THE SECOND DUAL SPACES OF THE SETS OF Λ -STRONGLY CONVERGENT AND BOUNDED SEQUENCES

A. M. JARRAH and E. MALKOWSKY

(Received 19 November 1998)

ABSTRACT. We give the second β -, γ -, and f-duals of the sets $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$ $(0 , <math>c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c_{\infty}^p(\Lambda)$ $(0 and the second continuous dual spaces of <math>w_0^p(\Lambda)$, $c_0^p(\Lambda)$, and $c^p(\Lambda)$ for $0 . Furthermore, we determine the <math>\alpha$ -duals of $c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c_{\infty}^p(\Lambda)$ for 1 .

Keywords and phrases. BK spaces, AK spaces, AD spaces, dual spaces.

2000 Mathematics Subject Classification. Primary 40H05, 46A45; Secondary 47B07.

1. Introduction and well-known results. We write ω for the set of all complex sequences $x = (x_k)_{k=0}^{\infty}$, ϕ , l_{∞} , c and c_0 for the sets of all finite, bounded, convergent sequences, and sequences convergent to naught, respectively, further *cs*, *bs*, and l_1 for the sets of all convergent, bounded, and absolutely convergent series.

By *e* and $e^{(n)}$ $(n \in \mathbb{N}_0)$, we denote the sequences such that $e_k = 1$ for k = 0, 1, ..., and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ for $k \neq n$. For any sequence $x = (x_k)_{k=0}^{\infty}$, let $x^{[n]} = \sum_{k=0}^{n} x_k e^{(k)}$ be its *n*-section.

Let *X*, *Y* $\subset \omega$ and *z* $\in \omega$. Then we write

$$z^{-1} \times X = \{ x \in \omega : xz = (x_k z_k)_{k=0}^{\infty} \in X \},$$

$$M(X, Y) = \bigcap_{x \in X} x^{-1} \times Y = \{ a \in \omega : ax \in Y \ \forall x \in X \}$$

(1.1)

for the *multiplier space of X* and *Y*. The sets $M(X, l_1)$, M(X, cs), and M(X, bs) are called the α -, β -, and γ -*duals of X*.

A Fréchet subspace *X* of ω is called an FK space if it has continuous coordinates, that is, if convergence in *X* implies coordinatewise convergence. An FK space $X \supset \phi$ is said to have AK if, for every sequence $x = (x_k)_{k=0}^{\infty} \in X$, $x^{[n]} \rightarrow x$ $(n \rightarrow \infty)$; and it is said to have AD if ϕ is dense in *X*. A BK space is an FK space which is a Banach space.

If *X* is a *p*-normed space, then we write X^* for the set of all continuous linear functionals on *X*, the so-called *continuous dual of X*, with its norm $\|\cdot\|$ is given by

$$||f|| = \sup\{|f(x)| : ||x|| = 1\} \quad \forall f \in X^*.$$
(1.2)

Let $X \supset \phi$ be an FK space. Then the set $X^f = \{(f(e^{(n)}))_{n=0}^{\infty} : f \in X^*\}$ is called the *f*-dual of *X*.

Given any infinite matrix $A = (a_{nk})_{n,k=0}^{\infty}$ of complex numbers and any sequence $x \in \omega$, let $A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$ (n = 0, 1, ...), and let $A(x) = (A_n(x))_{n=0}^{\infty}$ provided the

series converge, and $X_A = \{x \in \omega : A(x) \in X\}$. If $0 , then we write <math>|x|^p = (|x_k|^p)_{k=0}^{\infty}$ and $X_{[A]^p} = \{x \in \omega : A(|x|^p) \in X\}$.

Let $0 and <math>\mu = (\mu_n)_{n=0}^{\infty}$ be a nondecreasing sequence of positive integers tending to infinity, throughout. We define the matrices Δ and M by

$$\Delta_{nk} = \begin{cases} 1 & (k = n), \\ -1 & (k = n - 1), \\ 0 & (\text{otherwise}), \end{cases}$$

$$M_{nk} = \begin{cases} \frac{1}{\mu_n^p} & (0 \le k \le n) \\ 0 & (k > n) \end{cases}$$
(1.3)

and use the convention that any symbol with a negative subscript has the value zero.

