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Abstract. We introduce the class of countably I-compact spaces as a proper subclass
of countably S-closed spaces. A topological space (X,T) is called countably I-compact if
every countable cover of X by regular closed subsets contains a finite subfamily whose
interiors cover X. It is shown that a space is countably I-compact if and only if it is ex-
tremally disconnected and countably S-closed. Other characterizations are given in terms
of covers by semiopen subsets and other types of subsets. We also show that countable
I-compactness is invariant under almost open semi-continuous surjections.
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1. Introduction. A topological space (X,T) is called S-closed by Thompson [8] if

every cover ofX by semiopen subsets contains a finite subfamily whose union is dense

in (X,T). Cameron [1] showed that (X,T) is S-closed if and only if every cover of X
by regular closed sets has a finite subcover (accordingly, S-closed spaces are called

rc-compact). A topological space (X,T) is called I-compact by Cameron [2] if every

cover of X by regular closed sets contains a finite subfamily whose interiors cover X.

I-compact spaces were further studied by Sivaraj in [7].

In [3] the class of countably S-closed spaces was introduced and studied. A space

(X,T) is called countably S-closed if every countable cover of X by regular closed

subsets has a finite subcover for X. It was studied further in [5], under the name

countably rc-compact.

In the present paper, after the preliminaries in Section 2, we define in Section 3

the class of countably I-compact spaces, where a space (X,T) is called countably

I-compact if every countable cover of X by regular closed subsets contains a count-

able subfamily whose interiors cover X. Then we provide characterizations of count-

ably I-compact spaces in terms of semiopen covers or semipreopen covers. Also it is

shown that (X,T) is countably I-compact if and only if it is countably S-compact and

extremally disconnected.

In Section 4, we include main properties of countably I-compact spaces, while we

deal in Section 5 with mappings of countably I-spaces.

Throughout this paper, a space will mean a topological space with no separation

axiom assumed. We always use (X,T) and (Y ,M) to denote topological spaces, and N
denotes the set of natural numbers.

2. Preliminaries. Let (X,T) be a space and let A⊆ X. Then intT (A) and clT (A) (or

simply int(A) and cl(A)) denote the interior ofA and the closure ofA in (X,T), respec-

tively. The subsetA⊆X is regular open (regular closed) ifA= intcl(A) (A= cl int(A)).
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It is clear that A is regular open if and only if its complement is regular closed. Also

we include the following easy facts.

Remark 2.1. Let A be a subset of a space (X,T). Then

(a) A is regular open if and only if A= int(F) for some closed subset F of (X,T).
(b) A is regular closed if and only if A= cl(U) for some U ⊆ T .

We use RO(X,T) and RC(X,T) to denote the family of all regular open subsets and

the family of all regular closed subsets of (X,T), respectively.

A subset A of a space (X,T) is called semiopen (resp., preopen, α-open) if A ⊆
cl int(A) (resp., A ⊆ intcl(A), A ⊆ intcl int(A)). We let SO(X,T) (resp., PO(X,T), Tα)

denote the family of semiopen (resp., preopen, α-open) subsets of a space (X,T). We

point here to the fact that Tα is a topology on X with T ⊆ Tα.

Remark 2.2. For a space (X,T) it is well known that

(a) RO(X,T)
⋃

RC(X,T)⊆ SO(X,T),
(b) Tα = SO(X,T)∩PO(X,T).
A space (X,T) is called extremally disconnected (abbreviated e.d.) if cl(U) is open

for any open subset U of X. We include for later use the following well-known facts.

Lemma 2.3. A space (X,T) is e.d. if and only if whenever U,V ∈ T and U ∩V = ∅
then cl(U)∩cl(V)=∅.

