SUBMANIFOLDS OF F-STRUCTURE MANIFOLD SATISFYING $F^{K}+(-)^{K+1} F=0$

LOVEJOY S. DAS

(Received 2 May 2000)

Abstract

The purpose of this paper is to study invariant submanifolds of an n dimensional manifold M endowed with an F-structure satisfying $F^{K}+(-)^{K+1} F=0$ and $F^{W}+(-)^{W+1} F \neq 0$ for $1<W<K$, where K is a fixed positive integer greater than 2 . The case when K is odd (≥ 3) has been considered in this paper. We show that an invariant submanifold \tilde{M}, embedded in an F-structure manifold M in such a way that the complementary distribution D_{m} is never tangential to the invariant submanifold $\Psi(\tilde{M})$, is an almost complex manifold with the induced \tilde{F}-structure. Some theorems regarding the integrability conditions of induced \tilde{F}-structure are proved.

2000 Mathematics Subject Classification. 53C15, 53C40, 53D10.

1. Introduction. Invariant submanifolds have been studied by Blair et al. [1], Kubo [4], Yano and Okumura [7, 8], and among others. Yano and Ishihara [6] have studied and shown that any invariant submanifold of codimension 2 in a contact Riemannian manifold is also a contact Riemannian manifold. We consider an F-structure manifold M and study its invariant submanifolds. Let F be a nonzero tensor field of the type (1,1) and of class C^{∞} on an n-dimensional manifold M such that (see [3])

$$
\begin{equation*}
F^{K}+(-)^{K+1} F=0, \quad F^{W}+(-)^{W+1} F \neq 0, \quad \text { for } 1<W<K, \tag{1.1}
\end{equation*}
$$

where K is a fixed positive integer greater than 2 . Such a structure on M is called an F-structure of rank r and of degree K. If the rank of F is constant and $r=r(F)$, then M is called an F-structure manifold of degree $K(\geq 3)$.

Let the operator on M be defined as follows (see [3])

$$
\begin{equation*}
\ell=(-)^{K} F^{K-1}, \quad m=I+(-)^{K+1} F^{K-1}, \tag{1.2}
\end{equation*}
$$

where I denotes the identity operator on M. For the operators defined by (1.2), we have

$$
\begin{equation*}
\ell+m=I, \quad \ell^{2}=\ell ; \quad m^{2}=m . \tag{1.3}
\end{equation*}
$$

For F satisfying (1.1), there exist complementary distribution D_{ℓ} and D_{m} corresponding to the projection operators ℓ and m, respectively. If $\operatorname{rank}(F)=$ constant on M, then $\operatorname{dim} D_{\ell}=r$ and $\operatorname{dim} D_{m}=(n-r)$. We have the following results (see [3]).

$$
\begin{gather*}
F \ell=\ell F=F, \quad F m=m F=0, \tag{1.4a}\\
F^{K-1}=(-)^{K} \ell, \quad F^{K-1} \ell=-\ell, \quad F^{K-1} m=0 . \tag{1.4b}
\end{gather*}
$$

Thus F^{K-1} acts on D_{ℓ} as an almost complex structure and on D_{m} as a null operator.
2. Invariant submanifolds of F-structure manifold. Let \tilde{M} be a differentiable manifold embedded differentially as a submanifold in an n-dimensional C^{∞} Riemannian manifold M with an F-structure and we denote its embedding by $\Psi: \tilde{M} \rightarrow M$. Denote by $B: T(\tilde{M}) \rightarrow T(M)$ the differential mapping of Ψ, where $d \Psi=B$ is the Jacobson map of $\Psi . T(\tilde{M})$ and $T(M)$ are tangent bundles of \tilde{M} and M, respectively. We call $T(\tilde{M}, M)$ as the set of all vectors tangent to the submanifold $\Psi(\tilde{M})$. It is known that $B: T(\tilde{M}) \rightarrow T(\tilde{M}, M)$ is an isomorphism (see [5]).

