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Abstract. Necessary and sufficient conditions for the existence of common stationary
points of two multivalued mappings and common stationary point theorems for multival-
ued mappings on bounded metric spaces are given. Our results extend the theorems due
to Fisher in 1979, 1980, and 1983 and Ohta and Nikaido in 1994.
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1. Introduction. Let (X,d) be ametric space and B(X) denote the set of all nonempty
bounded subsets of X. For A, B ∈ X, let δ(A,B) = sup{d(a,b) : a ∈ A, b ∈ B} and
δ(A) = δ(A,A). If A consists of a single point a, we write δ(A,B) = δ(a,B). If B also
consists of a single point b, we write δ(A,B)= δ(a,b)= d(a,b). Let N and ω denote
the sets of positive integers and nonnegative integers, respectively. Let Φ denote a
family of mappings such that for each φ∈ Φ, φ : [0,∞)→ [0,∞) is upper semicontin-
uous, nondecreasing and φ(t) < t for t > 0.
The following definitions and lemmas were introduced by Fisher [3] and Singh and

Meade [6].

Definition 1.1 [3]. Let {An} be a sequence of sets in B(X) and A ∈ B(X). The
sequence {An} is said to converge to the set A if

(i) each pointa∈A is the limit of some convergent sequence {an}, wherean ∈An

for n∈N ;
(ii) for arbitrary ε > 0, there exists k ∈ N such that An ⊆ Aε, for n > k, where Aε

is the union of all open spheres with centres in A and radius ε.

Definition 1.2 [3]. Let F be a multivalued mapping of (X,d) into B(X). The map-
ping F is called continuous in X if whenever {xn} is a sequence of points in X con-
verging to x ∈X, the sequence {Fxn} in B(X) converges to Fx ∈ B(X).

Lemma 1.3 [3]. If {An} and {Bn} are sequences of bounded subsets of a complete
metric space (X,d) which converge to the bounded subsets A and B, respectively, then
the sequence {δ(An,Bn)} converges to δ(A,B).

Lemma 1.4 [6]. Let φ∈ Φ. Then φ(t) < t for each t > 0 if and only if

lim
n→∞φ

n(t)= 0, (1.1)

where φn denotes the n-times composition of φ.
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Let F and G be mappings of (X,d) into B(X). A point x ∈ X is called a com-
mon stationary point of F and G if Fx = Gx = {x}. For A ⊆ X, let FA = ∪a∈AFa
and GFA = G(FA). The mappings F and G are said to commute if FGx = GFx for
x ∈X. Define CF = {T : T is a mapping of X into B(X) and T and F commute} and
CCF = {T : T is continuous and T ∈ CF}. It follows that CF ⊇ {Fn : n ∈ ω}, where
F0x = {x} for x ∈X.
Throughout the rest of the paper, we assume that (X,d) is a complete bounded

metric space.
In 1979, Fisher [1] proved a common fixed point theorem for commuting mappings

f and g of (X,d) into itself satisfying

d(fx,gy)≤ cmax
{
d(x,y),d(x,fx),d(y,gy),d(x,gy),d(y,fx)

}
(1.2)

for all x, y ∈X, where 0≤ c < 1.
In 1980, Fisher [2] generalized the result to multivalued mappings F and G of (X,d)

into B(X) satisfying the condition

δ(Fx,Gy)≤ cmax
{
δ(x,y),δ(x,Fx),δ(y,Gy),δ(x,Gy),δ(y,Fx)

}
(1.3)

for all x, y ∈X, where 0≤ c < 1.
In 1983, Fisher [4] established a common fixed point theorem for continuous, com-

muting mappings F and G of (X,d) into B(X) satisfying

δ
(
FpGpx,FpGpy

)≤ cmax
{
δ
(
FqGrx,FsGty

)
,δ
(
FqGrx,FsGtx

)
,

δ
(
FqGry,FsGty

)
: 0≤ q,r ,s,t ≤ p

} (1.4)

for all x, y ∈X, where 0≤ c < 1 and p is a fixed positive integer.
In 1994, Ohta and Nikaido [5] obtained the existence of fixed point for a continuous

self mapping f of (X,d) satisfying

d
(
fkx,f ky

)≤ cδ
({
f it : t ∈ {x,y}, i∈ω

})
(1.5)

for all x, y ∈X, where 0≤ c < 1 and k is a fixed positive integer.
The first purpose of the paper is to establish criteria for the existence of common

stationary points of commuting mappings F and G of (X,d) into B(X). The second
purpose of the paper is to prove common stationary point theorems for commuting
mappings F and G of (X,d) into B(X) satisfying one of the following:

