ABEL-TYPE WEIGHTED MEANS TRANSFORMATIONS INTO ℓ
 mULATU LEMMA and GEORGE TESSEMA

(Received 15 July 1999)

AbSTRACT. Let $q_{k}=\binom{k+\alpha}{k}$ for $\alpha>-1$ and $Q_{n}=\sum_{k=0}^{n} q_{k}$. Suppose $A_{q}=\left\{a_{n k}\right\}$, where $a_{n k}=q_{k} / Q_{n}$ for $0 \leq k \leq n$ and 0 otherwise. A_{q} is called the Abel-type weighted mean matrix. The purpose of this paper is to study these transformations as mappings into ℓ. A necessary and sufficient condition for $A_{\mathcal{q}}$ to be $\ell-\ell$ is proved. Also some other properties of the A_{q} matrix are investigated.

Keywords and phrases. $\ell-\ell$ methods, $G-G$ methods, $G_{w}-G_{w}$ methods.
2000 Mathematics Subject Classification. Primary 40A05, 40D25; Secondary 40C05.

1. Introduction. Throughout this paper, we assume that $\alpha>-1$ and Q_{n} is the partial sums of the sequence $\left\{q_{k}\right\}$, where q_{k} is as above. Let $A_{q}=\left\{a_{n k}\right\}$. Then the Abel-type weighted mean matrix, denoted by A_{q}, is defined by

$$
a_{n k}= \begin{cases}\frac{q_{k}}{Q_{n}} & \text { for } 0 \leq k \leq n, \tag{1.1}\\ 0 & \text { for } k>n .\end{cases}
$$

The A_{q} matrix is the weighted mean matrix that is associated with the Abel-type matrix introduced by M. Lemma in [5]. It is regular, indeed, totally regular.
2. Basic notation and definitions. Let $A=\left(a_{n k}\right)$ be an infinite matrix defining a sequence summability transformation given by

$$
\begin{equation*}
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k} \tag{2.1}
\end{equation*}
$$

where $(A x)_{n}$ denotes the nth term of the image sequence $A x$. Let y be a complex number sequence. Throughout this paper, we use the following basic notation and definitions:
(i) $c=\{$ The set of all convergent complex sequences $\}$,
(ii) $\ell=\left\{y: \sum_{k=0}^{\infty}\left|y_{k}\right|<\infty\right\}$,
(iii) $\ell^{P}=\left\{y: \sum_{k=0}^{\infty}\left|y_{k}\right|^{P}<\infty\right\}$,
(iv) $\ell(A)=\{y: A y \in \ell\}$,
(v) $G=\left\{y: y_{k}=O\left(r^{k}\right)\right.$ for some $\left.r \in(0,1)\right\}$,
(vi) $G_{w}=\left\{y: y_{k}=O\left(r^{k}\right)\right.$ for some $\left.r \in(0, w), 0<w<1\right\}$.

Definition 1. If X and Y are sets of complex number sequences, then the matrix A is called an $X-Y$ matrix if the image $A u$ of u under the transformation A is in Y, whenever u is in X.
3. Some basic facts. The following facts are used repeatedly.
(1) For any real number $\alpha>-1$ and any nonnegative integer k, we have

$$
\begin{equation*}
\binom{k+\alpha}{k} \sim \frac{k^{\alpha}}{\Gamma(\alpha+1)} \quad(\text { as } k \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

(2) For any real number $\alpha>-1$, we have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{k+\alpha}{k}=\binom{n+\alpha+1}{n} . \tag{3.2}
\end{equation*}
$$

(3) Suppose $\left\{a_{n}\right\}$ is sequence of nonnegative numbers with $a_{0}>0$, that

$$
\begin{equation*}
A_{n}=\sum_{k=0}^{n} a_{k} \rightarrow \infty . \tag{3.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
a(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, \quad A(x)=\sum_{k=0}^{\infty} A_{k} x^{k}, \tag{3.4}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
a(x)<\infty \text { for } 0<x<1 . \tag{3.5}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
(1-x) A(x)=a(x) \text { for } 0<x<1 . \tag{3.6}
\end{equation*}
$$

4. The main results

Lemma 1. If A_{q} is an $\ell-\ell$ matrix, then $1 / Q \in \ell$.
Proof. By the Knopp-Lorentz theorem [4], A_{q} is an $\ell-\ell$ matrix implies that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{n, 0}\right|<\infty, \tag{4.1}
\end{equation*}
$$

and consequently we have $1 / Q \in \ell$.
Lemma 2. We have that $1 / Q \in \ell$ if and only if $\alpha>0$.
Proof. By using (3.1), we have

$$
\begin{equation*}
\frac{1}{Q_{n}} \sim \frac{\Gamma(\alpha+2)}{n^{\alpha+1}} \tag{4.2}
\end{equation*}
$$

and hence the assertion easily follows.

