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Abstract. In 1911, Steinhaus presented the following theorem: if A is a regular matrix
then there exists a sequence of 0’s and 1’s which is not A-summable. In 1943, R. C. Buck
characterized convergent sequences as follows: a sequence x is convergent if and only if
there exists a regular matrix A which sums every subsequence of x. In this paper, defini-
tions for “subsequences of a double sequence” and “Pringsheim limit points” of a double
sequence are introduced. In addition, multidimensional analogues of Steinhaus’ and Buck’s
theorems are proved.
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1. Introduction. In [2, 3, 4, 5, 8], the 4-dimensionalmatrix transformation(Ax)m,n=∑∞,∞
k,l=0,0am,n,k,lxk,l is studied extensively by Robison andHamilton. Here we define new

double sequence spaces and consider the behavior of 4-dimensional matrix transfor-
mations on our new spaces. Such a 4-dimensional matrix A is said to be RH-regular
if it maps every bounded P-convergent sequence (defined below) into a P-convergent
sequence with the same P-limit. In [9] Steinhaus proved the following theorem: if A is
a regular matrix then there exists a sequence of 0’s and 1’s which is not A-summable.
This implies that A cannot sum every bounded sequence. In this paper, we prove a
theorem for double sequences and 4-dimensional RH-regular matrices that is analo-
gous to Steinhaus’ theorem. One of the fundamental facts of sequence analysis is that
if a sequence is convergent to L, then all of its subsequences are convergent to L. In
a similar manner, R. C. Buck [1] characterized convergent sequences by: a sequence
x is convergent if and only if there exists a regular matrix A which sums every sub-
sequence of x. We characterize P-convergent double sequences as follows: first, we
prove that a double sequence x is P-convergent to L if all of its subsequences are P-
convergent to L; then we prove that a double sequence x is P-convergent if there exists
an RH-regular matrix A which sums every subsequence of x. In addition, we provide
definitions for “subsequences” and “Pringsheim limit points” of double sequences and
for divergent double sequence.

2. Definitions, notations, and preliminary results

Definition 2.1 (Pringsheim, 1900). A double sequence x = [xk,l] has Pringsheim
limit L (denoted by P-limx = L) provided that given ε > 0 there exists N ∈N such that
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∣∣xk,l−L∣∣< ε whenever k,l > N . We describe such an xmore briefly as “P-convergent.”
Definition 2.2 (Pringsheim, 1900). A double sequence x is called definite diver-

gent, if for every (arbitrarily large) G > 0 there exist two natural numbers n1 and n2
such that |xn,k|>G for n≥n1, k≥n2.

Definition 2.3. The sequence y is a subsequence of the double sequence x pro-
vided that there exist two increasing double index sequences {nij} and {kij} such that
n10 = k10 =n0−1 = k0−1 = 0 and
ni1 and k

i
1 are both chosen such that max{ni−12i−3,k

i−1
2i−3}<ni1, ki1,

ni2 and k
i
2 are both chosen such that max{ni1,ki1}<ni2, ki2,

ni3 and k
i
3 are both chosen such that max{ni2,ki2}<ni3, ki3,

...
ni2i−1 and k

i
2i−1 are both chosen such that max{ni2(i−1), ki2(i−1)}<ni2i−1, ki2i−1, with

y1,i = xni1,ki1 , y2,i = xni2,ki2 , y3,i = xni3,ki3 ,
...

yi,i = xnii,kii , yi,i−1 = xnii+1,kii+1 ,
...

yi,2i−1 = xni2i−1,ki2i−1

for i= 1,2,3, . . . .
A double sequence x is bounded if and only if there exists a positive number M

such that |xk,l|<M for all k and l. Define

S′′{x} = {all subsequences of x};
C′′ = {all bounded P-convergent sequences};
C′′A =

{
xk,l : (Ax)m,n =

∞,∞∑
k,l=0,0

am,n,k,lxk,l is P-convergent
}
.