δ
(
FpGpx,FqGqy

)≤φ
(
δ
(∪D∈CFG D{x,y}

))
(1.6)

for all x, y ∈X, where φ∈ Φ and p,q are fixed positive integers;

δ
(
Fpx,Gqy

)≤φ
(
δ
(∪D∈CF∩CG D{x,y}

))
(1.7)

for all x, y ∈X, where φ∈ Φ and p,q are fixed positive integers;
δ(Fx,Gy)≤φ

(
max

{
δ(x,Fx),δ(y,Gy),δ(x,Gy),δ(y,Fx),δ

(∪D∈CCFG D{x,y}
)})

(1.8)

for all x, y ∈X, where φ∈ Φ.
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It is easy to see that (1.2) and (1.3) are special cases of (1.8), that (1.4) and (1.5) are
special cases of (1.6), and that (1.2) and (1.5) are special cases of (1.7). Our results
extend and unify the theorems of Fisher [1, 2, 4] and Ohta and Nikaido [5].

2. Common stationary points. Our main results are as follows.

Theorem 2.1. Let F and G be continuous and commuting mappings of (X,d) into
B(X). Then the following statements are equivalent:

(i) F and G have a common stationary point;
(ii) there exist S,T ∈ CCF ∩CCG with S ∈ CT and φ∈ Φ such that

δ(Sx,Ty)≤φ
(
δ
(∪D∈CCS∩CCT D{x,y}

)) ∀x,y ∈X; (2.1)

(iii) there exist S,T ∈ CF ∩CG with S ∈ CT and φ∈ Φ such that

δ(Sx,Ty)≤φ
(
δ
(∪D∈CS∩CT D{x,y}

)) ∀x,y ∈X; (2.2)

(iv) there exist mappings S,T of (X,d) into B(X) with S ∈ CT and φ ∈ Φ such that
F,G ∈ CST and

δ(Sx,Ty)≤φ
(
δ
(∪D∈CST D{x,y}

)) ∀x,y ∈X. (2.3)

Proof. We shall verify the following implications: (i)⇒(ii)⇒(iii)⇒(iv)⇒(i). Suppose,
first of all, that F and G have a common stationary point z. Define mappings S and
T of (X,d) into B(X) by Sx = Tx = {z} for all x ∈ X. It is easy to check that S,T ∈
CCF ∩CCG and

δ(Sx,Ty)= 0≤φ
(
δ
(∪D∈CCS∩CCT D{x,y}

))
(2.4)

for all x, y ∈X, φ∈ Φ, that is, (ii) holds.
Note that CCF ⊆ CF and CS∩CT ⊆ CST . Therefore (ii)⇒(iii)⇒(iv) are clear.
We now assume that (iv) holds. Then for any A, B ∈ B(X), we have

δ(SA,TB)≤φ
(
δ
(∪D∈CST D(A∪B)

))
, (2.5)

by (iv). Since X is bounded,M = δ(X) <∞. Set Xn = SnTnX for n∈N. Then Xn ⊆Xn−1
for n∈N. We now will prove by induction that

δ
(
Xn
)≤φn(M) for n∈N. (2.6)

Note that S and T commute. From (2.5), we have

δ
(
X1
)= δ(STX,TSX)≤φ

(
δ
(∪D∈CST D(TX∪SX)

))≤φ
(
δ(X)

)=φ(M), (2.7)

that is, (2.6) holds for n= 1. Assume now that (2.6) holds for some n∈N. It follows
from (2.5) that

δ
(
Xn+1

)= δ
(
Sn+1Tn+1X,Tn+1Sn+1X

)

≤φ
(
δ
(∪D∈CST D

(
SnTn+1X∪TnSn+1X

)))

=φ
(
δ
(∪D∈CST S

nTn(DTX∪DSX)))

≤φ
(
δ
(
Xn
))≤φn+1(M)

(2.8)
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by our assumption. Hence (2.6) follows by induction. Choose xn ∈Xn forn∈N. Then,
by (2.6), we get

d
(
xn,xm

)≤ δ
(
Xn,Xm

)≤ δ
(
Xn
)≤φn(M) form>n. (2.9)

Consequently, {xn} is a Cauchy sequence by Lemma 1.4. Since X is complete, there
exists a point z in X such that xn→ z as n→∞. From (2.6), we have

δ
(
z,Xn

)≤ d
(
z,xm

)+δ(xm,Xn
)≤ d

(
z,xm

)+δ(Xn
)≤ d

(
z,xm

)+φn(M) (2.10)

form,n∈N withm>n. Lettingm tend to infinity, we obtain

δ
(
z,Xn

)≤φn(M) for n∈N. (2.11)

Since F is continuous and xn→ z, then {Fxn} converges to {Fz}. Note that
Fxn ⊆ FSnTnX = SnTnFX ⊆Xn for n∈N. (2.12)

Then δ(z,Fxn) ≤ δ(z,Xn) for n ∈ N . Letting n tend to infinity, we have δ(z,Fz) ≤ 0
by (2.11) and Lemmas 1.3 and 1.4, that is, Fz = {z}. Similarly, we have Gz = {z}. This
completes the proof.

