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Abstract. By using the continuation theorem of coincidence degree theory, the existence
of positive periodic solutions for a periodic generalized food limited model with state
dependent delays and distributed delays is studied, respectively.
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1. Introduction. Gopalsamy, Kulenovíc, and Ladas [4] studied the existence of pe-
riodic solutions of the following periodic food limited model:

dN(t)
dt

= r(t)N(t)
[

K(t)−N(t−mω)
K(t)+c(t)r(t)N(t−mω)

]
, (1.1)

where K,r ,c are continuous positive ω-periodic functions, m is a positive integer.
Also, since as it was indicated by Freedman andWu [1] that it would be of interesting to
study the existence of periodic solutions for population models with periodic delays;
and since at present, there are only a few papers which have been published on the
existence of periodic solutions of state dependent delay differential equations (see [6]
and references therein). Our main purpose in this paper is—by using the Mawhin’s
continuation theorem of coincidence degree theory [2, 10]—to establish the existence
of positive periodic solutions for the periodic generalized food limited model

dN(t)
dt

= r(t)N(t)
[
K(t)−N(t)−∑nj=1aj(t)N(t−τj(t,N(t)))
1+r(t)∑nj=1bj(t)N(t−σj(t,N(t)))

]θ
(1.2)

with state dependent delays and

dN(t)
dt

= r(t)N(t)

K(t)−N(t)−

∑n
j=1aj(t)

∫ 0
−lj N(t+s)dηj(s)

1+r(t)∑nj=1bj(t)∫ 0−hj N(t+s)dµj(s)


θ

(1.3)

with distributed delays, where K > 0, r > 0, aj ≥ 0, bj ≥ 0 (j = 1,2, . . . ,n) are con-
tinuous ω-periodic functions, τj,σj ∈ C(R2,R) (j = 1,2, . . . ,n) are ω-periodic with
respect to their first arguments, respectively, lj,hj (j = 1,2, . . . ,n) are positive con-
stants, ηj,µj (j = 1,2, . . . ,n) are nondecreasing with respect to their arguments, re-
spectively, and θ is a positive odd number. As a special case of (1.2), we also obtain
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the existence of periodic solutions of the following generalized food limited model
with periodic delays

dN(t)
dt

= r(t)N(t)
[
K(t)−N(t)−∑nj=1aj(t)N(t−τj(t))
1+r(t)∑nj=1bj(t)N(t−σj(t))

]θ
, (1.4)

where K > 0, r > 0, aj ≥ 0, bj ≥ 0, τj,σj (j = 1,2, . . . ,n) are continuous ω-periodic
functions, and θ is a positive odd number. For the ecological sense of (1.4), we refer
to [3] and the references therein. For some work concerning the existence of periodic
solutions of functional differential equations which was done by using the Mawhin’s
coincidence degree theory we refer to [5, 7, 8, 9].

2. Main results. In this section, by using theMawhin continuation theoremwe show
the existence of at least one positive periodic solution of (1.2) and (1.3). To do so, we
first make some preparations.
Let X,Y be real Banach spaces, L : DomL ⊂ X → Y a Fredholm mapping of index

zero, and P : X → X, Q : Y → Y continuous projectors such that ImP = KerL, KerQ=
ImL, and X = KerL⊕KerP, Y = ImL⊕ ImQ. Denote by LP the restriction of L to
DomL

⋂
KerP, KP : ImL → KerP

⋂
DomL the inverse (to LP ), and J : ImQ → KerL an

isomorphism of ImQ onto KerL.
For convenience, we introduce the continuation theorem [2, page 40] as follows.

Lemma 2.1. Let Ω ⊂X be an open bounded set and N :X → Y be a continuous oper-
ator which is L-compact on Ω̄ (i.e., QN : Ω̄→ Y and KP(I−Q)N : Ω̄→ Y are compact).
Assume

(i) for each λ∈ (0,1), x ∈ ∂Ω⋂DomL, Lx ≠ λNx;
(ii) for each x ∈ ∂Ω⋂KerL, QNx ≠ 0, and deg{JQN,Ω⋂KerL,0}≠ 0.

