ON SOLUTIONS OF THE GOŁABB-SCHINZEL EQUATION

ANNA MUREŃKO

(Received 29 January 2001)

Abstract

We determine the solutions $f:(0, \infty) \rightarrow[0, \infty)$ of the functional equation $f(x+$ $f(x) y)=f(x) f(y)$ that are continuous at a point $a>0$ such that $f(a)>0$. This is a partial solution of a problem raised by Brzdȩk.

2000 Mathematics Subject Classification. 39B22.

The well-known Gołạb-Schinzel functional equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{1}
\end{equation*}
$$

has been studied by many authors (cf. [1, 3, 5, 7, 10]) in many classes of functions. Recently Aczél and Schwaiger [2], motivated by a problem of Kahlig, solved the following conditional version of (1)

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \text { for } x \geq 0, y \geq 0 \tag{2}
\end{equation*}
$$

in the class of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, where \mathbb{R} denotes the set of real numbers. Some further conditional generalizations of (1) have been considered by Reich [9] (see also [8] and Brzdȩk [4]).

At the 38th International Symposium on Functional Equations (Noszvaj, Hungary, June 11-17, 2000) Brzdẹk raised, among others, the problem (see [6]) of solving the equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y), \quad \text { whenever } x, y, x+f(x) y \in \mathbb{R}_{+}, \tag{3}
\end{equation*}
$$

in the class of functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ that are continuous at a point, where $\mathbb{R}_{+}=(0, \infty)$. We give a partial solution to the problem, namely we determine the solutions $f: \mathbb{R}_{+} \rightarrow$ $[0, \infty)$ of (3) that are continuous at a point $a \in \mathbb{R}_{+}$such that $f(a)>0$. Note that actually equations (1) and (3) have the same solutions in the class of functions $f: \mathbb{R}_{+} \rightarrow[0, \infty)$.

From now on we assume that $f: \mathbb{R}_{+} \rightarrow[0, \infty)$ is a solution of (3), continuous at a point $a \in \mathbb{R}_{+}$such that $f(a)>0$.

We start with some lemmas.
LEMMA 1. Suppose that $y_{2}>y_{1}>0$ and $f\left(y_{1}\right)=f\left(y_{2}\right)>0$. Then
(a) $f\left(t+\left(y_{2}-y_{1}\right)\right)=f(t)$ for $t \geq y_{1}$;
(b) for every $z>0$ such that $f(z)>0$,

$$
\begin{equation*}
f\left(t+f(z)\left(y_{2}-y_{1}\right)\right)=f(t) \quad \text { for } t \geq z+y_{1} f(z) \tag{4}
\end{equation*}
$$

(c) if $z_{1}, z_{2}>0$ and $f\left(z_{2}\right)>f\left(z_{1}\right)>0$, then

$$
\begin{equation*}
f\left(t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right)\left(y_{2}-y_{1}\right)\right)=f(t) \quad \text { for } t \geq \max \left\{z_{1}+y_{1} f\left(z_{1}\right), z_{2}+y_{1} f\left(z_{2}\right)\right\} . \tag{5}
\end{equation*}
$$

Proof. (a) We argue in the same way as in [2, 7]. Namely, for $t \geq y_{1}$, by (3) we have

$$
\begin{align*}
f\left(t+\left(y_{2}-y_{1}\right)\right) & =f\left(y_{2}+\frac{t-y_{1}}{f\left(y_{1}\right)} f\left(y_{1}\right)\right)=f\left(y_{2}+\frac{t-y_{1}}{f\left(y_{1}\right)} f\left(y_{2}\right)\right) \\
& =f\left(y_{2}\right) f\left(\frac{t-y_{1}}{f\left(y_{1}\right)}\right)=f\left(y_{1}\right) f\left(\frac{t-y_{1}}{f\left(y_{1}\right)}\right) \tag{6}\\
& =f\left(y_{1}+\frac{t-y_{1}}{f\left(y_{1}\right)} f\left(y_{1}\right)\right)=f(t) .
\end{align*}
$$

