ALMOST AUTOMORPHIC SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS IN BANACH SPACES

GASTON MANDATA N'GUEREKATA

(Received 12 November 1997 and in revised form 2 March 1998)

Abstract

We discuss the conditions under which bounded solutions of the evolution equation $x^{\prime}(t)=A x(t)+f(t)$ in a Banach space are almost automorphic whenever $f(t)$ is almost automorphic and A generates a C_{0}-group of strongly continuous operators. We also give a result for asymptotically almost automorphic solutions for the more general case of $x^{\prime}(t)=A x(t)+f(t, x(t))$.

Keywords and phrases. Almost automorphic functions, mild solutions, generator of a $C_{0^{-}}$ group, linear operators.

2000 Mathematics Subject Classification. Primary 34G10.

1. Introduction. Let A generate a C_{0}-group of strongly continuous operators $T(t)$, $t \in \mathbb{R}$ on a Banach space X. Let $f \in L^{\infty}(\mathbb{R} ; X)$. A basic unsolved problem is: what is the structure of bounded (on \mathbb{R}) mild solutions of $x^{\prime}(t)=A x(t)+f(t)$? Classically results go back to Ordinary Differential Equations (when dimension of X is finite), and one sought solutions $x(t)$ such that $x(t)-y(t) \rightarrow 0$ as $t \rightarrow \infty$, when either $y(t)$ is a constant or a periodic function of time. In the evolution context of $x^{\prime}=A x+f$, much has been written on asymptotically constant or periodic solutions. Several authors extended these ideas to almost periodic solutions (when f is almost periodic). Our main result (Theorem 1.6) is inspired by the interesting work of Goldstein [3]. We are actually concerned with the more general case of almost automorphic, and when bounded solutions are almost automorphic. We also give a new result (Theorem 1.7) concerning mild solutions of the equation $x^{\prime}(t)=A x(t)+f(t, x(t))$ which approach almost automorphic functions at infinity under specific conditions on the function $f(t, x)$. See also [6] for another comparable situation.
Let X be a Banach space equipped with the topology norm and $\mathbb{R}=(-\infty, \infty)$ the set of real numbers. Let us first recall some definitions.

Definition 1.1 (Bochner). A continuous function $f: \mathbb{R} \rightarrow X$ is said to be almost automorphic if and only if, from any sequence of real numbers $\left(s_{n}^{\prime}\right)_{n=1}^{\infty}$, we can subtract a subsequence $\left(s_{n}\right)_{n=1}^{\infty}$ such that: $\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)=g(t)$ exists for each real number t, and $\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)=f(t)$ for each t.

Definition 1.2 [4]. A continuous function $f: \mathbb{R}^{+} \rightarrow X$ is said to be asymptotically almost automorphic if and only if there exists an almost automorphic function g : $\mathbb{R} \rightarrow X$ and a continuous function $h: \mathbb{R}^{+} \rightarrow X$ with $\lim _{t \rightarrow \infty}\|h(t)\|=0$ and such that $f(t)=g(t)+h(t)$ for each $t \in \mathbb{R}^{+}$.

DEFINITION 1.3. A Banach space X is said to be perfect if and only if every bounded function $u: \mathbb{R} \rightarrow X$ with an almost automorphic derivative $u^{\prime}(t)$ is necessarily almost automorphic.

REmARK 1.4. Uniformly convex Banach spaces are nice examples of perfect Banach spaces (see [10, Theorem 1.4]).

We consider the evolution equation

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+f(t), \quad t \in \mathbb{R} . \tag{1.1}
\end{equation*}
$$

Theorem 1.5. Let X be a perfect Banach space. Let A be a bounded linear operator $X \rightarrow X$ and $f: \mathbb{R} \rightarrow X$ an almost automorphic function. Then any bounded strong solution of (1.1) is almost automorphic if we assume that there exists a finite-dimensional subspace X_{1} of X such that
($\alpha) ~ A x(0) \in X_{1}$,
(β) $\left(e^{t A}-I\right) f(s) \in X_{1}$ for any $s, t \in \mathbb{R}$,
(γ) $e^{t A} u \in X_{1}$ for any $t \in \mathbb{R}$ and for any $u \in X_{1}$.
Proof. Let P be the projection of X onto X_{1}; such P always exists (cf. [7]) and possesses the following properties:
(1) $X=X_{1} \oplus \operatorname{ker}(P)$, where $\operatorname{ker}(P)$ is the kernel of the operator P,
(2) P is bounded on X.