Then Lx =Nx has at least one solution in Ω̄
⋂
DomL.

In what follows, we use the notation

ū= 1
ω

∫ω
0
u(t)dt, |u|0 = max

t∈[0,ω]
|u(t)|, (2.1)

where u is a continuous ω-periodic function.
We are now in a position to state and prove our first main result.

Theorem 2.2. Equation (1.2) has at least one positive ω-periodic solution.

Proof. Consider the following equation

dx(t)
dt

= r(t)
[
K(t)−ex(t)−∑nj=1aj(t)exp(x(t−τj(t,ex(t))))
1+r(t)∑nj=1bj(t)exp(x(t−σj(t,ex(t))))

]θ
, (2.2)

where K,r ,aj,bj,τj,σj (j = 1,= 2, . . . ,n) and θ are the same as those in (1.2). It is
easy to see that if (2.2) has an ω-periodic solution x∗(t), then N∗(t)= exp(x∗(t)) is
a positive ω-periodic solution of (1.2). So, to complete the proof, it suffices to show
that (2.2) has an ω-periodic solution.
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In order to use the continuation theorem of coincidence degree theory to estab-
lish the existence of ω-periodic solution of (2.2), we take X = Y = {x(t) ∈ C(R,R) :
x(t+ω)= x(t)}. With the norm |·|0, X is a Banach space. Set

L : DomL
⋂
X, Lx = dx

dt
, (2.3)

where DomL= {x(t)∈ C1(R,R)}, and

N :X �→X, Nx = r(t)
[
K(t)−ex(t)−∑nj=1aj(t)exp(x(t−τj(t,ex(t))))
1+r(t)∑nj=1bj(t)exp(x(t−σj(t,ex(t))))

]θ
. (2.4)

Define two projectors P and Q as

Px =Qx = 1
ω

∫ω
0
x(t)dt, x ∈X. (2.5)

Clearly, KerL = R, ImL = {x ∈ X : ∫ω0 x(t)dt = 0} is closed in X and dimKerL =
codimImL= 1. Hence, L is a Fredholm mapping of index zero. Furthermore, through
an easy computation, we find that the inverse KP of LP has the form

KP : ImL �→DomL
⋂
KerP,

KP(y)=
∫ t
0
x(s)ds− 1

ω

∫ω
0

∫ u
0
x(s)dsdu, t ∈ [0,ω].

(2.6)

Notice that

QN :X �→X,

QNx = 1
ω

∫ω
0


r(t)

[
K(t)−ex(t)−∑nj=1aj(t)exp(x(t−τj(t,ex(t))))
1+r(t)∑nj=1bj(t)exp(x(t−σj(t,ex(t))))

]θ
dt.

(2.7)

We find

KP(I−Q)N :X �→X,

x  �→
∫ t
0


r(s)

[
K(s)−ex(s)−∑nj=1aj(s)exp(x(s−τj(s,ex(s))))
1+r(s)∑nj=1bj(s)exp(x(s−σj(s,ex(s))))

]θ
ds

− 1
ω

∫ω
0

∫ u
0


r(s)

[
K(s)−ex(s)−∑nj=1aj(s)exp(x(s−τj(s,ex(s))))
1+r(s)∑nj=1bj(s)exp(x(s−σj(s,ex(s))))

]θ
dsdu

−
(
t
ω
− 1
2

)∫ω
0


r(s)

[
K(s)−ex(s)−∑nj=1aj(s)exp(x(s−τj(s,ex(s))))
1+r(s)∑nj=1bj(s)exp(x(s−σj(s,ex(s))))

]θ
ds.
(2.8)

Obviously, QN and KP(I − Q)N are continuous by the Lebesgue theorem and
QN(Ω̄), KP(I −Q)N(Ω̄) are relatively compact for any open bounded set Ω ⊂ X.
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Therefore, N is L-compact on Ω̄ for any open bounded set Ω ⊂ X. Corresponding
to the operator equation Lx = λNx, λ∈ (0,1), we have

dx(t)
dt

= λ

r(t)

[
K(t)−ex(t)−∑nj=1aj(t)exp(x(t−τj(t,ex(t))))
1+r(t)∑nj=1bj(t)exp(x(t−σj(t,ex(t))))

]θ
, λ∈ (0,1).

