# ON THE ZEROS AND CRITICAL POINTS OF A RATIONAL MAP

## **XAVIER BUFF**

(Received 23 January 2001)

ABSTRACT. Let  $f : \mathbb{P}^1 \to \mathbb{P}^1$  be a rational map of degree *d*. It is well known that *f* has *d* zeros and 2d - 2 critical points counted with multiplicities. In this note, we explain how those zeros and those critical points are related.

2000 Mathematics Subject Classification. 30C15.

In this note,  $f : \mathbb{P}^1 \to \mathbb{P}^1$  is a rational map. We denote by  $\{\alpha_i\}_{i \in I}$  the set of zeros of f, and by  $\{\omega_j\}_{j \in J}$  the set of critical points of f which are not zeros of f (the sets I and J are finite). Moreover, we denote by  $n_i$  the multiplicity of  $\alpha_i$  as a zero of f and by  $m_j$  the multiplicity of  $\omega_j$  as a critical point of f. The local degree of f at  $\alpha_i$  is  $n_i$  and the local degree of f at  $\omega_j$  is  $d_j = m_j + 1$ . In particular, when  $\omega_j \neq \infty$  and  $f(\omega_i) \neq \infty$ , the point  $\omega_j$  is a zero of f' of order  $m_j$ .

Our goal is to understand the relations that exist between the points  $\alpha_i$  and the points  $\omega_j$ .

**PROPOSITION 1.** Given a finite collection of distinct points  $\alpha_i \in \mathbb{P}^1$  with multiplicities  $n_i$  and  $\omega_j \in \mathbb{P}^1$  with multiplicities  $m_j$ , there exists a rational map f vanishing exactly at the points  $\alpha_i$  with multiplicities  $n_i$  and having extra critical points exactly at the points  $\omega_j$  with multiplicities  $m_i$  if and only if

- (i)  $\sum (n_i + 1) \sum m_i = 2$ , and
- (ii) for any k such that  $\alpha_k \in \mathbb{C}$ ,

$$\operatorname{res}\left(\frac{\prod_{\omega_j\in\mathbb{C}} (z-\omega_j)^{m_j}}{\prod_{\alpha_i\in\mathbb{C}} (z-\alpha_i)^{n_i+1}} dz, \alpha_k\right) = 0.$$
(1)

We will give a geometric interpretation of (ii) in the case where  $\alpha_k$  is a simple zero of f: working in a coordinate where  $\alpha_k = \infty$ , the barycentre of the remaining zeros weighted with their multiplicities is equal to the barycentre of the critical points of f weighted with their multiplicities (see Proposition 3 below).

**PROOF.** The proof is elementary. It is based on the observation that the 1-forms d(1/f) and

$$\phi = \frac{\prod_{\omega_j \in \mathbb{C}} (z - \omega_j)^{m_j}}{\prod_{\alpha_i \in \mathbb{C}} (z - \alpha_i)^{n_i + 1}} dz$$
(2)

are proportional. The differential equation  $d(1/f) = \phi$  has a rational solution if and only if  $\phi$  is exact, if and only if the residues of  $\phi$  at all finite poles are equal to zero.

#### XAVIER BUFF

**LEMMA 2.** Let f be a rational map. Denote by  $\alpha_i$  its zeros and by  $n_i$  their multiplicities. Denote by  $\omega_j$  the critical points of f which are not multiple zeros of f and by  $m_j$  their multiplicities. The zeros of the 1-form d(1/f) are exactly the points  $\omega_j$  with order  $m_j$  and its poles are exactly the points  $\alpha_i$  with order  $n_i + 1$ .

**PROOF.** A singularity of the 1-form  $d(1/f) = -df/f^2$  is necessarily a zero or a pole of f, a zero of f', or  $\infty$  (where  $\phi$  is defined by analytic continuation). Considering the Laurent series of f at each of those points, one immediately gets the result.

Now assume that there exists a rational map f with the required properties. Lemma 2 shows that the 1-forms  $\phi$  and d(1/f) have the same poles and the same zeros in  $\mathbb{C}$ , with the same multiplicities. Hence, their ratio is a rational function which does not vanish in  $\mathbb{C}$ . Thus,  $\phi$  and d(1/f) are proportional. In particular,  $\phi$  has a singularity at  $\infty$  if and only if d(1/f) has a singularity at  $\infty$  and the singularity is of the same kind for both 1-forms. Since the number of poles minus the number of zeros of any nonzero 1-form on  $\mathbb{P}^1$  is equal to 2 (the Euler characteristic of  $\mathbb{P}^1$ ), we see that  $\sum (n_i + 1) - \sum m_j = 2$  which is precisely condition (i) in Proposition 1. Besides, since  $\phi$  is exact, it follows that the residues at all the poles  $\alpha_k$  vanish and condition (ii) is satisfied.