(2.1)

See Figure 1 for an illustration of the procedure for selecting terms of a subsequence.
A 2-dimensionalmatrix transformation is said to be regular if itmaps every convergent
sequence into a convergent sequence with the same limit. The Silverman-Toeplitz
theorem [6] characterizes the regularity of 2-dimensional matrix transformations. In
1926, Robison presented a 4-dimensional analog of regularity for double sequences
in which he added an additional assumption of boundedness. This assumption was
made because a double sequence which is P-convergent is not necessarily bounded.
The definition of the regularity for 4-dimensional matrices will be stated below, with
the Robison-Hamilton characterization of the regularity of 4-dimensional matrices.
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n(2,1)
x[n(2,1),k(2,1)]

x[n(1,2i−1),k(1,2i−1)]
n(1,2i−1)

x[n(1,2i−2),k(1,2i−2)]
n(1,2i−2)

x[n(1,2),k(1,2)]
n(1,2)

x[n(1,1),k(1,1)]
n(1,1)

k(1,1) k(1,2) ··· k(1,2i−2) k(1,2i−1) k(2,1)

Figure 1. The selection process of terms for subsequence y of x, where
x[n(i,j),k(i,j)]= xnij ,kij , n(i,j)=n

i
j , k(i,j)= kij .

Definition 2.4. The 4-dimensional matrix A is said to be RH-regular if it maps
every bounded P-convergent sequence into a P-convergent sequence with the same
P-limit.

Theorem 2.1 (Hamilton [2], Robison [8]). The 4-dimensionalmatrixA isRH-regular
if and only if
RH1: P-limm,nam,n,k,l = 0 for each k and l;
RH2: P-limm,n

∑∞,∞
k,l=0,0am,n,k,l = 1;

RH3: P-limm,n
∑∞
k=0 |am,n,k,l| = 0 for each l;

RH4: P-limm,n
∑∞
l=0 |am,n,k,l| = 0 for each k;

RH5 :
∑∞,∞
k,l=0,0 |am,n,k,l| is P-convergent;

RH6: there exist finite positive integers A and B such that
∑
k,l>B |am,n,k,l|<A.

Remark 2.1. The definition of a Pringsheim limit point can also be stated as fol-
lows: β is a Pringsheim limit point of x provided that there exist two increasing index
sequences {ni} and {ki} such that limi xni,ki = β.

Definition 2.5. A double sequence x is divergent in the Pringsheim sense (P-
divergent) provided that x does not converge in the Pringsheim sense (P-convergent).
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Remark 2.2. Definition 2.5 can also be stated as follows: a double sequence x is
P-divergent provided that either x contains at least two subsequences with distinct
finite limit points or x contains an unbounded subsequence. Also note that, if x con-
tains an unbounded subsequence then x also contains a definite divergent subse-
quence.

Remark 2.3. For an ordinary single-dimensional sequence, any sequence is a sub-
sequence of itself. This, however, is not the case in the 2-dimensional plane, as illus-
trated by the following example.

Example 2.1. The sequence

xn,k :=




1, if n= k= 0,
1, if n= 0,k= 1,
1, if n= 1,k= 0,
0, otherwise

(2.2)

contains only two subsequences, namely, [yn,k] = 0 for each n and k, and

zn,k :=

1, if n= k= 0,
0, otherwise;

(2.3)

neither subsequence is x.

The following proposition is easily verified, and is worth stating since each single-
dimensional sequence is a subsequence of itself. However, this is not the case for
double-dimensional sequences.

Proposition 2.1. The double sequence x is P-convergent to L if and only if every
subsequence of x is P-convergent to L.

3. Main results. The next result is a “Steinhaus-type” theorem, so named because
of its similarity to the Steinhaus theorem in [9] quoted in the introduction.

Theorem 3.1. If A is an RH-regular matrix, then there exists a bounded double
sequence x consisting only of 0’s and 1’s which is not A-summable.

Proof. Let mi,nj,ki, and lj be increasing index sequences which we define as
follows:
Let k0 := l0 := −1 and choose m0 and n0 such that m0,n0 > B, where B is defined

by RH6 and RH2 to imply

∣∣∣∣∣∣
∞,∞∑
k,l=0

am0,n0,k,l

∣∣∣∣∣∣>
1
4
, (3.1)

wheneverm0,n0 > B.
Also, by RH1,RH3,RH4, and RH5 we choose k1 > k0 and l1 > l0 such that
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∣∣∣∣∣∣

∑
k<k1,l<l1

am0,n0,k,l

∣∣∣∣∣∣> 1−
1
4
,

∑
k≥k1,l≥l1

|am0,n0,k,l|<
1
4
,

∑
k≥k1,l<l1

|am0,n0,k,l|<
1
4
,

∑
k<k1,l≥l1

|am0,n0,k,l|<
1
4
.