Lemma 2.4 (see [3]). If P is a preopen (≡ locally dense) subset of a space (X,T), then

RC
(
P,T |P

)= {F∩P : F ∈ RC(X,T)
}
. (2.1)

3. Countably I-compact spaces. In [3], a space (X,T) is called countably S-closed

if every countable cover of X by regular closed subsets has a finite subcover (such a

space is also studied in [5] where it was called countably rc-compact ). A space (X,T)
is called feebly compact if every countable open cover of X contains a finite subfamily

whose union is dense in (X,T). It is known that every countably S-closed space is

feebly compact (see [3, Proposition 2.1]) while [3, Example 4.3] provides several feebly

compact spaces which are not countably S-closed.

We define now the class of countably I-compact spaces.

Definition 3.1. A space (X,T) is called countably I-compact if every countable

cover {Fn :n∈N} of X by regular closed subsets contains a finite subfamily

{
Fk : k= 1, . . . ,m

}
(3.1)

such that

X =
m⋃

k=1

int
(
Fk
)
. (3.2)

We start with the following characterization of countably I-compact spaces.

Theorem 3.2. A space (X,T) is countably I-compact if and only if it is countably

S-compact and e.d.
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Proof

Necessity. Let (X,T) be countably I-compact. It is immediate from the definition

that (X,T) is countably S-closed. Now, suppose that (X,T) is not e.d. We find an

open set U such that cl(U) is not open and therefore cl(U)− intcl(U) ≠ ∅. We put

V =X−cl(U). Then {cl(U),cl(V)} is a countable cover of X by regular closed subsets

but X ≠ intcl(U)
⋃

intcl(V), a contradiction.

Sufficiency. Let {Fn :n∈N} be a countable cover of X by regular closed subsets.

Since (X,T) is countably S-closed then there exists m∈N such that X =⋃mk=1Fk. For

each k= 1, . . . ,m, we pick Uk ∈ T such that Fk = cl(Uk). Since (X,T) is e.d., then cl(Uk)
is open for each k= 1, . . . ,m. Thus X =⋃mk=1Fk =

⋃m
k=1 int(Fk) and (X,T) is countably

I-compact.

We point here that [3, Example 4.2] provides a countably S-closed space which is

not e.d. Thus the class of countably I-compact spaces is a proper subclass of the

countably S-closed spaces.

Definition 3.3 (see [3]). A space (X,T) is called km-perfect if for every G ∈
RO(X,T) and for every point x ∈ X−G there exists a sequence {Un : n ∈N} of open

subsets of X such that
⋃
n∈NUn ⊆G ⊆

⋃
n∈N cl(Un) and x �∈⋃n∈N cl(Un).

We include the following fact from [3].

Proposition 3.4 (see [3, Theorem 3.2]). Let (X,T) be countably S-closed and km-

perfect. Then (X,T) is e.d.

We now have the following result.

Theorem 3.5. A space (X,T) is countably I-compact if and only if (X,T) is countably

S-closed and km-perfect.

Proof

Necessity. Follows easily from the fact that every e.d. space is km-perfect (see [3,

Theorem 3.1(i)]).

Sufficiency. Follows from Theorem 3.2 and Proposition 3.4.

Theorem 3.6. The following conditions are equivalent for an e.d. space (X,T):
(a) (X,T) is countably I-compact,

(b) (X,T) is countably S-closed,

(c) (X,T) is feebly compact.

Proof. (a)⇒(b). Is clear.

(b)⇒(c). Is clear.

(c)⇒(a). Since (X,T) is feebly compact and e.d. then it is countably S-closed (see [3,

Corollary 3.3(i)]). Thus (X,T) is countably I-compact by Theorem 3.2.

To state our final characterization of countably I-compact spaces we recall that a

subset A of a space (X,T) is called regular semiopen if there exists G ∈ RO(X,T) such

that G ⊆A⊆ cl(G). The subset A is called semipreopen (see [4]) if A⊆ cl intcl(A).
Let RSO(X,T) and SPO(X,T) denote, respectively, the family of all regular

semiopen subsets of (X,T) and the family of all semipreopen subsets of (X,T). It is
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easy to check the following inclusions for a space (X,T):

RC(X,T)⊆ RSO(X,T)⊆ SO(X,T)⊆ SPO(X,T). (3.3)

Also, the following is an easy fact whose proof is omitted.