Conversely, the 1-form  $\phi$  has poles of order  $n_i + 1$  at the points  $\alpha_i \in \mathbb{C}$  and zeros of order  $m_j$  at the points  $\omega_j \in \mathbb{C}$ . Condition (ii) implies that  $\phi$  is exact, that is, there exists a rational map  $g : \mathbb{P}^1 \to \mathbb{P}^1$  such that  $\phi = dg$ . Since the number of poles of  $\phi$  in  $\mathbb{P}^1$  minus the number of zeros of  $\phi$  in  $\mathbb{P}^1$  is equal to 2, condition (i) implies that when  $\infty$  is neither a point  $\alpha_i$  nor a point  $\omega_j$ , it is a regular point of  $\phi$ , when  $\infty = \alpha_{i_0}$ , it is a pole of  $\phi$  of order  $n_{i_0}$ , and when  $\infty = \omega_{j_0}$ , it is a zero of  $\phi$  of order  $m_{j_0}$ . Finally,  $\phi = d(1/f)$ , with f = 1/g, and Lemma 2 shows that the rational map f = 1/g vanishes exactly at the points  $\alpha_i$  with multiplicities  $n_i$  and has extra critical points exactly at the points  $\omega_j$  with multiplicities  $m_j$ .

We will now give a geometric interpretation of (ii) when  $\alpha_k$  is a simple zero of f. We first work in a coordinate where  $\infty$  is neither one of the points  $\alpha_i$  nor a point  $\omega_j$ . Define

$$R(z) = \frac{\prod_{j} (z - \omega_{j})^{m_{j}}}{\prod_{i \neq k} (z - \alpha_{i})^{n_{i} + 1}}.$$
(3)

Then,

$$\operatorname{res}\left(\frac{\prod_{j}\left(z-\omega_{j}\right)^{m_{j}}}{\prod_{i}\left(z-\alpha_{i}\right)^{n_{i}+1}}dz,\alpha_{k}\right)=\operatorname{res}\left(\frac{R(z)}{\left(z-\alpha_{k}\right)^{2}}dz,\alpha_{k}\right)=R'(\alpha_{k}).$$
(4)

Since  $R(\alpha_k) \neq 0$ , this residue vanishes if and only if

$$\frac{R'(\alpha_k)}{R(\alpha_k)} = \sum_j \frac{m_j}{\alpha_k - \omega_j} - \sum_{i \neq k} \frac{n_i + 1}{\alpha_k - \alpha_i} = 0.$$
(5)

Let *d* be the number of zeros counted with multiplicities, that is,  $d = \sum_i n_i$ . The total number of critical points is  $2d - 2 = \sum_j m_j + \sum_i (n_i - 1)$  (the critical points of *f* are

the points  $\omega_i$  and the multiple zeros of f). Then, (5) can be rewritten as

$$\frac{1}{2d-2}\left(\sum_{j}\frac{m_{j}}{\alpha_{k}-\omega_{j}}+\sum_{i\neq k}\frac{n_{i}-1}{\alpha_{k}-\alpha_{i}}\right)=\frac{1}{d-1}\sum_{i\neq k}\frac{n_{i}}{\alpha_{k}-\alpha_{i}}.$$
(6)

This last equality can be interpreted in the following way.

**PROPOSITION 3.** Assume that f is a rational map having a simple zero at  $\infty$ . Then, the barycentre of the remaining zeros weighted with their multiplicities is equal to the barycentre of the critical points of f weighted with their multiplicities.

**REMARK 4.** One can prove this proposition directly. We may write f = P/Q, where

$$P = \sum_{k=0}^{d-1} a_k z^k, \qquad Q = \sum_{k=0}^d b_k z^k, \tag{7}$$

are co-prime polynomials with  $\deg(Q) = \deg(P) + 1 = d$ . Without loss of generality, we may assume that the barycentre of the zeros of *f* is equal to 0. In other words, we may assume that *P* is a centered polynomial, that is,  $a_{d-2} = 0$ . A simple calculation shows that

$$P'Q - Q'P = \sum_{k=0}^{2d-2} c_k z^k$$
(8)

is a polynomial of degree 2d - 2 and that  $c_{2k-1} = 0$ . Therefore, the barycentre of the zeros of P'Q - Q'P, that is, the barycentre of the critical points of f, is equal to 0.

