c)=$ $\phi(d)=e$. Then $\operatorname{ker} \phi$ has the presentation

$$
\begin{align*}
& \operatorname{ker} \phi=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right| x_{3}^{2}=x_{4}^{3}=x_{5}^{3}=x_{6}^{3}=\left(x_{1} x_{2}\right)^{2} \\
&\left.=\left(x_{1} x_{4}\right)^{3}=x_{2} x_{6}^{-1} x_{3} x_{5}^{-1}=x_{3} x_{5}^{-1} x_{2} x_{6}^{-1}=e\right\rangle . \tag{3.4}
\end{align*}
$$

Letting $x_{1}=x_{5}=x_{6}=e$ and $x_{2}=x_{3}$ in ker ϕ we get $\left\langle x_{2}, x_{4} \mid x_{2}^{2}=x_{4}^{3}=e\right\rangle=Z_{2} * Z_{3}$. Since the free product $Z_{2} * Z_{3}$ is $S Q U$ [7], therefore $\operatorname{ker} \theta$ is $S Q U$. But ker θ is of finite index in $\triangle(3,4,4)$. Hence $\triangle(3,4,4)$ is $S Q U$ [7]. The growth series of $\triangle(3,4,4)$ is computed using exercise 26 in Section 1 of Chapter 4 in Bourbaki [5] as

$$
\begin{equation*}
\gamma(t)=\frac{(1+t)\left(1+t+t^{2}\right)\left(1+t+t^{2}+t^{3}\right)}{1-t^{2}-2 t^{3}-t^{4}+t^{6}} \tag{3.5}
\end{equation*}
$$

We observe that zeros of the denominator of $\gamma(t)$ are not in the unit circle which implies that $\triangle(3,4,4)$ does not have a nilpotent subgroup of finite index. This is also known since $\triangle(3,4,4)$ is $S Q U$.

REMARK 3.1. It is interesting to know what subgroup of \tilde{C}_{n} we get for $n>4$. We did not find that yet.

Acknowledgement. The author thanks King Fahd University of Petroleum and Minerals for support.

REFERENCES

[1] M. A. Albar, On presentation of group extensions, Comm. Algebra 12 (1984), no. 23-24, 2967-2975. MR 86g:20040. Zbl 551.20017.
[2] __ On the affine Weyl group of type \tilde{A}_{n-1}, Int. J. Math. Math. Sci. 10 (1987), no. 1, 147-154. MR 88b:20051. Zbl 634.20014.
[3] M. A. Albar and M. Al-Hamed, The structure of the affine Weyl group \tilde{C}_{n}, To appear in the Royal Irish Academy.
[4] M. A. Albar and N. A. Al-Saleh, On the affine Weyl group of type B_{n}, Math. Japon. 35 (1990), no. 4, 599-602. MR 91d:20030. Zbl 790.20048.
[5] N. Bourbaki, Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et Systèmes de Tits. Chapitre V: Groupes engendrés par des Réflexions. Chapitre VI: Systèmes de Racines, Actualites Scientifiques et Industriellés, No. 1337, Hermann, Paris, 1968. MR 39\#1590. Zbl 186.33001.
[6] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002. Zbl 725.20028.
[7] P. M. Neumann, The SQ-universality of some finitely presented groups, J. Austral. Math. Soc. 16 (1973), 1-6, Collection of articles dedicated to the memory of Hanna Neumann, I. MR 48\#11342. Zbl 267.20026.

Muhammad A. Albar: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