(3.2)

Next use RH1, RH2, RH3, and RH4 to choosem1 >m0 and n1 >n0 such that

∑
k<k1,l<l1

|am1,n1,k,l|<
1
9
,

∑
k≤k1,l≥l1

|am1,n1,k,l|<
1
9
,

∑
k≥k1,l≤l1

|am1,n1,k,l|<
1
9
,

∣∣∣∣∣∣
∞,∞∑
k,l=0

am1,n1,k,l

∣∣∣∣∣∣> 1−
1
9
.

(3.3)

These inequalities imply

∑
k>k1,l>l1

|am1,n1,k,l|> 1−
4
9
, (3.4)

because ∣∣∣∣∣∣
∑

k>k1,l>l1

|am1,n1,k,l|
∣∣∣∣∣∣≥−

∑
k≤k1,l≤l1

|am1,n1,k,l|+1−
1
9

−
∑

k≥k1,l≤l1
|am1,n1,k,l|

−
∑

k≤k1,l>l1
|am1,n1,k,l|.

(3.5)

We now choose k2 > k1 and l2 > l1 such that∣∣∣∣∣∣
∑

k1<k<k2,l1<l<l2

am1,n1,k,l

∣∣∣∣∣∣> 1−
4
9
,

∑
k≥k2,l≥l2

|am1,n1,k,l|<
1
9
,

∑
k1<k≤k2,l≥l2

|am1,n1,k,l|<
1
9
,

∑
k≥k2,l1<l<l2

|am1,n1,k,l|<
1
9
.

(3.6)



6 RICHARD F. PATTERSON

In general, having

m0 < ···<mi−1, k0 < ···< ki−1 < ki,
n0 < ···<nj−1, l0 < ···< lj−1 < lj, (3.7)

we choosemi >mi−1 and nj > nj−1 such that by RH1

∑
k≤ki,l≤lj

|ami,nj ,k,l|<
1

(i+2)(j+2) , (3.8)

and by RH3, RH4

∑
k≤ki,l>lj

|ami,nj ,k,l|<
1

(i+2)(j+2) ,

∑
k≥ki,l≤lj

|ami,nj ,k,l|<
1

(i+2)(j+2) .
(3.9)

In addition, by RH2

∣∣∣∣∣∣
∞,∞∑
k,l=0

ami,nj ,k,l

∣∣∣∣∣∣> 1−
1

(i+2)(j+2) , (3.10)

so

∑
k>ki,l>lj

|ami,nj ,k,l|> 1−
4

(i+2)(j+2) . (3.11)

We now choose ki+1 > ki and lj+1 > lj such that

∣∣∣∣∣∣∣
∑

ki<k<ki+1,lj<l<lj+1
ami,nj ,k,l

∣∣∣∣∣∣∣> 1−
4

(i+2)(j+2) ,

∑
k≥ki+1,l≥lj+1

|ami,nj ,k,l|<
1

(i+2)(j+2) ,

∑
ki<k<ki+1,l≥lj+1

|ami,nj ,k,l|<
1

(i+2)(j+2) ,

∑
k≥ki+1,lj<l<lj+1

|ami,nj ,k,l|<
1

(i+2)(j+2) .

(3.12)

Define x as follows:

xk,l =

1, if k2p < k < k2p+1 and l2t < l < l2t+1 for p,t = 0,1,2, . . . ,
0, otherwise .