Lemma 3. If $1 / Q \in \ell$, then A_{q} is an $\ell-\ell$ matrix.
Proof. By Lemma 2, we have $\alpha>0$. To show that A_{q} is an $\ell-\ell$ matrix, we must show that the condition of the Knopp-Lorentz theorem [4] holds. Using (3.1), we have

$$
\begin{align*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & =\binom{k+\alpha}{k} \sum_{n=k}^{\infty} \frac{1}{Q_{n}}=\binom{k+\alpha}{k} \sum_{n=k}^{\infty} \frac{1}{\binom{n+\alpha+1}{n}} \\
& \leq M_{1} K^{\alpha} \sum_{n=k}^{\infty} \frac{1}{n^{\alpha+1}} \quad \text { for some } M_{1}>0 \tag{4.3}\\
& \leq M_{1} M_{2} k^{\alpha} \int_{k}^{\infty} \frac{d x}{x^{\alpha+1}} \quad \text { for some } M_{2}>0 \\
& =\frac{M_{1} M_{2}}{\alpha}
\end{align*}
$$

Hence, by the Knopp-Lorentz theorem [4], A_{q} is an $\ell-\ell$ matrix.
Theorem 1. The following statements are equivalent:
(1) A_{q} is an $\ell-\ell$ matrix;
(2) $1 / Q \in \ell$;
(3) $\alpha>0$.

Proof. The theorem easily follows by Lemmas 1,2 , and 3.
Remark 1. In Theorem 1, we showed that A_{q} is an $\ell \ell$ matrix if and only if $1 / Q \in \ell$. But the converse is not true in general for any weighted mean matrix W_{p} that corresponds to a sequence-to-sequence variant of the general J_{p} power series method of summability [1]. To see this, let

$$
\begin{equation*}
p_{k}=(\ln (k+2))^{\alpha}, \quad \alpha>1 \tag{4.4}
\end{equation*}
$$

We show that $1 / P \in \ell$ but W_{p} is not an $\ell \ell \ell$ matrix. We have

$$
\begin{align*}
P_{n} & =\sum_{k=0}^{n}(\ln (k+2))^{\alpha} \\
& \sim \int_{0}^{n}(\ln (x+2))^{\alpha} d x \quad(\text { by [6, Thm. 1.20] }) \tag{4.5}\\
& \sim(n+2)(\ln (n+2))^{\alpha},
\end{align*}
$$

using integration by parts repeatedly. This yields

$$
\begin{equation*}
\frac{1}{P_{n}} \sim \frac{1}{(n+2)(\ln (n+2))^{\alpha}} \tag{4.6}
\end{equation*}
$$

and by the condensation test, it follows that $1 / P \in \ell$.

Next, we show that W_{p} is not an $\ell-\ell$ matrix by showing that the condition of the Knopp-Lorentz theorem [4] fails to hold. Using (4.6), it follows that

$$
\begin{align*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & =(\ln (k+2))^{\alpha} \sum_{n=k}^{\infty} \frac{1}{P_{n}} \\
& \geq M_{1}(\ln (k+2))^{\alpha} \sum_{n=k}^{\infty} \frac{1}{(n+2)(\ln (n+2))^{\alpha}} \quad \text { for some } M_{1}>0 \tag{4.7}\\
& \geq M_{1} M_{2}(\ln (k+2))^{\alpha} \int_{k}^{\infty} \frac{d x}{(x+2)(\ln (x+2))^{\alpha}} \quad \text { for some } M_{2}>0 \\
& =\frac{M_{1} M_{2}}{\alpha-1}(\ln (k+2)) .
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\sup _{k}\left\{\sum_{n=0}^{\infty} a_{n k}\right\}=\infty, \tag{4.8}
\end{equation*}
$$

and hence W_{p} is not an $\ell-\ell$ matrix.
Corollary 1. A_{Q} is an $\ell-\ell$ matrix.
Proof. Since $Q_{n}=\binom{n+\alpha+1}{n}$ and $\alpha>-1$ implies that $\alpha+1>0$, the assertion easily follows by Theorem 1.