Apply this geometric interpretation in order to re-prove two known results. The first corollary is related to the Sendov conjecture (cf. [1] and more particularly Section 4). This conjecture asserts that if a polynomial *P* has all its roots in the closed unit disk, then, for each zero  $\alpha_i$  there exists a critical point  $\omega$  (possibly a multiple zero) such that  $|\alpha_i - \omega| \le 1$ .

**COROLLARY 5.** Let  $P : \mathbb{C} \to \mathbb{C}$  be a polynomial. Assume the zeros of P are all contained in the closed unit disk and  $\alpha_0 \in S^1$  is a zero of P. Then, the closed disk of diameter  $[0, \alpha_0]$  contains at least one critical point of f.

**PROOF.** Denote by *d* the degree of *P*. If  $\alpha_0$  is a multiple zero of *P*, then the result is trivial. Thus, assume  $\alpha_0$  is a simple zero of *P*. We work in the coordinate  $Z = \alpha_0/(\alpha_0 - z)$ . The rational map  $f: Z \mapsto P(\alpha_0 - \alpha_0/Z)$  has a simple zero at  $Z = \infty$  and the remaining zeros are contained in the half-plane  $\{Z \in \mathbb{P}^1 \mid \Re(Z) \ge 1/2\}$ . Thus the barycentre  $\beta$  of those zeros satisfies  $\Re(\beta) \ge 1/2$ . Moreover, *f* has a critical point of multiplicity *d* at Z = 0. Thus, the barycentre of the *d* remaining critical points is  $2\beta$ . Since  $\Re(2\beta) \ge 1$ , we see that *f* has at least one critical point  $\omega$  contained in the half plane  $\{Z \in \mathbb{P}^1 \mid \Re(Z) \ge 1\}$ . Then,  $\alpha_0 - \alpha_0/\omega$  is a critical point of *P* contained in the closed disk of diameter  $[0, \alpha_0]$ .

The second corollary has been proved by Videnskii [2]. Our result provides an alternate proof.

### XAVIER BUFF

**COROLLARY 6.** Assume that  $f : \mathbb{P}^1 \to \mathbb{P}^1$  is a rational map and  $\Delta \subset \mathbb{P}^1$  is a closed disk or a closed half-plane containing all the zeros of f. Then,  $\Delta$  contains at least one critical point of f.

**PROOF.** Without loss of generality, we may assume that the zeros are simple and that at least one zero, say  $\alpha_0$ , is on the boundary of  $\Delta$ . In a coordinate where  $\alpha_0 = \infty$ ,  $\Delta$  is a closed half-plane. The barycentre of the remaining zeros is contained in this half-plane. Consequently, the barycentre of the critical points is contained in  $\Delta$ . Thus,  $\Delta$  contains at least one critical point.

Videnskii also proved that this result is optimal in the sense that there exist rational maps of arbitrary degrees with simple zeros contained in a disk  $\Delta$  but only one critical point in  $\Delta$ .

## References

- M. Marden, Conjectures on the critical points of a polynomial, Amer. Math. Monthly 90 (1983), no. 4, 267-276. MR 84e:30007. Zbl 535.30010.
- [2] I. Videnskii, On the zeros of the derivative of a rational function and invariant subspaces for the backward shift operator on the Bergman space, in preparation.

XAVIER BUFF: UNIVERSITÉ PAUL SABATIER, LABORATOIRE EMILE PICARD, 118, ROUTE DE NARBONNE, 31062 TOULOUSE CEDEX, FRANCE *E-mail address*: buff@picard.ups-tlse.fr



Advances in **Operations Research** 



**The Scientific** World Journal







Hindawi

Submit your manuscripts at http://www.hindawi.com



Algebra



Journal of Probability and Statistics



International Journal of Differential Equations





Complex Analysis

International Journal of

Mathematics and Mathematical Sciences





Mathematical Problems in Engineering



Abstract and Applied Analysis

Discrete Dynamics in Nature and Society





**Function Spaces** 



International Journal of Stochastic Analysis