The sets

$$w_0^p(\mu) = (c_0)_{[M]^p}, \qquad w_\infty^p(\mu) = (l_\infty)_{[M]^p},$$

$$c_0^p(\mu) = (\mu)^{-1} \times (w_0^p(\mu))_\Delta, \qquad c_\infty^p(\mu) = (\mu)^{-1} \times (w_\infty^p(\mu))_\Delta, \qquad c^p(\mu) = c_0^p(\mu) \oplus e$$
(1.4)

were studied in [1], and their first duals were given there. If p = 1, then we omit the index p, i.e., we write $w_0(\mu) = w_0^1(\mu)$, etc.

Following the notation introduced in [3], we say that a nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ of positive reals tending to infinity is *exponentially bounded* if there are reals *s* and *t* with $0 < s \le t < 1$ such that for some subsequence $(\lambda_{n(v)})_{v=0}^{\infty}$ of Λ , we have

$$s \le \frac{\lambda_{n(\nu)}}{\lambda_{n(\nu+1)}} \le t \quad \forall \nu = 0, 1, \dots;$$
(1.5)

such a subsequence $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ is called an *associated subsequence*.

If $(n(\nu))_{\nu=0}^{\infty}$ is a strictly increasing sequence of nonnegative integers, then we write $K^{\langle \nu \rangle}$ for the set of all integers k with $n(\nu) \le k \le n(\nu+1) - 1$, and \sum_{ν} and \max_{ν} for the sum and maximum taken over all k in $K^{\langle \nu \rangle}$.

If $X^p(\Lambda)$ denotes any of the sets $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$, or $c_{\infty}^p(\Lambda)$, then we write $\tilde{X}^p(\Lambda)$ for the respective space with the sections $1/\lambda_n^p \sum_{k=0}^n \dots$ replaced by the blocks $1/\lambda_{n(\nu+1)}^p \sum_{\nu} \dots$ Furthermore, we define

$$\|x\|_{w_{\infty}^{p}(\Lambda)} = \begin{cases} \sup_{n} \left(\frac{1}{\lambda_{n}^{p}} \sum_{k=0}^{n} |x_{k}|^{p} \right) & (0
$$\|x\|_{\tilde{w}_{\infty}^{p}(\Lambda)} = \begin{cases} \sup_{\nu} \left(\frac{1}{\lambda_{n}^{p}(\nu+1)} \sum_{\nu} |x_{k}|^{p} \right) & (0
$$\|x\|_{c_{\infty}^{p}(\Lambda)} = \|\Delta(\Lambda x)\|_{w_{\infty}^{p}(\Lambda)}, \qquad \|x\|_{\tilde{c}_{\infty}^{p}(\Lambda)} = \|\Delta(\Lambda x)\|_{\tilde{w}_{\infty}^{p}(\Lambda)}. \end{cases}$$
(1.6)$$$$

2. The second duals of the sets $w_0^p(\Lambda)$ and $w_{\infty}^p(\Lambda)$ for $0 . Let <math>\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals throughout and let $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ be an associated subsequence. We put

$$^{\mathcal{W}^{p}}(\Lambda) = \begin{cases} \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_{k}| < \infty \right\} & (0 < p \le 1), \\ \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} |a_{k}|^{p} \right)^{1/p} < \infty \right\} & \left(1 < p < \infty, \ q = \frac{p}{p-1} \right) \end{cases}$$
(2.1)

and, on $\mathcal{W}^{p}(\Lambda)$,

$$\|a\|_{W^{p}(\Lambda)} = \begin{cases} \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |a_{k}| & (0 (2.2)$$

In [1, Theorem 2], it was shown that if $X^p(\Lambda) = w_0^p(\Lambda)$ or $X^p(\Lambda) = w_\infty^p(\Lambda)$ and \dagger stands for α , β , γ , or f, then $(X^p(\Lambda))^{\dagger} = W^p(\Lambda)$, that the continuous dual $(w_0^p(\Lambda))^*$ of $w_0^p(\Lambda)$ is norm isomorphic to $W^p(\Lambda)$ when $w_0^p(\Lambda)$ has the norm $\|\cdot\|_{\dot{w}_{\infty}^p(\Lambda)}$, and finally that $\|a\|_{\dot{w}_{\infty}^p(\Lambda)}^* = \|a\|_{W^p(\Lambda)}$ on $(w_{\infty}^p(\Lambda))^{\beta}$. Furthermore, $W^p(\Lambda)$ is a BK space with AK with $\|\cdot\|_{W^p(\Lambda)}$ (cf. [2]). Therefore the following result gives the second duals of the sets $w_0^p(\Lambda)$ and $w_{\infty}^p(\Lambda)$.

