ON THE ZEROS AND CRITICAL POINTS OF A RATIONAL MAP

XAVIER BUFF

(Received 23 January 2001)

Abstract

Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a rational map of degree d. It is well known that f has d zeros and $2 d-2$ critical points counted with multiplicities. In this note, we explain how those zeros and those critical points are related.

2000 Mathematics Subject Classification. 30C15.

In this note, $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is a rational map. We denote by $\left\{\alpha_{i}\right\}_{i \in I}$ the set of zeros of f, and by $\left\{\omega_{j}\right\}_{j \in J}$ the set of critical points of f which are not zeros of f (the sets I and J are finite). Moreover, we denote by n_{i} the multiplicity of α_{i} as a zero of f and by m_{j} the multiplicity of ω_{j} as a critical point of f. The local degree of f at α_{i} is n_{i} and the local degree of f at ω_{j} is $d_{j}=m_{j}+1$. In particular, when $\omega_{j} \neq \infty$ and $f\left(\omega_{j}\right) \neq \infty$, the point ω_{j} is a zero of f^{\prime} of order m_{j}.

Our goal is to understand the relations that exist between the points α_{i} and the points ω_{j}.

Proposition 1. Given a finite collection of distinct points $\alpha_{i} \in \mathbb{P}^{1}$ with multiplicities n_{i} and $\omega_{j} \in \mathbb{P}^{1}$ with multiplicities m_{j}, there exists a rational map f vanishing exactly at the points α_{i} with multiplicities n_{i} and having extra critical points exactly at the points ω_{j} with multiplicities m_{j} if and only if
(i) $\sum\left(n_{i}+1\right)-\sum m_{j}=2$, and
(ii) for any k such that $\alpha_{k} \in \mathbb{C}$,

$$
\begin{equation*}
\operatorname{res}\left(\frac{\prod_{\omega_{j} \in \mathbb{C}}\left(z-\omega_{j}\right)^{m_{j}}}{\prod_{\alpha_{i} \in \mathbb{C}}\left(z-\alpha_{i}\right)^{n_{i}+1}} d z, \alpha_{k}\right)=0 . \tag{1}
\end{equation*}
$$

We will give a geometric interpretation of (ii) in the case where α_{k} is a simple zero of f : working in a coordinate where $\alpha_{k}=\infty$, the barycentre of the remaining zeros weighted with their multiplicities is equal to the barycentre of the critical points of f weighted with their multiplicities (see Proposition 3 below).

Proof. The proof is elementary. It is based on the observation that the 1 -forms $d(1 / f)$ and

$$
\begin{equation*}
\phi=\frac{\prod_{\omega_{j} \in \mathbb{C}}\left(z-\omega_{j}\right)^{m_{j}}}{\prod_{\alpha_{i} \in \mathbb{C}}\left(z-\alpha_{i}\right)^{n_{i}+1}} d z \tag{2}
\end{equation*}
$$

are proportional. The differential equation $d(1 / f)=\phi$ has a rational solution if and only if ϕ is exact, if and only if the residues of ϕ at all finite poles are equal to zero.

LEMMA 2. Let f be a rational map. Denote by α_{i} its zeros and by n_{i} their multiplicities. Denote by ω_{j} the critical points of f which are not multiple zeros of f and by m_{j} their multiplicities. The zeros of the 1-form $d(1 / f)$ are exactly the points ω_{j} with order m_{j} and its poles are exactly the points α_{i} with order $n_{i}+1$.

Proof. A singularity of the 1 -form $d(1 / f)=-d f / f^{2}$ is necessarily a zero or a pole of f, a zero of f^{\prime}, or ∞ (where ϕ is defined by analytic continuation). Considering the Laurent series of f at each of those points, one immediately gets the result.