If we put $Q=I-P$, then it is easy to verify that $Q^{2}=Q$ on X and $Q u=0$ for any $u \in X_{1}$. Now if $x(t)$ is a bounded solution of (1.1), then we can write it as

$$
\begin{equation*}
x(t)=x_{1}(t)+x_{2}(t) \tag{1.2}
\end{equation*}
$$

with $x_{1}(t)=P x(t) \in X_{1}$ and $x_{2}(t)=Q x(t) \in \operatorname{ker}(P)$.
Since $x(t)$ is bounded on \mathbb{R}, it is clear that both $x_{1}(t)$ and $x_{2}(t)$ are also bounded on \mathbb{R}. On the other hand, we have

$$
\begin{equation*}
x^{\prime}(t)=x_{1}^{\prime}(t)+x_{2}^{\prime}(t)=A x_{1}(t)+A x_{2}(t)+P f(t)+Q f(t), \quad t \in \mathbb{R} . \tag{1.3}
\end{equation*}
$$

But $x(t)$ has the well-known Lagrange representation:

$$
\begin{align*}
x(t) & =e^{t A} x(0)+\int_{0}^{t} e^{(t-s) A} f(s) d s \\
& =e^{t A} x(0)+\int_{0}^{t} f(s) d s+\int_{0}^{t}\left(e^{(t-s) A}-I\right) f(s) d s \tag{1.4}
\end{align*}
$$

By assumption (β), we deduce that $\int_{0}^{t}\left(e^{(t-s) A}-I\right) f(s) d s$ is in X_{1}, so that if we apply Q to both sides of (1.4), we get

$$
\begin{equation*}
x_{2}(t)=Q e^{t A} x(0)+Q \int_{0}^{t} f(s) d s=Q e^{t A} x(0)+\int_{0}^{t} Q f(s) d s, \tag{1.5}
\end{equation*}
$$

consequently

$$
\begin{equation*}
x_{2}^{\prime}(t)=Q e^{t A} A x(0)+Q f(t)=Q f(t) \tag{1.6}
\end{equation*}
$$

using conditions (α) and (γ).

It is clear that $Q f(t)$ and thus $x_{2}^{\prime}(t)$ is almost automorphic (see [9, page 586]). Since $x_{2}(t)$ is bounded, then it is almost automorphic for we are in a perfect Banach space.
Now if we apply P to both sides of (1.3), we get in the finite-dimensional space X_{1} the differential equation

$$
\begin{equation*}
x_{1}^{\prime}(t)=P A x_{1}(t)+P A x_{2}(t)+P^{2} f(t)+P Q f(t), \quad t \in \mathbb{R} . \tag{1.7}
\end{equation*}
$$

Since the function $g(t) \equiv P^{2} f(t)+P Q f(t)$ is almost automorphic and $P A$ is a bounded linear operator, we deduce that $x_{1}(t)$ is almost automorphic [9, Theorem 3]. Finally, $x(t)$ is almost automorphic as the sum of two almost automorphic functions.

Theorem 1.5 can be generalized to the case of unbounded operator A as follows.
Theorem 1.6. In a perfect Banach space X, let A generate a C_{0}-group of strongly continuous linear operators $T(t), t \in \mathbb{R}$. Assume that there exists a finite-dimensional subspace X_{1} of X such that:
$(\alpha) A x(0) \in X_{1}$,
($\left.\beta^{\prime}\right)(T(t)-I) f(s) \in X_{1}$ for any $s, t \in \mathbb{R}$,
(γ) $T(t) u \in X_{1}$ for any $t \in \mathbb{R}$ and any $u \in X_{1}$.
Then every bounded solution of (1.1) is almost automorphic.
Proof. We just follow the proof of Theorem 1.5 with the appropriate modifications. Here solutions are written as $x(t)=T(t) x(0)+\int_{0}^{t} T(t-s) f(s) d s$.

We return now to a general (not necessarily perfect) Banach space X. We state and prove the following theorem.

Theorem 1.7. Let A be a (possibly unbounded) linear operator which is the generator of a C_{0}-group of strongly continuous linear operators $T(t), t \in \mathbb{R}$ such that $T(t) x: \mathbb{R} \rightarrow X$ is almost automorphic for each $x \in X$. Consider the differential equation

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+f(t, x(t)), \tag{1.8}
\end{equation*}
$$

where $f(t, x): \mathbb{R} \times X \rightarrow X$ is strongly continuous with respect to jointly t and x and such that $\|f(t, x)-f(t, y)\| \leq L\|x-y\|$ for any $t \in \mathbb{R}, x, y \in X$, and $\int_{0}^{\infty}\|f(t, 0)\| d t<\infty$.

Then every mild solution $x(t)$ of (1.8) with $\int_{0}^{\infty}\|x(t)\| d t<\infty$ is asymptotically almost automorphic.