Corollary 2. A_{q} is an $\ell-\ell$ matrix if and only if $\lim _{n}\left(Q_{n} / n q_{n}\right)<1$.
Proof. By Theorem $1, A_{q}$ is an $\ell \ell$ matrix implies that $\alpha>0$, and as a consequence we have $1 /(\alpha+1)<1$. Now using (3.1), we have

$$
\begin{equation*}
\lim _{n}\left(\frac{Q_{n}}{n q_{n}}\right)=\lim _{n} \frac{n^{\alpha+1} \Gamma(\alpha+1)}{\Gamma(\alpha+2) n^{\alpha+1}}=\frac{1}{\alpha+1}<1 . \tag{4.9}
\end{equation*}
$$

Conversely, if $\lim _{n}\left(Q_{n} / n q_{n}\right)<1$, then it follows from (4.9) that $1 /(\alpha+1)<1$ and consequently we have $\alpha>0$, and hence, by Theorem $1, A_{q}$ is an $\ell-\ell$ matrix.
Corollary 3. Suppose that $z_{k}=\binom{k+\beta}{k}$ and $\alpha<\beta$; then A_{z} is an $\ell-\ell$ matrix whenever A_{q} is an $\ell-\ell$ matrix.

Proof. The corollary follows easily by Theorem 1.
Lemma 4. If the Abel-type matrix $A_{\alpha, t}[5]$ is an $\ell \ell \ell$ matrix, then $A_{\alpha+1, t}$ is also an $\ell-\ell$ matrix.

Proof. By the Knopp-Lorentz theorem [4], $A_{\alpha, t}$ is an $\ell \ell \ell$ matrix implies that

$$
\begin{equation*}
\sup _{k}\left\{\sum_{n=0}^{\infty}\left|a_{n k}\right|\right\}<\infty . \tag{4.10}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\sup _{k}\left\{\binom{k+\alpha}{k} \sum_{n=0}^{\infty} t_{n}^{k}\left(1-t_{n}\right)^{\alpha+1}\right\}<\infty . \tag{4.11}
\end{equation*}
$$

Now from (4.11), we can easily conclude that

$$
\begin{equation*}
\sup _{k}\left\{\binom{k+\alpha+1}{k} \sum_{n=0}^{\infty} t_{n}^{k}\left(1-t_{n}\right)^{\alpha+2}\right\}<\infty . \tag{4.12}
\end{equation*}
$$

Hence, $A_{\alpha+1, t}$ is an $\ell-\ell$ matrix.
The next theorem compares the summability fields of the matrices A_{q} and $A_{\alpha, t}[5]$.
Theorem 2. If $A_{\alpha, t}$ and A_{q} are $\ell-\ell$ matrices, then $\ell\left(A_{q}\right) \subseteq \ell\left(A_{\alpha, t}\right)$.
Proof. Let $x \in \ell\left(A_{q}\right)$. Then we show that $x \in \ell\left(A_{\alpha, t}\right)$. Let y be the A_{q}-transform of the sequence x. Then we have

$$
\begin{equation*}
y_{n} Q_{n}=\sum_{k=0}^{n} q_{k} x_{k} \tag{4.13}
\end{equation*}
$$

Now since $y_{n} Q_{n}$ is the partial sums of the sequence q_{x}, using (3.6) it follows that

$$
\begin{equation*}
\left(1-t_{n}\right) \sum_{k=0}^{\infty} Q_{k} y_{k} t_{n}^{k}=\sum_{k=0}^{\infty} q_{k} x_{k} t_{n}^{k} . \tag{4.14}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\left(1-t_{n}\right)^{\alpha+2} \sum_{k=0}^{\infty} Q_{k} y_{k} t_{n}^{k}=\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty} q_{k} x_{k} t_{n}^{k} \tag{4.15}
\end{equation*}
$$

and as a consequence we have $\left(A_{\alpha+1, t} y\right)_{n}=\left(A_{\alpha, t} x\right)_{n}$. By Lemma $4, A_{\alpha, t}$ is an $\ell-\ell$ matrix implies that $A_{\alpha+1, t}$ is also an $\ell-\ell$ matrix, and from the assumption that $x \in$ $\ell\left(A_{q}\right)$, it follows that $y \in \ell$. Consequently, we have $A_{\alpha+1, t} y \in \ell$ and this is equivalent to $A_{\alpha, t} x \in \ell$. Thus, $x \in \ell\left(A_{\alpha, t}\right)$ and hence our assertion follows.