THEOREM 2.1. We put $p' = \max\{1, p\}$. If \dagger stands for any of the symbols α , β , γ , or f, then $(\mathcal{W}^p(\Lambda))^{\dagger} = w_{\infty}^{p'}(\Lambda)$ for $0 , and the continuous dual <math>(\mathcal{W}^p(\Lambda))^*$ of $\mathcal{W}^p(\Lambda)$ is norm isomorphic to $w_{\infty}^{p'}(\Lambda)$ with $\|\cdot\|_{\tilde{w}_{\infty}^{p'}}$.

PROOF. The statements of the theorem with the exception of those concerning the γ - and f-duals are well known (cf. [2, Theorems 2, 4, 5, and 6]). Since $\mathcal{W}^p(\Lambda)$ has AK, it follows that $(\mathcal{W}^p(\Lambda))^\beta = (\mathcal{W}^p(\Lambda))^f$ by [4, Theorem 7.2.7(ii),

Since $W^{p}(\Lambda)$ has AK, it follows that $(W^{p}(\Lambda))^{p} = (W^{p}(\Lambda))^{q}$ by [4, Theorem 7.2.7(ii), page 106], and so $(W^{p}(\Lambda))^{f} = w_{\infty}^{p'}(\Lambda)$. Further $W^{p}(\Lambda)$ has AD, since it has AK, and so $(W^{p}(\Lambda))^{\beta} = (W^{p}(\Lambda))^{\gamma}$ by [4, Theorem 7.2.7(iii), page 106], hence $(W^{p}(\Lambda))^{\gamma} = w_{\infty}^{p'}(\Lambda)$.

3. The α -duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c^p(\Lambda)$ for 1

THEOREM 3.1. We put

$$\mathscr{C}^{p}_{\alpha}(\Lambda) = \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} \left(\sum_{k=n}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \right)^{q} \right)^{1/q} < \infty \right\} \quad \left(1 < p < \infty; q = \frac{p}{p-1} \right),$$
$$\|a\|_{\mathscr{C}^{p}_{\alpha}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} \left(\sum_{k=n}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \right)^{q} \right)^{1/q}.$$
(3.1)

If $X^{p}(\Lambda)$ denotes any of the sets $c_{0}^{p}(\Lambda)$, $c^{p}(\Lambda)$, and $c_{\infty}^{p}(\Lambda)$, then $(X^{p}(\Lambda))^{\alpha} = \mathscr{C}_{\alpha}^{p}(\Lambda)$. Furthermore, $\mathscr{C}_{\alpha}^{p}(\Lambda)$ is a BK space with $\|\cdot\|_{\mathscr{C}_{\alpha}^{p}(\Lambda)}$. **PROOF.** First, we assume $a \in \mathscr{C}^p_{\alpha}(\Lambda)$, and let $x \in c^p_{\infty}(\Lambda)$. Then there is a constant *M* such that

$$\left(\sum_{\nu} \left| \left(\Delta(\Lambda x) \right)_{n} \right|^{p} \right)^{1/p} \leq \lambda_{n(\nu+1)} M \quad \forall \nu = 0, 1, \dots$$
(3.2)

Putting $R_n = \sum_{k=n}^{\infty} (|a_k|/\lambda_k)$ (n = 0, 1, ...) and using Hölder's inequality, we obtain

$$\sum_{k=0}^{\infty} |a_k x_k| \leq \sum_{\nu=0}^{\infty} \frac{|a_k|}{\lambda_k} \sum_{n=0}^k |(\Delta(\Lambda x))_n| = \sum_{n=0}^{\infty} |(\Delta(\Lambda x))_n| \sum_{k=n}^{\infty} \frac{|a_k|}{\lambda_k}$$
$$= \sum_{\nu=0}^{\infty} \sum_{\nu} |(\Delta(\Lambda x))_n| R_n \leq M \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_n^q\right)^{1/q}.$$
(3.3)