Theorem 2.2. Let F and G be continuous and commuting mappings of (X,d) into
B(X) satisfying (1.6) or (1.7). Then F and G have a unique common stationary point z
and the sequence {FnGnx} converges to {z} for all x ∈X.

Proof. Let M = δ(X), k = p+q, Xn = FnGnX and xn ∈ Xn for n ∈ N . Note that
every n∈N can be written as

n= kj+i, (2.13)

where j ∈ω and 0≤ i < k. Now we claim that

δ
(
Xn
)≤φj(M). (2.14)

If (1.6) is satisfied, then

δ
(
Xn
)= δ

(
FpGp(Fq+iGq+iXk(j−1)

)
,FqGq(Fp+iGp+iXk(j−1)

))

≤φ
(
δ
(∪D∈CFG D

(
Fq+iGq+iXk(j−1)∪Fp+iGp+iXk(j−1)

)))

=φ
(
δ
(∪D∈CFG

(
Fk(j−1)Gk(j−1)Fq+iGq+iDX∪Fk(j−1)Gk(j−1)Fp+iGp+iDX

)))

≤φ
(
δ
(
Xk(j−1)

))

(2.15)

which implies that

δ
(
Xkj

)≤φ
(
δ
(
Xk(j−1)

))≤ ··· ≤φj−1(δ
(
Xk
))≤φj(M). (2.16)

Note that Xn ⊆ Xn−1. Thus (2.14) follows from (2.15) and (2.16). If (1.7) is satisfied,
then

δ
(
Xn
)= δ

(
Fp
(
Fq+iGk+iXk(j−1)

)
,Gq(Fk+iGp+iXk(j−1)

))

≤φ
(
δ
(∪D∈CF∩CG D

(
Fq+iGk+iXk(j−1)∪Fk+iGp+iXk(j−1)

)))

≤φ
(
δ
(
Xk(j−1)

))
.

(2.17)
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Similarly, (2.16) holds also. It follows from (2.16) and (2.17) that (2.14) holds.
Given xn ∈Xn for all n∈N . For anym>n> k, by (2.13) and (2.14) we have

d
(
xn,xm

)≤ δ
(
Xn
)≤φj(M). (2.18)

As in the proof of Theorem 2.1, we conclude that F and G have a common stationary
point z and that xn → z as n → ∞. Suppose that F and G have a second common
stationary point w. Then {u} = FnGnu ⊆ Xn for u ∈ {z,w} and n ∈ N . In view of
(2.13) and (2.14), we infer that

d(z,w)≤ δ
(
Xn
)≤φj(M). (2.19)

Letting n tend to infinity we have d(z,w) ≤ 0 by Lemma 1.4, that is, z = w. Hence
F and G have a unique common stationary point z. For x ∈ X and n ∈ N, choose
yn ∈ FnGnx. Using (2.13) and (2.14), we have

d
(
yn,z

)≤ δ
(
FnGnx,z

)≤ δ
(
Xn,z

)≤ δ
(
Xn
)≤φj(M). (2.20)

Letting n tend to infinity, by Lemma 1.4 and Definition 1.1 and the above inequalities,
we conclude that {FnGnx} converges to {z}. This completes the proof.
As a consequence of Theorem 2.2, we have the following corollary.

Corollary 2.3. Let F andG be continuous and commuting mappings of (X,d) into
B(X) satisfying one of the following:

δ
(
Fqx,Gqy

)≤φ
(
δ
(∪i,j∈ωFiGj{x,y})) ∀x,y ∈X, (2.21)

where φ∈ Φ and p,q are fixed positive integers;

δ
(
FpGpx,FqGqy

)≤φ
(
δ
(∪i,j∈ωFiGj{x,y})) ∀x,y ∈X, (2.22)

where φ∈ Φ and p,q are fixed positive integers. Then F and G have a unique common
stationary point z and the sequence {FnGnx} converges to {z} for all x ∈X.

From Corollary 2.3, we have the following.