(b) For every $z>0$ such that $f(z)>0$ we have

$$
\begin{equation*}
f\left(z+y_{1} f(z)\right)=f(z) f\left(y_{1}\right)=f(z) f\left(y_{2}\right)=f\left(z+y_{2} f(z)\right) \tag{7}
\end{equation*}
$$

and consequently by (a) (with y_{1} and y_{2} replaced by $z+y_{1} f(z)$ and $z+y_{2} f(z)$)

$$
\begin{equation*}
f(t)=f\left[t+\left(z+y_{2} f(z)-z-y_{1} f(z)\right)\right]=f\left(t+f(z)\left(y_{2}-y_{1}\right)\right) \tag{8}
\end{equation*}
$$

for $t \geq z+y_{1} f(z)$.
(c) Since $\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right)\left(y_{2}-y_{1}\right)>0, t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right)\left(y_{2}-y_{1}\right) \geq \max \left\{z_{1}+\right.$ $\left.y_{1} f\left(z_{1}\right), z_{2}+y_{1} f\left(z_{2}\right)\right\}$ for $t \geq \max \left\{z_{1}+y_{1} f\left(z_{1}\right), z_{2}+y_{1} f\left(z_{2}\right)\right\}$. Thus using (b) twice, for $z=z_{1}$ and $z=z_{2}$ (the first time with t replaced by $t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right)\left(y_{2}-y_{1}\right)$), we have

$$
\begin{align*}
f(t & \left.+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right)\left(y_{2}-y_{1}\right)\right) \\
& =f\left[t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right)\left(y_{2}-y_{1}\right)+f\left(z_{1}\right)\left(y_{2}-y_{1}\right)\right] \tag{9}\\
& =f\left(t+f\left(z_{2}\right)\left(y_{2}-y_{1}\right)\right)=f(t)
\end{align*}
$$

for $t \geq \max \left\{z_{1}+y_{1} f\left(z_{1}\right), z_{2}+y_{1} f\left(z_{2}\right)\right\}$.
Lemma 2. Let $y_{2}>y_{1}>0$ and $f\left(y_{1}\right)=f\left(y_{2}\right)>0$. Then there exists $x_{0}>0$ such that for every $d>0$ there is $c \in(0, d)$ with $f(t+c)=f(t)$ for $t \geq x_{0}$.

Proof. First suppose that there is a neighbourhood $U=(a-\delta, a+\delta)$ of a on which f is constant. Then for every $x \in U$ such that $a<x$, from Lemma 1(a), we get

$$
\begin{equation*}
f(t+(x-a))=f(t) \quad \text { for } t \geq a . \tag{10}
\end{equation*}
$$

Thus it is enough to take $x_{0}=a$.
Now assume that there does not exist any neighbourhood of a on which f is constant. Take $\varepsilon \in(0, f(a))$. The continuity of f at a implies that there exists $\delta \in(0,1)$ such that for every $x \in U_{1}=(a-\delta, a+\delta)$ we have $f(x) \in(f(a)-\varepsilon, f(a)+\varepsilon)$. Take $x_{1}, x_{2} \in U_{1}$ such that $f\left(x_{1}\right)<f\left(x_{2}\right)$. Then $f\left(x_{2}\right)-f\left(x_{1}\right)<2 \varepsilon$. From $\varepsilon<f(a)$ we infer $f\left(x_{1}\right)>0$ and by Lemma 1(c) we get

$$
\begin{equation*}
f\left(t+\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(y_{2}-y_{1}\right)\right)=f(t) \quad \text { for } t \geq \max \left\{x_{1}+y_{1} f\left(x_{1}\right), x_{2}+y_{1} f\left(x_{2}\right)\right\} . \tag{11}
\end{equation*}
$$

Next by a suitable choice of ε the value $c:=\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(y_{2}-y_{1}\right)$ can be made arbitrarily small. Moreover, $x_{1}, x_{2}<a+1$ and $f\left(x_{1}\right), f\left(x_{2}\right)<f(a)+\varepsilon<2 f(a)$, which means that $f(t+c)=f(t)$ for $t \geq x_{0}:=a+1+y_{1} 2 f(a)$. This completes the proof.

LEMMA 3. If for some $y_{2}>y_{1}>0, f\left(y_{1}\right)=f\left(y_{2}\right)>0$, then for every $\varepsilon>0$ and $e>0$ there is $c \in(0, e)$ with $f(t+c)=f(t)$ for $t \geq \varepsilon$.