Proof. Let $x: \mathbb{R}^{+} \rightarrow X$ be a mild solution of (1.8). Then we have

$$
\begin{equation*}
x(t)=T(t) x(0)+\int_{0}^{t} T(t-s) f(s, x(s)) d s \tag{1.9}
\end{equation*}
$$

We claim that $\int_{0}^{\infty} T(-s) f(s, x(s)) d s$ exists in X (in Bochner's sense). Indeed, since $T(t)$ is almost automorphic for each $x \in X$, then

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|T(t) x\|<\infty \quad \text { for each } x \in X \tag{1.10}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|T(t)\|=M<\infty, \tag{1.11}
\end{equation*}
$$

by the uniform boundedness principle. Let us write

$$
\begin{equation*}
\int_{0}^{\infty} T(-s) f(s, x(s)) d s=\int_{0}^{\infty} T(-s)(f(s, x(s))-f(s, 0)) d s+\int_{0}^{\infty} T(-s) f(s, 0) d s, \tag{1.12}
\end{equation*}
$$

then we get the inequality

$$
\begin{equation*}
\left\|\int_{0}^{\infty} T(-s) f(s, x(s)) d s\right\| \leq M\left(L \int_{0}^{\infty}\|x(s)\| d s+\int_{0}^{\infty}\|f(s, 0)\| d s\right)<\infty . \tag{1.13}
\end{equation*}
$$

Now the continuous function $F: \mathbb{R} \rightarrow X$ defined by

$$
\begin{equation*}
F(t)=\int_{0}^{\infty} T(t-s) f(s, x(s)) d s=T(t) \int_{0}^{\infty} T(-s) f(s, x(s)) d s \tag{1.14}
\end{equation*}
$$

is almost automorphic; therefore $V(t)=T(t) x(0)+F(t)$ is also almost automorphic. Let us consider the continuous function $W: \mathbb{R}^{+} \rightarrow X$

$$
\begin{equation*}
W(t)=-\int_{t}^{\infty} T(t-s) f(s, x(s)) d s . \tag{1.15}
\end{equation*}
$$

If we use the same computation as for $F(t)$ in (1.14), we get

$$
\begin{equation*}
\|W(t)\| \leq M\left(L \int_{t}^{\infty}\|x(s) d s\|+\int_{t}^{\infty}\|f(s, 0) d s\|\right) \tag{1.16}
\end{equation*}
$$

which shows that $\lim _{t \rightarrow \infty}\|W(t)\|=0$.
Finally $x(t)=V(t)+W(t), t \in \mathbb{R}^{+}$is asymptotically almost automorphic.
Remark 1.8. (1) An example of Theorem 1.5 (occurring in Sturm-Liouville theory, for instance) is when X is a Hilbert space and $A \varphi_{n}=\lambda_{n} \varphi_{n}$ for $\left\{\varphi_{n}: n=1,2, \ldots\right\}$ an orthonormal basis and $\left|\operatorname{Re}\left(\lambda_{n}\right)\right| \leq M$ for all n. For X_{1}, one may take $X_{1}=$ $\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ (for any N) and assume $f \in L^{\infty}\left(\mathbb{R}, X_{1}\right)$.
(2) An example of operator A satisfying the hypothesis of Theorem 1.7 is the above example with $A^{*}=-A$, i.e., $M=0$.

Acknowledgements. The present research was supported by a research grant from Morgan State University. The author is very grateful to the referee for his/her useful suggestions.

References

[1] S. Bochner, Uniform convergence of monotone sequences of functions, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 582-585. MR 23\#A3390. Zbl 103.05304.
[2] , Continuous mappings of almost automorphic and almost periodic functions, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 907-910. MR 29\#6252. Zbl 134.30102.
[3] J. A. Goldstein, Convexity, boundedness, and almost periodicity for differential equations in Hilbert space, Internat. J. Math. Math. Sci. 2 (1979), no. 1, 1-13. MR 80e:34040. Zbl 397.34041.
[4] G. M. N'Guérékata, Sur les solutions presqu'automorphes d'équations différentielles abstraites, Ann. Sci. Math. Québec 5 (1981), no. 1, 69-79. MR 82h:34085. Zbl 494.34045.
\qquad , Quelques remarques sur les fonctions asymptotiquement presque automorphes, Ann. Sci. Math. Québec 7 (1983), no. 2, 185-191. MR 84k:43009. Zbl 524.34064.
[6] , An asymptotic theorem for abstract differential equations, Bull. Austral. Math. Soc. 33 (1986), no. 1, 139-144. MR 87c:34126. Zbl 581.34029.
[7] M. Schechter, Principles of Functional Analysis, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1973. MR 57\#7085.
[8] W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719-751. MR 32\#4469. Zbl 137.05803.
[9] S. Zaidman, Almost automorphic solutions of some abstract evolution equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 110 (1976), no. 2, 578-588 (1977). MR 58\#6593. Zbl 374.34042.
[10] M. Zaki, Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl. (4) 101 (1974), 91-114. MR 51\#1059. Zbl 304.42028.

N'Guerekata: Department of Mathematics, Morgan State University, Cold Spring lane and Hillen Road, Baltimore, MD 21251, USA

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