(2.9)
Suppose that x(t) ∈ X is a solution of (2.9) for some λ ∈ (0,1). Choose t1 ∈ [0,ω]
such that

x
(
t1
)= max

t∈[0,ω]
x(t). (2.10)

Then it is clear that
x′
(
t1
)= 0. (2.11)

In view of this and (2.9), we obtain

r
(
t1
)
[
K
(
t1
)−ex(t1)−∑nj=1aj(t1)exp(x(t1−τj(t1,ex(t1))))
1+r(t1)∑nj=1bj(t1)exp(x(t1−σj(t1,ex(t1))))

]θ
= 0 (2.12)

which implies that

K(t1)−ex(t1)−
n∑
j=1
aj
(
t1
)
exp

(
x
(
t1−τj

(
t1,ex(t1)

)))= 0. (2.13)

Thus
ex(t1) < K

(
t1
)≤ |K|0, x

(
t1
)
< ln|K|0. (2.14)

Integrating (2.9) over [0,ω], we obtain

∫ω
0


r(t)

[
K(t)−ex(t)−∑nj=1aj(t)exp(x(t−τj(t,ex(t))))
1+r(t)∑nj=1bj(t)exp(x(t−σj(t,ex(t))))

]θ
dt = 0 (2.15)

which implies that there exist a positive constant A1 and a point t0 ∈ [0,ω] such that

x
(
t0
)
>−A1. (2.16)

It follows from (2.9) and (2.14) that

∫ω
0

∣∣∣∣dx(t)dt

∣∣∣∣dt =
∫ω
0

∣∣∣∣∣∣r(t)
[
K(t)−ex(t)−∑nj=1aj(t)exp(x(t−τj(t,ex(t))))
1+r(t)∑nj=1bj(t)exp(x(t−σj(t,ex(t))))

]θ∣∣∣∣∣∣dt

<
∫ω
0

∣∣∣∣∣∣r(t)
[
K(t)−ex(t)−

n∑
j=1
aj(t)exp

(
x
(
t−τj

(
t,ex(t)

)))]θ∣∣∣∣∣∣dt

<ωr̄
(|K|0)θ

[
2+

n∑
j=1

∣∣aj∣∣0
]θ

def= A2.

(2.17)

By this and (2.16), we obtain

x(t)= x(t0)+
∫ t
t0
x′(t)dt ≥ x(t0)−

∫ω
0

∣∣x′(t)∣∣dt >−(A1+A2). (2.18)
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Denote by A =max{| ln|K|0|,A1+A2}+A3, here A3 > 0 is taken sufficiently large
such that K(t)− eA − eA∑nj=1aj(t) < 0 and K(t)− e−A − e−A∑nj=1aj(t) > 0 for t ∈
[0,ω] and take Ω = {x(t)∈X : |x|0 <A}, then it is clear that Ω satisfies condition (i)
in Lemma 2.1. When x ∈ ∂Ω∩R, x is a constant with |x| =A. Hence,

QNx = 1
ω

∫ω
0


r(t)

[
K(t)−ex−ex∑nj=1aj(t)
1+r(t)ex∑nj=1bj(t)

]θ
dt ≠ 0. (2.19)

Furthermore, take J = I : ImQ → KerL, x � x, by a straightforward computation,
we find

deg[JQN,KerL∩Ω,0]≠ 0. (2.20)

According to Lemma 2.1, we have completed the proof.

Next, immediately, from Theorem 2.2, we have the following corollary.

Corollary 2.3. Equation (1.4) has at least one positive ω-periodic solution.

Remark 2.4. In (1.4), when bj(t) = 0 for all t ∈ [0,ω] and j = 1,2, . . . ,n, equa-
tion (1.4) becomes the well-known logistic equation with several delays.

Finally, similar to the proof of Theorem 2.2, one can prove the following theorem.

Theorem 2.5. Equation (1.3) has at least one positive ω-periodic solution.