Proof. By Lemma 2 there exists $x_{0}>0$ such that for arbitrarily small $c>0$

$$
\begin{equation*}
f(t+c)=f(t) \quad \text { for } t \geq x_{0} \tag{12}
\end{equation*}
$$

By induction, from Lemma 1(a), we get $f\left(y_{1}\right)=f\left(y_{1}+n\left(y_{2}-y_{1}\right)\right)$ for any positive integer n. Consequently there exists $x_{1} \in\left[x_{0}, \infty\right)$ with $f\left(x_{1}\right)=f\left(y_{1}\right)$.

Put $B=\left\{x>x_{0}: f(x)>0\right\}$. Clearly $x_{1} \in B$. Thus (12) implies that $B \cap A \neq \varnothing$ for every nontrivial interval $A \subset\left[x_{0}, \infty\right)$. Define a function $f_{1}:[0, \infty) \rightarrow\left[x_{0}, \infty\right)$ by

$$
\begin{equation*}
f_{1}(x)=x_{1}+x f\left(x_{1}\right) \tag{13}
\end{equation*}
$$

Note that f_{1} is increasing. Let $\varepsilon>0$ and $y_{0} \in B \cap\left(f_{1}(0), f_{1}(\varepsilon)\right) \neq \varnothing$. By the continuity of f_{1} there exists $z_{0} \in(0, \varepsilon)$ such that $f_{1}\left(z_{0}\right)=y_{0}$. Take $d>0$ with $f(t+d)=f(t)$ for $t \geq x_{0}$. Then

$$
\begin{equation*}
f\left(y_{0}\right)=f\left(y_{0}+d\right) \neq 0 \tag{14}
\end{equation*}
$$

The form of the function f_{1} implies that there exists $z_{1}>z_{0}$ such that $f_{1}\left(z_{1}\right)=y_{0}+d$. Note that (14) yields

$$
\begin{align*}
& f\left(x_{1}+z_{0} f\left(x_{1}\right)\right)=f\left(f_{1}\left(z_{0}\right)\right) \\
& \quad=f\left(y_{0}\right)=f\left(y_{0}+d\right)=f\left(f_{1}\left(z_{1}\right)\right) \tag{15}\\
& \quad=f\left(x_{1}+z_{1} f\left(x_{1}\right)\right) \neq 0
\end{align*}
$$

Further by (3)

$$
\begin{equation*}
f\left(x_{1}\right) f\left(z_{0}\right)=f\left(x_{1}\right) f\left(z_{1}\right) \neq 0 \tag{16}
\end{equation*}
$$

and consequently $f\left(z_{0}\right)=f\left(z_{1}\right)>0$. Hence, in view of Lemma 1(a), we infer that

$$
\begin{equation*}
f\left(t+\left(z_{1}-z_{0}\right)\right)=f(t) \quad \text { for } t \geq z_{0} \tag{17}
\end{equation*}
$$

This completes the proof, because $\varepsilon>z_{0}$ and, choosing sufficiently small d, we can make $c:=\left(z_{1}-z_{0}\right)$ arbitrarily small.

LEMMA 4. If there exist $y_{2}>y_{1}>0$ such that $f\left(y_{1}\right)=f\left(y_{2}\right)>0$, then $f \equiv 1$.
PROOF. First we show that $f(x)=f(a)=: b$ for $x \in \mathbb{R}_{+}$. For the proof by contradiction suppose that there exists $t_{0}>0$ with $f\left(t_{0}\right) \neq f(a)$. Put

$$
\begin{equation*}
\varepsilon_{0}=\left|f\left(t_{0}\right)-f(a)\right| \tag{18}
\end{equation*}
$$

The continuity of f at a implies that there exists $\delta>0$ such that if $|x-a|<\delta$ then $|f(x)-f(a)|<\varepsilon_{0}$. By Lemma 3 there exists $y_{0}>0$ such that $\left|y_{0}-a\right|<\delta$ and $f\left(y_{0}\right)=$ $f\left(t_{0}\right)$, which means that $\left|f\left(t_{0}\right)-f(a)\right|<\varepsilon_{0}$, contrary to (18). Thus we have proved that $f \equiv b$. Clearly from (3) we get $b=f(a)=f(a+a f(a))=f(a)^{2}=b^{2}$ and consequently $b=1$. This completes the proof.

LEMMA 5. If f is nonconstant then $(f(x)-1) / x$ is constant for all $x>0$ with $f(x)>0$.