(3.13)
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Let us label and partition (AX)mi,nj as follows:

(AX)mi,nj =
α1∑

0≤k≤ki,0≤l≤lj
+

α2∑
0≤k≤ki,lj+1≤l

+
α3∑

ki+1≤k,lj+1≤l

+
α4∑

0≤l≤lj ,ki+1≤k
+

α5∑
ki<k<ki+1,0≤l≤lj

+
α6∑

lj<l<lj+1,0≤k≤ki

+
α7∑

ki<k<ki+1,lj+1≤l
+

α8∑
lj<l<lj+1,ki+1≤k

+
α9∑

ki<k<ki+1,lj<l<lj+1
ami,nj ,k,lxk,l,

(3.14)

where the general term ami,nj ,k,lxk,l is the same for each of the nine sums. Note that,

|α4+α5| ≤ 1
(i+2)(j+2) ,

|α2+α6| ≤ 1
(i+2)(j+2) .

(3.15)

Case 1. If i and j are even, then

∣∣∣(AX)mi,nj

∣∣∣> 1− 1
(i+2)(j+2) −|α1|−···−|α8|> 1−

7
(i+2)(j+2) , (3.16)

and the last expression has P-limit 1.
Case 2. If at least one of i and j is odd, then α9 = 0 and

∣∣∣(AX)mi,nj

∣∣∣≤ |α1|+|α2|+···+|α8| ≤ 6
(i+2)(j+2) , (3.17)

and the last expression of (3.17) has P-limit 0. Thus the P-limit of (AX)m,n does not
exist, and we have shown that an RH-regular matrix A cannot sum every double se-
quence, of 0’s and 1’s.

As with the original Steinhaus Theorem [9], we can state the following as an imme-
diate consequence of Theorem 3.1.

Corollary 3.1. If A is an RH-regular matrix, then A cannot sum every bounded
double sequence.

The next result is a “Buck-type” theorem.

Theorem 3.2. The bounded double complex sequence x is P-convergent if and only
if there exists an RH-regular matrix A such that A sums every subsequence of x.

Proof. Since every subsequence of a P-convergent sequence x is bounded and
P-convergent, and A is an RH-regular matrix, then for such an x there exists an
RH-regular matrix A such that S ′′ {x} ⊆ C ′′A .
Conversely, we use an adaptation of Buck’s proof [1] to show that if A is any
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RH-regular matrix and x �∈ C ′′ then there exists a subsequence y ∈ S ′′ {x} such that
Ay �∈ C ′′ .
Note that every subsequence of x is bounded and x �∈ C ′′ , which implies that x has

at least two distinct Pringsheim limit points, say α and β. Thus there exist increasing
index sequences {nj} and {ki} such that limsupxni,ki = α and liminfxni,ki = β with
α≠ β.
Now define

y = x−β
α−β (3.18)

which yields limsupyni,ki = 1 and liminfyni,ki = 0. As a result there exist two disjoint
pairs of index sequences {n̄ij , k̄ij} and {νij,kij} such that the sequences ȳ1 and ȳ2 con-
structed using {n̄ij , k̄ij} and {νij,kij}, respectively, have P-limits 1 and 0, respectively.
Let

y∗n,k :=



1, if n= n̄ij ,k= k̄ij ,
0, if n= νij,k= kij,
y, otherwise.

(3.19)

Hence, {y∗n,k} contains a subsequence {ȳ∗n,k} with infinitely many 0’s and 1’s, along
its diagonal. This implies that S ′′ {ȳ∗} contains all sequences of 0’s and 1’s. Thus by
Theorem 3.1, there exists ỹ∗ ∈ S ′′ {ȳ∗} such that Aỹ∗ �∈ C ′′ . Also, P-lim(y−y∗)i,j =
0. We now select a subsequence {ỹi,j} of {yi,j}with terms satisfying limsupi yni,ki = 1
and liminfi yni,ki = 0 corresponding to the 0’s and 1’s, respectively of {ỹ∗i,j}. There-
fore P-lim(ỹ − ỹ∗)i,j = 0 and ỹi,j − ỹ∗i,j is bounded. By the linearity and regular-
ity of A,A(ỹ − ỹ∗)i,j = (Aỹ)i,j − (Aỹ∗)i,j and P-limA(ỹ − ỹ∗)i,j = 0. Now since
Aỹ∗ �∈ C ′′ , it follows that Aỹ �∈ C ′′ ; and since ỹ = x̄−β/α−β, we have Ax̃ �∈ C ′′ .
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