This shows that $\mathscr{C}^p_{\alpha}(\Lambda) \subset (c^p_{\infty}(\Lambda))^{\alpha}$ and that

$$\sum_{k=0}^{\infty} |a_k x_k| \le ||a||_{\ell^p_{\alpha}(\Lambda)} ||x||_{\tilde{c}^p_{\infty}(\Lambda)}.$$
(3.4)

Conversely, we assume $a \in c_0^p(\Lambda)$. We define the maps $f_a^{(m)} : c_0^p(\Lambda) \to \mathbb{R}$ by $f_a^{(m)}(x) = \sum_{k=0}^m |a_k x_k| \ (x \in X)$. Then $(f_a^{(m)})_{m=0}^{\infty}$ is a sequence of seminorms on $c_0^p(\Lambda)$ which are continuous, since $c_0^p(\Lambda)$ is a BK space by [1, Theorem 1]. Further, $f_a^{(m)}(x) \leq \sum_{k=0}^{\infty} |a_k x_k| = M(x) < \infty$ for all $m \in \mathbb{N}_0$ and for all $x \in X$. By the uniform bound-edness principle, there is a constant M such that

$$\sum_{k=0}^{\infty} |a_k x_k| \le M \quad \forall x \in c_0^p(\Lambda) \text{ with } \|x\|_{\tilde{c}_{\infty}^p(\Lambda)} \le 1.$$
(3.5)

Since $a \in (c_0^p(\Lambda))^{\alpha}$ and $1/\Lambda = (1/\lambda_k)_{k=0}^{\infty} \in c_0^p(\Lambda)$, the numbers R_n are defined for all n. We put

$$S_{\mu} = \sum_{l=n(\mu)}^{n(\mu+1)-1} R_{l}^{q} \quad \forall \mu = 0, 1, \dots$$
(3.6)

Let $v(m) \in \mathbb{N}_0$ be given. We define the sequence $x^{v(m)}$ by

$$x_{n}^{\nu(m)} = \begin{cases} \frac{1}{\lambda_{n}} \left(\sum_{\mu=0}^{\nu-1} \lambda_{n(\mu+1)} S_{\mu}^{-1/p} \sum_{k=n(\mu)}^{n(\mu+1)-1} R_{k}^{q-1} + \lambda_{n(\nu+1)} S_{\nu}^{-1/p} \sum_{k=n(\nu)}^{n} R_{k}^{q-1} \right) \\ (n \in N^{\langle \nu \rangle}; \ 0 \le \nu \le \nu(m)), \\ \frac{1}{\lambda_{n}} \sum_{\mu=0}^{\nu(m)} \lambda_{n(\mu+1)} S_{\mu}^{-1/p} \sum_{k=n(\mu)}^{n(\mu+1)-1} R_{k}^{q-1} \quad (n \ge n(\nu(m)+1)). \end{cases}$$
(3.7)

Then

$$(\Delta(\Lambda x^{\nu(m)}))_n = \begin{cases} \lambda_{n(\nu+1)} S_{\nu}^{-1/p} R_n^{q-1} & (n \in N^{(\nu)}; \nu = 0, 1, \dots, \nu(m)), \\ 0 & (n \in N^{(\nu)}; \nu \ge \nu(m) + 1), \end{cases}$$

$$\sum_{\nu} | (\Delta(\Lambda x^{\nu(m)}))_n | = \begin{cases} \lambda_{n(\nu+1)}^p S_{\nu}^{-1} \sum_{\nu} R_n^q = \lambda_{n(\nu+1)}^p & (0 \le \nu \le \nu(m)), \\ 0 & (\nu \ge \nu(m+1)). \end{cases}$$

$$(3.8)$$

124

Thus $x^{\nu(m)} \in c_0^p(\Lambda)$ and $||x^{\nu(m)}||_{\tilde{c}_{\infty}^p(\Lambda)} = 1$. Now, by (3.5) and (3.8) and since $x_k^{\nu(m)} \ge 0$ for all k = 0, 1, ...,