Remark 2. Theorem 2 gives an important inclusion result in the $\ell-\ell$ setting that parallels the famous inclusion result that exists between the power series method of summability and its corresponding weighted mean in the $c-c$ setting [1].

Lemma 5. Suppose $A=\left\{a_{n k}\right\}$ is an $\ell-\ell$ matrix such that $a_{n k}=0$ for $k>n, m>s$ (both positive integers); then $\ell\left(A^{s}\right) \subseteq \ell\left(A^{m}\right)$, where the interpretation for A^{s} and A^{m} is as given in [6, p. 28].

Theorem 3. If $B=A_{q}$ is an $\ell-\ell$ matrix, then B^{m} is also an $\ell-\ell$ matrix (for m a positive integer greater than 1.)
Proof. Let $x \in \ell . B$ is an $\ell-\ell$ matrix implies that $x \in \ell(B)$. By Lemma 5 , we have $\ell(B) \subseteq \ell\left(B^{m}\right)$ and hence it follows that $x \in \ell\left(B^{m}\right)$. Hence, B^{m} is an $\ell-\ell$ matrix.

Remark 3. Theorem 3 gives a result that goes parallel to a $c-c$ result given on [6, Thm. 2.4, p. 28].

In Corollary 1, we showed that A_{Q} is an $\ell-\ell$ matrix. Here, a question may be raised as to whether A_{Q} maps ℓ^{P} into ℓ for $p>1$. But this is answered negatively by the following theorem.

Theorem 4. A_{Q} does not map ℓ^{P} into ℓ for $p>1$.
Proof. Let $A_{Q}=\left\{b_{n k}\right\}$. Note that if $A_{Q, \alpha}$ maps ℓ^{P} into ℓ, then by [3, Thm. 2], we must have

$$
\begin{equation*}
\lim _{k} \sum_{n=1}^{\infty}\left|b_{n k}\right|=0 . \tag{4.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
R_{n}=\sum_{k=1}^{n} Q_{k} \tag{4.17}
\end{equation*}
$$

then it follows that

$$
\begin{align*}
\sum_{n=1}^{\infty} b_{n k} & =\binom{k+\alpha+1}{k} \sum_{n=k}^{\infty} \frac{1}{R_{n}}=\binom{k+\alpha+1}{k} \sum_{n=k}^{\infty} \frac{1}{\binom{n+\alpha+2}{n}} \\
& \geq M_{1} k^{\alpha+1} \sum_{n=k}^{\infty} \frac{1}{n^{\alpha+2}} \text { for some } M_{1}>0 \tag{4.18}\\
& \geq M_{1} M_{2} k^{\alpha+1} \int_{k}^{\infty} \frac{d x}{x^{\alpha+2}} \text { for some } M_{2}>0 \\
& =\frac{M_{1} M_{2}}{\alpha+1}>0
\end{align*}
$$

Thus, it follows that

$$
\begin{equation*}
\lim _{k} \sum_{n=1}^{\infty}\left|b_{n k}\right|>0 \tag{4.19}
\end{equation*}
$$

and hence A_{Q} does not map ℓ^{P} into ℓ for $p>1$ by [3, Thm. 2].
Our next theorem has the form of an extension mapping theorem. It indicates that a mapping of A_{q} from G or G_{w} into ℓ can be extended to a mapping of ℓ into ℓ.
Theorem 5. The following statements are equivalent:
(1) A_{q} is an $\ell-\ell$ matrix;
(2) A_{q} is a $G^{-\ell}$ matrix;
(3) A_{q} is a $G_{w}-\ell$ matrix.

Proof. Since G is a subset of ℓ and G_{w} a subset of $G,(1) \Rightarrow(2) \Rightarrow(3)$ follow easily. The assertion that (3) $\Rightarrow(1)$ follows by [7, Thm. 1.1] and Theorem 1.

Corollary 4. (1) A_{Q} is a $G^{-\ell}$ matrix.
(2) $A_{Q} a G_{w}-\ell$ matrix.

Proof. Since A_{Q} is an $\ell-\ell$ matrix by Corollary 1, the assertion follows by Theorem 5.

COROLLARY 5. (1) If A_{q} is a $G-G$ matrix, then A_{q} is an $\ell-\ell$ matrix.
(2) If A_{q} is a $G_{w}-G_{w}$ matrix, then A_{q} is an $\ell \ell \ell$ matrix.