Proof. Suppose that $x>0, y>0, x \neq y, f(x) f(y)>0$, and

$$
\begin{equation*}
\frac{f(x)-1}{x} \neq \frac{f(y)-1}{y} . \tag{19}
\end{equation*}
$$

Then $x+y f(x) \neq y+x f(y)$ and

$$
\begin{equation*}
f(x+y f(x))=f(x) f(y)=f(y+x f(y))>0 . \tag{20}
\end{equation*}
$$

Thus, by Lemma $4, f \equiv 1$, a contradiction.
Remark 6. If we denote the constant in Lemma 5 by c, then from Lemma 5 we get $f(x) \in\{c x+1,0\}$ for every $x>0$. In the case $c<0$ we have $f(x)=0$ for every $x \geq-1 / c$ (because $f \geq 0$).

Lemma 7. Suppose that f is nonconstant. Then,
(a) in the case $c:=(f(a)-1) / a<0, f(x)=c x+1$ for $x \in(0,-1 / c)$;
(b) in the case $c:=(f(a)-1) / a>0, f(x)=c x+1$ for $x>0$.

Proof. The continuity of f at a implies that there exists $\delta \in(0, a)$ such that $f(x)>0$ for every $x \in U=[a-\delta, a+\delta]$. Thus, by Remark 6, $f(x)=c x+1$ for $x \in U$.

Let $I=(a,-1 / c)$ if $c<0$ and $I=(a, \infty)$ if $c>0$. Put $B_{1}:=\{x \in(0, a): f(x)=0\}$, $B_{2}:=\{x \in I: f(x)=0\}, B=B_{1} \cup B_{2}$,

$$
d_{1}:=\left\{\begin{array}{ll}
\sup B_{1} & \text { if } B_{1} \neq \varnothing, \tag{21}\\
a-\delta & \text { if } B_{1}=\varnothing,
\end{array} \quad d_{2}:= \begin{cases}\inf B_{2} & \text { if } B_{2} \neq \varnothing \\
a+\delta & \text { if } B_{2}=\varnothing\end{cases}\right.
$$

Clearly $f(x)>0$ on the interval $A=\left(d_{1}, d_{2}\right) \supset(a-\delta, a+\delta)$.
(a) For the proof by contradiction suppose that there exists $b_{1} \in(0,-1 / c)$ with $f\left(b_{1}\right)=0$. Notice that $d_{2}<-1 / c$. Indeed, if $B_{2} \neq \varnothing$ then, since $B_{2} \subset(a,-1 / c)$, so $\inf B_{2}<-1 / c$. If not, then from Remark 6 we have that $a+\delta<-1 / c$. Consequently $d_{2}<-1 / c$. Thus $c d_{2}>-1$ and consequently $\delta+\delta c d_{2}>0$. Take $b \in B$ and $z \in A$ such that $|z-b|<\delta+\delta c d_{2}$. Define functions $h, g: U \rightarrow \mathbb{R}$ by

$$
\begin{array}{ll}
h(x)=x+z f(x) & \text { for } x \in U, \\
g(x)=x+b f(x) & \text { for } x \in U . \tag{22}
\end{array}
$$

By the continuity of f on U, h is continuous. Next, since $z<d_{2}$, so $c z>c d_{2}$ and $\delta+\delta c z>\delta+\delta c d_{2}>0$. Hence

$$
\begin{align*}
& h(a)-h(a-\delta)=a+z(c a+1)-a+\delta-z[c(a-\delta)+1]=\delta+\delta c z>0, \\
& h(a+\delta)-h(a)=a+\delta+z[c(a+\delta)+1]-a-z(c a+1)=\delta+\delta c z>0 . \tag{23}
\end{align*}
$$

Moreover $1>c a+1=f(a)>0$, whence

$$
\begin{align*}
& |h(a)-g(a)|=|a+z(c a+1)-a-b(c a+1)| \\
& \quad=|z-b||c a+1|<|z-b|<\delta+\delta c d_{2}<\delta+\delta c z . \tag{24}
\end{align*}
$$

From (23) and (24) we obtain

$$
\begin{equation*}
h(a-\delta)<g(a)<h(a+\delta) . \tag{25}
\end{equation*}
$$

The continuity of h implies that there exists $x_{0} \in(a-\delta, a+\delta)$ such that $h\left(x_{0}\right)=g(a)$. Since $a, x_{0}, z \in A$ and $b \in B$, so we have

$$
\begin{align*}
0 & \neq f\left(x_{0}\right) f(z)=f\left(x_{0}+z f\left(x_{0}\right)\right)=f\left(h\left(x_{0}\right)\right) \\
& =f(g(a))=f(a+b f(a))=f(a) f(b)=0 . \tag{26}
\end{align*}
$$