Now assume that there exists a rational map f with the required properties. Lemma 2 shows that the 1 -forms ϕ and $d(1 / f)$ have the same poles and the same zeros in \mathbb{C}, with the same multiplicities. Hence, their ratio is a rational function which does not vanish in \mathbb{C}. Thus, ϕ and $d(1 / f)$ are proportional. In particular, ϕ has a singularity at ∞ if and only if $d(1 / f)$ has a singularity at ∞ and the singularity is of the same kind for both 1 -forms. Since the number of poles minus the number of zeros of any nonzero 1 -form on \mathbb{P}^{1} is equal to 2 (the Euler characteristic of \mathbb{P}^{1}), we see that $\sum\left(n_{i}+1\right)-\sum m_{j}=2$ which is precisely condition (i) in Proposition 1. Besides, since ϕ is exact, it follows that the residues at all the poles α_{k} vanish and condition (ii) is satisfied.

Conversely, the 1 -form ϕ has poles of order $n_{i}+1$ at the points $\alpha_{i} \in \mathbb{C}$ and zeros of order m_{j} at the points $\omega_{j} \in \mathbb{C}$. Condition (ii) implies that ϕ is exact, that is, there exists a rational map $g: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $\phi=d g$. Since the number of poles of ϕ in \mathbb{P}^{1} minus the number of zeros of ϕ in \mathbb{P}^{1} is equal to 2 , condition (i) implies that when ∞ is neither a point α_{i} nor a point ω_{j}, it is a regular point of ϕ, when $\infty=\alpha_{i_{0}}$, it is a pole of ϕ of order $n_{i_{0}}$, and when $\infty=\omega_{j_{0}}$, it is a zero of ϕ of order $m_{j_{0}}$. Finally, $\phi=d(1 / f)$, with $f=1 / g$, and Lemma 2 shows that the rational map $f=1 / g$ vanishes exactly at the points α_{i} with multiplicities n_{i} and has extra critical points exactly at the points ω_{j} with multiplicities m_{j}.

We will now give a geometric interpretation of (ii) when α_{k} is a simple zero of f. We first work in a coordinate where ∞ is neither one of the points α_{i} nor a point ω_{j}. Define

$$
\begin{equation*}
R(z)=\frac{\prod_{j}\left(z-\omega_{j}\right)^{m_{j}}}{\prod_{i \neq k}\left(z-\alpha_{i}\right)^{n_{i}+1}} \tag{3}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\operatorname{res}\left(\frac{\prod_{j}\left(z-\omega_{j}\right)^{m_{j}}}{\prod_{i}\left(z-\alpha_{i}\right)^{n_{i}+1}} d z, \alpha_{k}\right)=\operatorname{res}\left(\frac{R(z)}{\left(z-\alpha_{k}\right)^{2}} d z, \alpha_{k}\right)=R^{\prime}\left(\alpha_{k}\right) \tag{4}
\end{equation*}
$$

Since $R\left(\alpha_{k}\right) \neq 0$, this residue vanishes if and only if

$$
\begin{equation*}
\frac{R^{\prime}\left(\alpha_{k}\right)}{R\left(\alpha_{k}\right)}=\sum_{j} \frac{m_{j}}{\alpha_{k}-\omega_{j}}-\sum_{i \neq k} \frac{n_{i}+1}{\alpha_{k}-\alpha_{i}}=0 \tag{5}
\end{equation*}
$$

Let d be the number of zeros counted with multiplicities, that is, $d=\sum_{i} n_{i}$. The total number of critical points is $2 d-2=\sum_{j} m_{j}+\sum_{i}\left(n_{i}-1\right)$ (the critical points of f are
the points ω_{j} and the multiple zeros of f). Then, (5) can be rewritten as

$$
\begin{equation*}
\frac{1}{2 d-2}\left(\sum_{j} \frac{m_{j}}{\alpha_{k}-\omega_{j}}+\sum_{i \neq k} \frac{n_{i}-1}{\alpha_{k}-\alpha_{i}}\right)=\frac{1}{d-1} \sum_{i \neq k} \frac{n_{i}}{\alpha_{k}-\alpha_{i}} . \tag{6}
\end{equation*}
$$

This last equality can be interpreted in the following way.
Proposition 3. Assume that f is a rational map having a simple zero at ∞. Then, the barycentre of the remaining zeros weighted with their multiplicities is equal to the barycentre of the critical points of f weighted with their multiplicities.