$$\sum_{\nu=0}^{\nu(m)} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_{n}^{q} \right)^{1/q} = \sum_{\nu=0}^{\nu(m)} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_{n}^{q} \right) S_{\nu}^{-1/p} = \sum_{\nu=0}^{\nu(m)} \sum_{\nu} \left(\lambda_{n(\nu+1)} S_{\nu}^{-1/p} R_{n}^{q-1} \right) R_{n}$$
$$= \sum_{\nu=0}^{\nu(m)} \sum_{\nu} \left| \left(\Delta (\Lambda x^{\nu(m)}) \right)_{n} \right| R_{n} \leq \sum_{n=0}^{\infty} \left| \left(\Delta (\Lambda x^{\nu(m)}) \right)_{n} \right| \sum_{k=n}^{\infty} \frac{|a_{k}|}{\lambda_{k}}$$
$$= \sum_{k=0}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \left| \sum_{n=0}^{k} \left(\Delta (\Lambda x^{\nu(m)}) \right)_{n} \right| = \sum_{k=0}^{\infty} \frac{|a_{k}|}{\lambda_{k}} \lambda_{k} \left| x_{k}^{\nu(m)} \right|$$
$$= \sum_{k=0}^{\infty} |a_{k}| \left| x_{k}^{\nu(m)} \right| \leq M.$$
(3.9)

Since $v(m) \in \mathbb{N}_0$ was arbitrary, we have

$$\sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \left(\sum_{\nu} R_n^q\right)^{1/q} \le \sum_{k=0}^{\infty} |a_k x_k| < \infty,$$
(3.10)

that is, $a \in \mathscr{C}^p_{\alpha}(\Lambda)$.

Therefore we have shown $(c_{\infty}^{p}(\Lambda))^{\alpha} = (c_{0}^{p}(\Lambda))^{\alpha} = \mathscr{C}_{\alpha}^{p}(\Lambda)$. Since $c_{0}^{p}(\Lambda) \subset c^{p}(\Lambda) \subset c_{\infty}^{p}(\Lambda) \subset c_{\infty}^{p}(\Lambda)$.

Finally, $\mathscr{C}^{p}_{\alpha}(\Lambda)$ is a BK space with $\|\cdot\|_{\mathscr{C}^{p}_{\alpha}(\Lambda)}$ by [4, Theorem 4.3.15, page 64], (3.4), and (3.10).

4. The second duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$, and $c_{\infty}^p(\Lambda)$ for 0 . We put

$$\mathscr{C}(\Lambda) = \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right| < \infty \right\},$$

$$\|a\|_{\mathscr{C}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right|.$$
(4.1)

In [1, Theorem 4], it was shown that if $X^p(\Lambda)$ is any of the sets $c_0^p(\Lambda)$ or $c_{\infty}^p(\Lambda)$ and \dagger stands for any of the symbols β , γ , or f, then $(X^p(\Lambda))^{\dagger} = \mathscr{C}(\Lambda)$ and that this also holds when $X^p(\Lambda) = c(\Lambda)$ or $X^p(\Lambda) = c^p(\Lambda)$ for 0 whenever

$$\sup_{n} \frac{1}{\mu_{n}^{p}} \sum_{k=0}^{n} \left| \left(\Delta(\mu x) \right)_{k} \right|^{p} < \infty;$$

$$(4.2)$$

otherwise $(c^p(\Lambda))^\beta = \mathscr{C}(\Lambda) \cap cs$ and $(c^p(\Lambda))^\gamma = \mathscr{C}(\Lambda) \cap bs$. Furthermore, it was shown that the continuous dual $(c_0^p(\Lambda))^*$ of $c_0^p(\Lambda)$ is norm isomorphic to $\mathscr{C}(\Lambda)$ when $c_0^p(\Lambda)$ has the *p*-norm $\|\cdot\|_{\tilde{c}^p_{\infty}(\Lambda)}$ and $\|a\|_{\tilde{c}^p_{\infty}(\Lambda)}^* = \|a\|_{\mathscr{C}(\Lambda)}$ on $c_{\infty}^p(\Lambda)$. Finally, that $f \in c^*(\Lambda)$ if and only if $f(x) = l\chi_f + \sum_{n=0}^{\infty} a_n x_n$ for all $x \in c(\Lambda)$ where $a \in \mathscr{C}(\Lambda)$, $l \in \mathbb{C}$ with $x - le \in c_0(\Lambda)$ and $\chi_f = f(e) - \sum_{n=0}^{\infty} a_n$, and that $\|f\|$ is equivalent to $|\chi_f| + \|a\|_{\mathscr{C}(\Lambda)}$; if condition (4.2) is satisfied, then this also holds for $c^p(\Lambda)$ (0 .