Proposition 3.7. A subset A of a space (X,T) is semipreopen if and only if cl(A)
is regular closed.

We have now the following characterization.

Theorem 3.8. The following conditions are equivalent for a space (X,T):
(a) (X,T) is countably I-compact.

(b) For every countable cover {An : n∈N} of X by semipreopen subsets there exists

m∈n such that X =⋃mk=1 intcl(Ak).
(c) For every countable cover {Sn : n ∈ N} of X by semiopen subsets there exists

m∈n such that X =⋃mk=1 intcl(Sk).
(d) For every countable cover {Rn : n ∈ N} of X by regular semiopen subsets there

exists m∈n such that X =⋃mk=1 intcl(Rk).

Proof. Follows easily from Proposition 3.7 and the remark preceding it involving

the stated inclusions.

4. Properties of countably I-compact spaces. To begin with, we point to the fact

that, given a space (X,T), the family RO(X,T) is a base for a topology Ts ⊆ T on X
called the semiregularization of (X,T). A property P of topological spaces is called

a semiregular property if a space (X,T) has property P if and only if (X,TS) has

property P . Countable S-closedness is a semiregular property (see [3, Proposition 2.6]).

Also, it is a well-known fact that extremal disconnectedness is a semiregular property.

Now, these remarks, together with Theorem 3.2, form the proof of the following result.

Theorem 4.1. The property of being a countably I-compact space is a semiregular

property.

The remaining results of this section deal with subsets of countably I-compact

spaces, or with those subsets which are countably I-compact.

Proposition 4.2. Let (X,T) be a countably I-compact space and let S be a regular

semiopen subset of (X,T). Then (S,T | S) is countably I-compact.

Proof. Since extremal disconnectedness is semiopen hereditary (see [6, Corollary

4.3]), it follows that (S,T | S) is e.d.

We show that (S,T | S) is countably S-closed. ChooseU ∈ RO(X,T) such thatU ⊆ S ⊆
cl(U). We have that U is, by [3, Proposition 2.9(i)], countably S-closed. It follows that

(S,T | S) is, by [3, Proposition 2.9(ii)], countably S-closed. We conclude that (S,T | S)

is, by Theorem 3.2, countably I-compact.

Corollary 4.3. Let (X,T) be a countably I-compact space.

(a) If G ∈ RO(X,T) then (G,T |G) is countably I-compact.

(b) If F ∈ RC(X,T) then (F,T | F ) is countably I-compact.
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Proof. Follows easily from the obvious facts that RO(X,T) ⊆ RSO(X,T) and

RC(X,T)⊆ RSO(X,T).

Proposition 4.4. If a space (X,T) is a finite union of regular open countably

I-compact subspaces Gk, k= 1, . . . ,n, then (X,T) is countably I-compact.

Proof. Let {Fn : n ∈ N} be a countable cover of X by regular closed subsets of

the space (X,T). For 1 ≤ k ≤m, we let �k = {Gk∩Fn : n ∈ N}. Again, by Lemma 2.4,

�k is a cover of Gk by regular closed subsets of the countably I-compact subspace

(Gk,T |Gk). Thus there exists �k ∈N such that

Gk =
�k⋃

j=1

intGk
(
GkIFj

)⊆
�k⋃

j=1

intT
(
Fj
)
. (4.1)

We let � = max{�k : k = 1, . . . ,n}. Then X = ⋃mk=1 Gk =
⋃�
j=1 intFj , and the proof is

complete.

5. Mappings of countably I-compact spaces. A function f : (X,T) → (Y ,M) is

called irresolute (resp., semi-continuous) if f−1(V) is a semiopen subset of (X,T) for

each semiopen (resp., open) subset V of (Y ,M). The function f is called almost open

if f−1(cl(B))⊆ cl(f−1(B)) for every B ∈M .

It is well known (see [3, Proposition 2.7(i)]) that the irresolute image of a countably S-

closed space is countably S-closed. So the next result follows easily from Theorem 3.2.