Corollary 2.4 [4, Theorem 1]. Let F and G be continuous and commuting map-
pings of (X,d) into B(X) satisfying (1.3). Then F and G have a unique common station-
ary point z and the sequence {FnGnx} converges to {z} for all x ∈X.

Corollary 2.5 [5, Theorem 3]. Let f be a continuous mapping of (X,d) into itself
satisfying (1.5). Then f has a unique fixed point z and for each x ∈ X, fnx → z as
n→∞.

Theorem 2.6. Let F and G be commuting mappings of (X,d) into B(X) satisfy-
ing (1.8). Then F and G have a unique common stationary point z and the sequence
{FnGnx} converges to {z} for all x ∈X. Further, {z} =Dz for all D ∈ CCFG.

Proof. Let M = δ(X), Xn = FnGnX, and xn ∈ Xn for n ∈ N . As in the proof of
Theorem 2.1, we conclude that δ(Xn)≤φn(M) for n∈N and that xn→ z, δ(z,Xn)→
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0 as n→∞. Consequently, the sequences {Xn} and {{z}∪Xn} converge to {z}. For
each D ∈ CCFG, we have δ(Dxn,z)→ δ(Dz,z) as n→∞, by the continuity of D and
Lemma 1.3. Note that

δ
(
Dxn,z

)≤ δ
(
Dxn,xn

)+d(xn,z
)≤ δ

(
Xn
)+d(xn,z

)

≤φn(M)+d(xn,z
)
�→ 0 as n→∞, (2.23)

which implies that δ(Dz,z)≤ 0, that is, Dz = {z}. Using (1.8), we have for n∈N ,

δ
(
FnGnX,Gz

)

≤φ
(
max

{
δ
(
Fn−1GnX,FnGnX

)
,δ(z,Gz),δ

(
Fn−1GnX,Gz

)
,

δ
(
z,FnGnX

)
,δ
(∪D∈CCFG D

(
Fn−1GnX∪{z}))})

≤φ
(
max

{
δ
(
Xn−1,Xn

)
,δ(z,Gz),δ

(
Xn−1,Gz

)
,

δ
(
z,Xn

)
,δ
(∪D∈CCFG

(
Fn−1Gn−1DGX∪Dz))})

≤φ
(
max

{
δ
(
Xn−1

)
,δ(z,Gz),δ

(
Xn−1,Gz

)
,

δ
(
z,Xn

)
,δ
(
Xn−1∪{z}

)})
,

(2.24)

which implies that

δ
(
xn,Gz

)≤ δ
(
FnGnX,Gz

)

≤φ
(
max

{
δ(z,Gz),δ

(
Xn−1,Gz

)
,δ
(
z,Xn

)
,δ
(
Xn−1∪{z}

)})
.

(2.25)

Letting n tend to infinity, we get

δ(z,Gz)≤φ
(
max

{
δ(z,Gz),δ(z,Gz),0,0

})=φ
(
δ(z,Gz)

)
. (2.26)

Suppose that δ(z,Gz) > 0. Then

δ(z,Gz)≤φ
(
δ(z,Gz)

)
< δ(z,Gz), (2.27)

which is a contradiction. Therefore δ(z,Gz) = 0, that is, Gz = {z}. Similarly we have
Fz = {z}. The rest of the proof is exactly the same as that of Theorem 2.2. This com-
pletes the proof.

From Theorem 2.6, we have the following corollary.

Corollary 2.7 [2, Theorem 2]. Let F and G be commuting mappings of (X,d) into
B(X) satisfying (1.3). Then F and G have a unique common stationary point z and the
sequence {FnGnx} converges to {z} for all x ∈X.

Corollary 2.8 [1, Theorem 4]. Let f and g be commuting mappings of (X,d) into
itself satisfying (1.2). Then f and g have a unique common fixed point z and for each
x ∈X, fngn→ z as n→∞.
The following example shows that Theorem 2.6 extends properly Corollaries 2.7

and 2.8.
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Example 2.9. Let X = {1,2,5,8} with the usual metric. Define self mappings f and
g of (X,d) by

f1= 1, f2= f5= g1= g2= g5= 5, f8= g8= 2. (2.28)

Set Fx = {fx} and Gx = {gx} for x ∈ X. Let φ(t) = (1/2)t for t ≥ 0. It is easy to
check that F and G satisfy the conditions of Theorem 2.6. But Corollaries 2.7 and 2.8
are not applicable since

d(f1,g1)= 4=max{d(1,1),d(1,f1),d(1,g1),d(1,g1),d(1,f1)}, (2.29)

that is, f and g do not satisfy (1.2). Similarly F and G do not satisfy (1.3).
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