Therefore the following result gives the second duals.

THEOREM 4.1. (a) The space $\mathscr{C}(\Lambda)$ with $\|\cdot\|_{\mathscr{C}(\Lambda)}$ is a BK space with AK.

(b) The set $c_{\infty}(\Lambda)$ is β perfect, that is, $c_{\infty}^{\beta\beta}(\Lambda) = c_{\infty}(\Lambda)$. Further $||a||_{\mathscr{C}(\Lambda)}^* = ||a||_{\tilde{c}_{\infty}(\Lambda)}$ for all $a \in \mathscr{C}^{\beta}(\Lambda)$.

(c) Finally, $\mathscr{C}^{f}(\Lambda) = \mathscr{C}^{\gamma}(\Lambda) = \mathscr{C}^{\beta}(\Lambda)$.

PROOF. We apply Abel's summation by parts. If $a \in cs$, then we write R(a) for the sequence with $R_n(a) = \sum_{k=n}^{\infty} a_k$ (n = 0, 1, ...). Then

$$\sum_{n=0}^{m-1} a_n y_n = \sum_{n=0}^m R_n(a) (\Delta y)_n - R_m(a) y_m \quad \forall m = 0, 1, \dots.$$
(4.3)

(a) The space $\mathcal{W}(\Lambda)$ is a BK space with $\|\cdot\|_{\mathcal{W}(\Lambda)}$ (cf. [2, Theorem 2]). Further, the matrix A defined by $a_{nk} = 1/\lambda_k$ for $k \ge n$ and $a_{nk} = 0$ for $0 \le n-1$ (n = 0, 1, ...) is one-to-one, and $x = A(y) \in \mathcal{C}(\Lambda)$ if and only if $y \in \mathcal{W}(\Lambda)$. So, by [4, Theorem 4.3.2, page 61], $\mathcal{C}(\Lambda)$ is a BK space with $\|x\|_{\mathcal{C}(\Lambda)} = \|A(y)\|_{\mathcal{W}(\Lambda)}$. Now, we show that $\mathcal{C}(\Lambda)$ has AK. First, we observe that $\phi \subset \mathcal{C}(\Lambda)$, since $\mathcal{C}(\Lambda)$ is the β -dual of a sequence space. Now, let $x \in \mathcal{C}(\Lambda)$ and let $\varepsilon > 0$. For each $m \in \mathbb{N}_0$, let v_m denote the uniquely determined integer for which $m \in N^{(v_m)}$. We choose $m_0 \in \mathbb{N}_0$ such that

$$\sum_{\nu=\nu_m}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_n(x/\Lambda)| < \varepsilon \quad \forall m \ge m_0.$$
(4.4)

Let $m \ge m_0$. Since the sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ is exponentially bounded, there is $t \in (0,1)$ such that, by (1.5),

$$\begin{aligned} ||x - x^{[m]}||_{\mathfrak{E}(\Lambda)} &= \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_n((x - x^{[m]})/\Lambda)| \\ &\leq \sum_{\nu=0}^{\nu_m-1} \lambda_{n(\nu+1)} |R_{m+1}(x/\Lambda)| + \sum_{\nu=\nu_m}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_n(x/\Lambda)| \\ &< \varepsilon + \sum_{\nu=0}^{\nu_m-1} \frac{\lambda_{n(\nu+1)}}{\lambda_{n(\nu_m+1)}} \lambda_{n(\nu_m+1)} \max_{\nu_m} |R_n(x/\Lambda)| \\ &< \varepsilon + \varepsilon \sum_{\nu=0}^{\nu_m-1} t^{\nu_m-\nu} < \varepsilon \frac{1}{1-t}. \end{aligned}$$

$$(4.5)$$

This shows that $\mathscr{C}(\Lambda)$ has AK.