This contradiction ends the proof of (a).
(b) For the proof by contradiction suppose that $f\left(b_{1}\right)=0$ for some $b_{1}>0$. Since $c a+1=f(a)>0$, there are $b \in B$ and $z \in A$ such that $|z-b|<\delta /(c a+1)$. Define functions $h, g: U \rightarrow \mathbb{R}$ in the same way as in the proof of (a). Then (23) holds and

$$
\begin{equation*}
|h(a)-g(a)|=|z-b||c a+1|<\frac{\delta}{c a+1}(c a+1)=\delta<\delta+\delta c z . \tag{27}
\end{equation*}
$$

Hence

$$
\begin{equation*}
h(a-\delta)<g(a)<h(a+\delta) . \tag{28}
\end{equation*}
$$

We obtain a contradiction in a similar way as in the proof of (a).
Lemma 8. If $c:=(f(a)-1) / a=0$, then $f(x)=1$ for $x>0$.
Proof. The continuity of f at a implies that there exists $\delta>0$ such that $f(x)>0$ for every $x \in[a-\delta, a+\delta]$. Thus, by Lemma 5 and Remark $6, f(x)=c x+1=1$ for every $x \in[a-\delta, a+\delta]$. Hence Lemma 4 implies that $f(x)=1$ for every $x>0$.

Finally from Lemmas 7 and 8 and Remark 6 we get the following theorem.
Theorem 9. If a function $f: \mathbb{R}_{+} \rightarrow[0, \infty)$ is continuous at a point a such that $f(a) \neq 0$ and satisfies (3), then

$$
\begin{equation*}
f(x)=\max \{c x+1,0\} \quad \forall x \in \mathbb{R}_{+} . \tag{29}
\end{equation*}
$$

Acknowledgement. I wish to thank Professor Janusz Brzdẹk for paying my attention to the problem and for his most valuable suggestions during the preparation of this paper.

References

[1] J. Aczél and S. Gołạb, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10. MR 41\#8561. Zbl 205.14802.
[2] J. Aczél and J. Schwaiger, Continuous solutions of the Gołab-Schinzel equation on the nonnegative reals and on related domains, Sb. Öster. Akad. Wiss. 208 (1999), 171177.
[3] K. Baron, On the continuous solutions of the Gołabb-Schinzel equation, Aequationes Math. 38 (1989), no. 2-3, 155-162. MR 90i:39010. Zbl 702.39005.
[4] J. Brzdẹk, On continuous solutions of a conditional Gotạb-Schinzel equation, to appear in Sb. Öster. Akad. Wiss.
[5] , Subgroups of the group Z_{n} and a generalization of the Gotab-Schinzel functional equation, Aequationes Math. 43 (1992), no. 1, 59-71. MR 93b:39006.
[6] -, , 28. Problem, Report of Meeting: The 38th International Symposium on Functional Equations (Noszvaj, Hungary), June 11-18, 2000, Aequationes Math., in print.
[7] S. Gołạb and A. Schinzel, Sur l'équation fonctionnelle $f[x+y \cdot f(x)]=f(x) \cdot f(y)$, Publ. Math. Debrecen 6 (1959), 113-125 (French). MR 21\#5828. Zbl 083.35004.
[8] L. Reich, Über die stetigen Lösungen der Gołạb-Schinzel-Gleichung auf \mathbb{R} und auf $\mathbb{R}_{\geq 0}$, to appear in Sb . Öster. Akad. Wiss.
[9] _U_ Über die stetigen Lösungen der Gołab-Schinzel-Gleichung auf $\mathbb{R}_{\geq 0}$, Sb. Öster. Akad. Wiss. 208 (1999), 165-170 (German).
[10] S. Wołodźko, Solution générale de l'équation fonctionnelle $f[x+y f(x)]=f(x) f(y)$, Aequationes Math. 2 (1968), 12-29 (French). MR 38\#1422. Zbl 162.20402.

Anna Mureńko: Department of Mathematics, Pedagogical University, Rejtana 16 A, 35-310 Rzeszów, POLAND

E-mail address: amurenko@poczta.onet.p1

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