Proof. The assertion follows easily by Theorem 5.

Theorem 6. A_{q} is a $G-G$ matrix if and only if $1 / Q \in G$.
Proof. If A_{q} is a $G-G$ matrix, then the first column of A_{q} is must in G. This gives $1 / Q \in G$ since $a_{n, 0}=q_{0} / Q_{n}$. Conversely, suppose $1 / Q \in G$. Then $1 / Q_{n} \leq M_{1} r^{n}$ for $M_{1}>0$ and $r \in(0,1)$. Now let $u \in G$, say $\left|u_{k}\right| \leq M_{2} t^{k}$ for some $M_{2}>0$ and $t \in(0,1)$. Let Y be the A_{q}-transform of the sequence u. Then we have

$$
\begin{equation*}
\left|Y_{n}\right| \leq M_{1} M_{2} r^{n} \sum_{k=0}^{n}\binom{k+\alpha}{k} t^{k}<M_{1} M_{2} r^{n}(1-t)^{-(\alpha+1)}<M_{3} r^{n} \quad \text { for some } M_{3}>0 . \tag{4.20}
\end{equation*}
$$

Therefore, $Y \in G$ and hence it follows that A_{q} is a $G-G$ matrix.
Theorem 7. A_{q} is a $G_{w}-G_{w}$ matrix if and only if $1 / Q \in G_{w}$.
Proof. The proof follows easily using the same steps as in the proof of Theorem 6 by replacing G with G_{w}.

Lemma 6. If the Abel-type matrix $A_{\alpha, t}$ [5] is a $G-G$ matrix, then $A_{\alpha+1, t}$ is also a $G-G$ matrix.

Proof. By [5, Thm. 7], $A_{\alpha, t}$ is $G-G$ implies that $(1-t)^{\alpha+1} \in G$. But $(1-t)^{\alpha+1} \in$ G yields $(1-t)^{\alpha+2} \in G$, and hence by [5, Thm. 7], it follows that $A_{\alpha+1, t}$ is a $G-G$ matrix.

Lemma 7. If the Abel-type matrix $A_{\alpha, t}$ [5] is a $G_{w}-G_{w}$ matrix, then $A_{\alpha+1, t}$ is also a $G_{w}-G_{w}$ matrix.

Proof. The assertion easily follows by replacing G with G_{w} in the proof of Lemma 6.

Theorem 8. If $A_{\alpha, t}$ [5] and A_{q} are G - G matrices, then the $G\left(A_{\alpha, t}\right)$ contains $G\left(A_{q}\right)$.
Proof. The proof easily follows using the same techniques as in the proof of Theorem 3 by replacing ℓ with G and applying Lemma 6 .

Theorem 9. If $A_{\alpha, t}[3]$ and A_{q} are $G_{w}-G_{w}$ matrices, then $G_{w}\left(A_{\alpha, t}\right)$ contains $G_{w}\left(A_{q}\right)$.
Proof. The proof easily follows using the same techniques as in the proof of Theorem 3 by replacing ℓ with G_{w} and applying Lemma 7 .

References

[1] D. Borwein and W. Kratz, On relations between weighted mean and power series methods of summability, J. Math. Anal. Appl. 139 (1989), no. 1, 178-186. MR 90j:40009. Zbl 714.40001.
[2] G. H Fricke and J. A. Fridy, Sequence transformations that guarantee a given rate of convergence, Pacific J. Math. 146 (1990), no. 2, 239-246. MR 91i:40002. Zbl 722.40005.
[3] J. A. Fridy, Properties of absolute summability matrices, Proc. Amer. Math. Soc. 24 (1970), 583-585. MR 42\#724. Zbl 187.32103.
[4] K. Knopp and G. G. Lorentz, Beitrage zur absoluten Limitierung, Arch. Math. 2 (1949), 10-16. MR 11,346i.
[5] M. Lemma, The Abel- type transformations into l, to appear on the Internat. J. Math. Math. Sci.
[6] R. E. Powell and S. M. Shah, Summability theory and applications, Prentice-Hall of India, New Delhi, 1988, Rev. ed. Zbl 665.40001.
[7] S. Selvaraj, Matrix summability of classes of geometric sequences, Rocky Mountain J. Math. 22 (1992), no. 2, 719-732. MR 93i:40002. Zbl 756.40005.

Lemma and Tessema: Savannah State University, Savannah, Georgia 31404, USA

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