(b) First, we show that $\mathscr{C}^{\beta}(\Lambda) = c_{\infty}(\Lambda)$.

For any $X \subset \omega$, $X \subset X^{\beta\beta}$ by [4, Theorem 7.1.2, page 105]. So we have to show $c_{\infty}(\Lambda) \subset \mathscr{C}^{\beta}(\Lambda)$ by [1, Theorem 4].

Let $a \in \mathscr{C}^{\beta}(\Lambda)$. We define $f_a : \mathscr{C}(\Lambda) \to \mathbb{C}$ by $f_a(x) = \sum_{k=0}^{\infty} a_k x_k$ for all $x \in \mathscr{C}(\Lambda)$. Then $f_a \in \mathscr{C}^*(\Lambda)$ by [4, Theorem 7.2.9, page 107], and so

$$\left|f_{a}(x)\right| \leq \|f_{a}\| \|x\|_{\mathscr{C}(\Lambda)} < \infty \quad \forall x \in \mathscr{C}(\Lambda).$$

$$(4.6)$$

Let $m \in \mathbb{N}_0$ be given and ν_m the uniquely determined integer such that $m \in N^{\langle \nu_m \rangle}$. Since Λ is exponentially bounded, there are $s, t \in (0, 1)$ such that, by (1.5),

$$\begin{aligned} ||e^{(m)}||_{\mathscr{C}(\Lambda)} &= \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| R_n \left(\frac{e^{(m)}}{\Lambda_k} \right) \right| = \sum_{\nu=0}^{\nu_m} \frac{\lambda_{n(\nu+1)}}{\lambda_m} \\ &\leq \sum_{\nu=0}^{\nu_m} \frac{\lambda_{n(\nu+1)}}{\lambda_{n(\nu_m+1)}} \frac{\lambda_{n(\nu_m+1)}}{\lambda_{n(\nu_m)}} \leq \frac{1}{s} \sum_{\nu=0}^{\nu_m} t^{\nu_m-\nu} \leq \frac{1}{s(1-t)} < \infty. \end{aligned}$$

$$(4.7)$$

Now (4.6) implies

$$|a_{m}| = |f_{a}(e^{(m)})| \le ||f_{a}||||e^{(m)}||_{\mathscr{C}(\Lambda)} \le ||f_{a}||\frac{1}{s(1-t)} \quad \forall m \in \mathbb{N}_{0},$$
(4.8)

and so $a \in l_{\infty}$. Further, $x \in \mathscr{C}(\Lambda)$ implies that $R_n(x/\Lambda) \in cs$ for all n, and $\Lambda R(x/\Lambda) \in c_0$. Therefore $a\Lambda R(x/\Lambda) \in c_0$. Now (4.3) yields

$$\sum_{n=0}^{\infty} a_n x_n = \sum_{n=0}^{\infty} R_n (x/\Lambda) (\Delta(\Lambda a))_n \quad \forall x \in \mathscr{C}(\Lambda).$$
(4.9)

Thus $R(x/\Lambda)\Delta(\Lambda a) \in cs$ for all $x \in \mathcal{C}(\Lambda)$. Now $x \in \mathcal{C}(\Lambda)$ if and only if $R(x/\Lambda) \in \mathcal{W}(\Lambda)$ and, by [2, Theorem 4], $\Delta(\Lambda a) \in \mathcal{W}^{\beta}(\Lambda) = w_{\infty}(\Lambda)$. But this means that $a \in c_{\infty}(\Lambda)$. Thus we have shown that $\mathcal{C}^{\beta}(\Lambda) \subset c_{\infty}(\Lambda)$.