Theorem 5.1. Let f be an irresolute function from a countably I-compact space

(X,T) onto an e.d. space (Y ,M). Then (Y ,M) is countably I-compact.

Recall that a subsetA of (X,T) is called semiclosed ifX−A is semiopen. The semiclo-

sure of a subsetA of a space (X,T), written scl(A), is the intersection of all semiclosed

subsets of (X,T) that contain A.

Proposition 5.2 (see [9, Theorem 3.1]). A function f : (X,T) → (Y ,M) is semi-

continuous if and only if f(scl(A))⊆ cl(f (A)) for every A⊆X.

Proposition 5.3 (see [7, Corollary 2.3]). Let (X,T) be e.d. If A ∈ SO(X,T) then

scl(A)= cl(A)

Now, we state our main result of this section.

Theorem 5.4. Let f : (X,T)→ (Y ,M) be a semi-continuous almost open surjection.

If (X,T) is countably I-compact then so is (Y ,M).

Proof. First, we show that (Y ,M) is countably S-closed. Let {Sn : n ∈ N} be a

countable semiopen cover of the space (Y ,M). For each n ∈ N we choose Vn ∈ M
such that Vn ⊆ Sn ⊆ cl(Vn). Note that cl(Sn)= cl(Vn) for each n∈N. Since f is semi-

continuous, f−1(Vn) ∈ SO(X,T) and hence cl(f−1(Vn)) ∈ RC(X,T) for each n ∈ N.
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Note that

X = f−1


 ⋃

n∈N
Sn


⊆ f−1


 ⋃

n∈N
cl
(
Vn
)

=

⋃

n∈N
f−1(cl

(
Vn
))⊆

⋃

n∈N
cl
(
f−1(Vn

))
(5.1)

(since f is almost open).

So the family {cl(f−1(Vn)) : n ∈ N} is a countable cover of X by regular closed

subsets. So there exists m∈N such that X =⋃mk=1 cl(f−1(Vk)). It follows that

Y = f



m⋃

k=1

cl
(
f−1(Vk

))

= (by Proposition 5.3)f




m⋃

k=1

scl
(
f−1(Vk

))



=
m⋃

k=1

f
(
scl
(
f−1(Vk

)))⊆ (by Proposition 5.2)
m⋃

k=1

cl
(
f
(
f−1(Vk

)))

=
m⋃

k=1

cl
(
Vk
)=

m⋃

k=1

cl
(
Sk
)
.

(5.2)

This proves that (Y ,M) is countably S-closed.

Next, we prove that (Y ,M) is e.d. Let G,H ∈ M with G∩H = ∅. It is enough, by

Lemma 2.3, to show that cl(G)∩cl(H)=∅. Now, we have

f−1(cl(G)∩cl(H)
)= f−1(cl(G)

)∩f−1(cl(H)
)

⊆ (as f is almost open)cl
(
f−1(G)

)∩cl
(
f−1(H)

)
.

(5.3)

But f is semi-continuous, so f−1(G), f−1(H) ∈ SO(X,T). We choose U,V ∈ T such

that U ⊆ f−1(G) ⊆ cl(U) while V ⊆ f−1(H) ⊆ cl(V). We note that U ∩ V = ∅
(as f−1(G)∩ f−1(H) = ∅) and, since (X,T) is e.d., then (by Lemma 2.3) we have

cl(U)∩cl(V)=∅. It is clear that cl(U)= cl(f−1(G)) and cl(V)= cl(f−1(H)). We con-

clude that f−1(cl(G)∩ cl(H)) ⊆ cl(f−1(G))∩ cl(f−1(H)) = ∅ and therefore cl(G)∩
cl(H)=∅, as required. The proof of the theorem is now complete.

Corollary 5.5. Let f : (X,T)→ (Y ,M) be an open continuous surjection. If (X,T)
is countably I-compact then so is the space (Y ,M).

Corollary 5.6. If a product space
∏
α∈∆Xα is countably I-compact then (Xα,Tα) is

countably I-compact, for each α∈∆.
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