Remark 4. One can prove this proposition directly. We may write $f=P / Q$, where

$$
\begin{equation*}
P=\sum_{k=0}^{d-1} a_{k} z^{k}, \quad Q=\sum_{k=0}^{d} b_{k} z^{k}, \tag{7}
\end{equation*}
$$

are co-prime polynomials with $\operatorname{deg}(Q)=\operatorname{deg}(P)+1=d$. Without loss of generality, we may assume that the barycentre of the zeros of f is equal to 0 . In other words, we may assume that P is a centered polynomial, that is, $a_{d-2}=0$. A simple calculation shows that

$$
\begin{equation*}
P^{\prime} Q-Q^{\prime} P=\sum_{k=0}^{2 d-2} c_{k} z^{k} \tag{8}
\end{equation*}
$$

is a polynomial of degree $2 d-2$ and that $c_{2 k-1}=0$. Therefore, the barycentre of the zeros of $P^{\prime} Q-Q^{\prime} P$, that is, the barycentre of the critical points of f, is equal to 0 .

Apply this geometric interpretation in order to re-prove two known results. The first corollary is related to the Sendov conjecture (cf. [1] and more particularly Section 4). This conjecture asserts that if a polynomial P has all its roots in the closed unit disk, then, for each zero α_{i} there exists a critical point ω (possibly a multiple zero) such that $\left|\alpha_{i}-\omega\right| \leq 1$.

COROLLARY 5. Let $P: \mathbb{C} \rightarrow \mathbb{C}$ be a polynomial. Assume the zeros of P are all contained in the closed unit disk and $\alpha_{0} \in S^{1}$ is a zero of P. Then, the closed disk of diameter $\left[0, \alpha_{0}\right]$ contains at least one critical point of f.

Proof. Denote by d the degree of P. If α_{0} is a multiple zero of P, then the result is trivial. Thus, assume α_{0} is a simple zero of P. We work in the coordinate $Z=$ $\alpha_{0} /\left(\alpha_{0}-z\right)$. The rational map $f: Z \mapsto P\left(\alpha_{0}-\alpha_{0} / Z\right)$ has a simple zero at $Z=\infty$ and the remaining zeros are contained in the half-plane $\left\{Z \in \mathbb{P}^{1} \mid \mathfrak{R}(Z) \geq 1 / 2\right\}$. Thus the barycentre β of those zeros satisfies $\Re(\beta) \geq 1 / 2$. Moreover, f has a critical point of multiplicity d at $Z=0$. Thus, the barycentre of the d remaining critical points is 2β. Since $\mathfrak{R}(2 \beta) \geq 1$, we see that f has at least one critical point ω contained in the half plane $\left\{Z \in \mathbb{P}^{1} \mid \Re(Z) \geq 1\right\}$. Then, $\alpha_{0}-\alpha_{0} / \omega$ is a critical point of P contained in the closed disk of diameter [$0, \alpha_{0}$].

The second corollary has been proved by Videnskii [2]. Our result provides an alternate proof.

Corollary 6. Assume that $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is a rational map and $\Delta \subset \mathbb{P}^{1}$ is a closed disk or a closed half-plane containing all the zeros of f. Then, Δ contains at least one critical point of f.
Proof. Without loss of generality, we may assume that the zeros are simple and that at least one zero, say α_{0}, is on the boundary of Δ. In a coordinate where $\alpha_{0}=\infty$, Δ is a closed half-plane. The barycentre of the remaining zeros is contained in this half-plane. Consequently, the barycentre of the critical points is contained in Δ. Thus, Δ contains at least one critical point.

Videnskii also proved that this result is optimal in the sense that there exist rational maps of arbitrary degrees with simple zeros contained in a disk Δ but only one critical point in Δ.

References

[1] M. Marden, Conjectures on the critical points of a polynomial, Amer. Math. Monthly 90 (1983), no. 4, 267-276. MR 84e:30007. Zbl 535.30010.
[2] I. Videnskii, On the zeros of the derivative of a rational function and invariant subspaces for the backward shift operator on the Bergman space, in preparation.

Xavier Buff: Université Paul Sabatier, Laboratoire Emile Picard, 118, Route de Narbonne, 31062 Toulouse Cedex, France

E-mail address: buff@picard.ups-t1se.fr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