Proof. The proof is similar to the one of Theorem 2.2, to complete the proof, it
suffices to show that the following equation:

dx(t)
dt

= r(t)

K(t)−ex(t)−

∑n
j=1aj(t)

∫ 0
−lj e

x(t+s)dηj(s)

1+r(t)∑nj=1bj(t)∫ 0−hj ex(t+s)dµj(s)


θ

, (2.21)

has anω-periodic solution, where r ,K,θ,aj,bj,lj,hj,ηj,µj, j = 1,2, . . . ,n are the same
as those in (1.3). To this end, set

Nx = r(t)

K(t)−ex(t)−

∑n
j=1aj(t)

∫ 0
−lj e

x(t+s)dηj(s)

1+r(t)∑nj=1bj(t)∫ 0−hj ex(t+s)dµj(s)


θ

(2.22)

and L,P,Q,X are the same as those in the proof of Theorem 2.2. Corresponding to
the operator equation Lx = λx, λ∈ (0,1), we have

dx(t)
dt

= λ

r(t)


K(t)−ex(t)−

∑n
j=1aj(t)

∫ 0
−lj e

x(t+s)dηj(s)

1+r(t)∑nj=1bj(t)∫ 0−hj ex(t+s)dµj(s)


θ

, λ∈ [0,ω]. (2.23)

Suppose that x(t)∈X is a solution of (2.23) for a certain λ∈ (0,1). Choose t1 ∈ [0,ω]
such that

x
(
t1
)= max

t∈[0,ω]
x(t). (2.24)
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Then
x′
(
t1
)= 0. (2.25)

By this and (2.23), we have

r
(
t1
)K

(
t1
)−ex(t1)−∑nj=1aj(t1)∫ 0−lj ex(t1+s)dηj(s)
1+r(t1)∑nj=1bj(t1)∫ 0−hj ex(t1+s)dµj(s)



θ

= 0, (2.26)

which implies that

K
(
t1
)−ex(t1)− n∑

j=1
aj
(
t1
)∫ 0

−lj
ex(t

1+s)dηj(s)= 0. (2.27)

Therefore,
ex(t

1) < K
(
t1
)≤ |K|0, x

(
t1
)
< ln|K|0. (2.28)

Integrating (2.23) over [0,ω], we have

∫ω
0


r(t)


K(t)−ex(t)−

∑n
j=1aj(t)

∫ 0
−lj e

x(t+s)dηj(s)

1+r(t)∑nj=1bj(t)∫ 0−hj ex(t+s)dµj(s)


θ

dt = 0, (2.29)

which implies that there exist a positive constant B1 and a point t0 ∈ [0,ω] such that

x
(
t0
)
>−B1. (2.30)

In view of (2.23) and (2.28), we obtain

∫ω
0

∣∣∣∣dx(t)dt

∣∣∣∣dt =
∫ω
0

∣∣∣∣∣∣∣r(t)

K(t)−ex(t)−

∑n
j=1aj(t)

∫ 0
−lj e

x(t+s)dηj(s)

1+r(t)∑nj=1bj(t)∫ 0−hj ex(t+s)dµj(s)


θ
∣∣∣∣∣∣∣dt

<
∫ω
0

∣∣∣∣∣∣∣r(t)

K(t)−ex(t)− n∑

j=1
aj(t)

∫ 0
−lj
ex(t+s)dηj(s)



θ
∣∣∣∣∣∣∣dt

<ωr̄ |K|θ0
[
2+

n∑
j=1
|aj|0

]θ
def= B2.

(2.31)

According to this and (2.30), we have

x(t)= x(t0)+
∫ t
t0
x′(t)dt ≥ x(t0)−

∫ω
0

∣∣x′(t)∣∣dt >−B1−B2. (2.32)

From this and (2.28) it follows that

∣∣x(t)∣∣0 <max{∣∣ ln|K|0∣∣,B1+B2}. (2.33)

The rest of the proof is similar to the one of Theorem 2.2 and will be omitted.

Remark 2.6. In (1.3), when bj = 0 for all j = 1,2, . . . ,n, equation (1.3) becomes the
well-known logistic equation with several delays.
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