Now we show

$$\|a\|_{\mathscr{C}(\Lambda)}^{*} = \|a\|_{\tilde{c}_{\infty}(\Lambda)} \quad \forall a \in \mathscr{C}^{\beta}(\Lambda).$$

$$(4.10)$$

Let $a \in \mathscr{C}^{\beta}(\Lambda) = c_{\infty}(\Lambda)$, by what we have just shown. Then by (4.9), for all $x \in \mathscr{C}(\Lambda)$,

$$\left|\sum_{n=0}^{\infty} a_n x_n\right| \leq \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| R_n(x/\Lambda) \right| \frac{1}{\lambda_{n(\nu+1)}} \sum_{\nu} \left| \left(\Delta(\Lambda a) \right)_n \right|$$

$$\leq \|a\|_{\tilde{c}_{\infty}(\Lambda)} \|x\|_{\mathfrak{C}(\Lambda)}, \tag{4.11}$$

and so

$$\|a\|_{\mathscr{C}(\Lambda)}^* \le \|a\|_{\tilde{c}_{\infty}(\Lambda)}. \tag{4.12}$$

Let $\nu_m \in \mathbb{N}_0$. By $\nu_{0,m}$, we denote the smallest integer with $0 \le \nu_{0,m} \le \nu_m$ for which

$$\frac{1}{\lambda_{n(\nu_{0,m}+1)}} \sum_{\nu_{0,m}} \left| \left(\Delta(\Lambda a) \right)_{n} \right| = \max_{0 \le \nu \le \nu_{m}} \left(\frac{1}{\lambda_{n(\nu+1)}} \sum_{\nu} \left| \left(\Delta(\Lambda a) \right)_{n} \right| \right).$$
(4.13)

We define the sequences $R^{(m)}$ and $x^{(m)}$ by

$$R_n^{(m)} = \begin{cases} \frac{1}{\lambda_{n(\nu_{0,m}+1)}} \operatorname{sgn}((\Delta(\Lambda a))_n) & \text{for } n \in N^{\langle \nu_{0,m} \rangle}, \\ 0 & \text{for } n \notin N^{\langle \nu_{0,m} \rangle}, \end{cases}$$
(4.14)

127

and $x_n^{(m)} = R_n^{(m)} - R_{n+1}^{(m)}$ (*n* = 0, 1,...). Then we have

$$||x^{(m)}||_{\mathscr{C}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} |R_{n}^{(m)}| = \lambda_{n(\nu_{0,m}+1)} \max_{\nu_{0,m}} |R_{n}^{(m)}| \le 1,$$

$$\left| \sum_{n=0}^{\infty} a_{n} x_{n}^{(m)} \right| = \max_{0 \le \nu \le \nu_{m}} \frac{1}{\lambda_{n(\nu+1)}} \sum_{\nu} |(\Delta(\Lambda a))_{n}| \le ||a||_{\mathscr{C}(\Lambda)}^{*} ||x||_{\mathscr{C}(\Lambda)} \le ||a||_{\mathscr{C}(\Lambda)}^{*}.$$
(4.15)

Since ν_m was arbitrary, we obtain $||a||_{\tilde{c}_{\infty}(\Lambda)} \leq ||a||_{\mathfrak{C}(\Lambda)}^*$. Together with (4.12), this yields (4.10).

(c) Since $\mathscr{C}(\Lambda)$ has AK by part (b) and so AD, part (c) follows from [4, Theorem 7.2.7(ii) and (iii), page 106].

REFERENCES

- A. M. Jarrah and E. Malkowsky, *The dual spaces of Λ-strongly convergent and bounded sequences*, to appear.
- [2] E. Malkowsky, Matrix Transformations in a New Class of Sequences that Includes Spaces of Absolutely and Strongly Summable Sequences, Habilitationsschrift, Giessen, Univ. Giessen, 1989. Zbl 684.46011.
- [3] _____, The continuous duals of the spaces $c_0(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ , Acta Sci. Math. (Szeged) **61** (1995), no. 1-4, 241–250. MR 97d:46005. Zbl 846.40008.
- [4] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, 85, North-Holland Publishing Co., Amsterdam-New York, 1984, Notas de Matematica [Mathematical Notes], 91. MR 85d:40006. Zbl 531.40008.

A. M. JARRAH: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, YARMOUK UNIVERSITY, IRBID, JORDAN

E-mail address: ajarrah@yu.edu.jo

E. MALKOWSKY: C/O DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, YARMOUK UNIVER-SITY, IRBID, JORDAN

E-mail address: malkowsky@math.uni-giessen.de

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