Let \tilde{X} and \tilde{Y} be two C^{∞} vector fields defined along $\Psi(\tilde{M})$ and tangent to $\Psi(\tilde{M})$. Let X and Y be the local extensions of \tilde{X} and \tilde{Y}. The restriction of $[X, Y]_{\tilde{M}}$ is determined independently of the choice of these local extensions X and Y. Therefore, we can define

$$
\begin{equation*}
[\tilde{X}, \tilde{Y}]=[X, Y]_{\tilde{M}} . \tag{2.1}
\end{equation*}
$$

Since B is an isomorphism, it is easy to see that $[B \tilde{X}, B \tilde{Y}]=B[\tilde{X}, \tilde{Y}]$ for all $\tilde{X}, \tilde{Y} \in T(\tilde{M})$. We denote by G the Riemannian metric tensor of M and put

$$
\begin{equation*}
\tilde{\mathcal{g}}(\tilde{X}, \tilde{Y})=g(B \tilde{X}, B \tilde{Y}) \quad \forall \tilde{X}, \tilde{Y} \text { in } T(\tilde{M}), \tag{2.2}
\end{equation*}
$$

where g is the Riemannian metric in M and \tilde{g} is the induced metric of \tilde{M}.
Definition 2.1. We say that \tilde{M} is an invariant submanifold of M if
(i) the tangent space $T_{p}(\Psi(\tilde{M}))$ of the submanifold $\Psi(\tilde{M})$ is invariant by the linear mapping F at each point p of $\Psi(\tilde{M})$,
(ii) for each $\tilde{X} \in T(\tilde{M})$, we have

$$
\begin{equation*}
F^{(K-1) / 2}(B \tilde{X})=B \tilde{X}^{\prime} . \tag{2.3}
\end{equation*}
$$

DEFinition 2.2. Let \tilde{F} be a (1,1)-tensor field defined in \tilde{M} such that $\tilde{F}(\tilde{X})=\tilde{X}^{\prime}$ and M is an invariant submanifold, then we have

$$
\begin{align*}
F(B \tilde{X}) & =B(\tilde{F} \tilde{X}), \tag{2.4a}\\
F^{(K-1) / 2}(B \tilde{X}) & =B\left(\tilde{F}^{(K-1) / 2} \tilde{X}\right) . \tag{2.4b}
\end{align*}
$$

We see that there are two cases for any invariant submanifold \tilde{M}. We assume the following cases.

CASE 1. The distribution D_{m} is never tangential to $\Psi(\tilde{M})$.
CASE 2. The distribution D_{m} is always tangential to $\Psi(\tilde{M})$.
We will consider Case 1 and assume that no vector field of the type $m X$, where $X \in T(\Psi(\tilde{M}))$ is tangential to $\Psi(\tilde{M})$.

Theorem 2.3. An invariant submanifold \tilde{M} is an almost complex manifold if the following two conditions are satisfied:
(i) the distribution D_{m} is never tangential to $\Psi(\tilde{M})$, and
(ii) \tilde{F} in \tilde{M} defines an induced almost complex structure satisfying $\tilde{F}^{K-1}=(-)^{K} I$.

Proof. Applying $F^{(K-1) / 2}$ in (2.4), we obtain

$$
\begin{equation*}
F^{(K-1) / 2}\left(F^{(K-1) / 2}(B \tilde{X})\right)=F^{(K-1) / 2}\left(B\left(\tilde{F}^{(K-1) / 2}, \tilde{X}\right)\right) . \tag{2.5}
\end{equation*}
$$

Making use of (2.4a) in (2.5), we get

$$
\begin{equation*}
F^{K-1}(B \tilde{X})=B\left(\tilde{F}^{K-1} \tilde{X}\right) \tag{2.6}
\end{equation*}
$$

In order to show that vector fields of the type $B \tilde{X}$ belong to the distribution D_{ℓ}, we suppose that $m(B \tilde{X}) \neq 0$, then using (1.2) we have

$$
\begin{equation*}
m(B \tilde{X})=\left(I+(-)^{K+1} F^{K-1}\right) B \tilde{X}=B \tilde{X}+(-)^{K+1} F^{K-1}(B \tilde{X}) \tag{2.7}
\end{equation*}
$$

which in view of (2.6) becomes

$$
\begin{equation*}
m(B \tilde{X})=B \tilde{X}+(-)^{K+1} B\left(\tilde{F}^{K-1} \tilde{X}\right)=B\left[\tilde{X}+(-)^{K+1} \tilde{F}^{K-1} \tilde{X}\right] \tag{2.8}
\end{equation*}
$$

which, contrary to our assumption, shows that $m(B \tilde{X})$ is tangential to $\Psi(\tilde{M})$. Thus $m(B \tilde{X})=0$.

Also, in view of (1.4b), (1.3), and (2.6) we obtain

$$
\begin{align*}
B\left(\tilde{F}^{K-1} \tilde{X}\right) & =F^{K-1}(B \tilde{X})=(-)^{K} \ell(B \tilde{X})=(-)^{K}(I-m) B \tilde{X} \\
& =(-)^{K} B \tilde{X}-(-)^{K} m B \tilde{X} \tag{2.9}\\
B\left(\tilde{F}^{K-1} \tilde{X}\right) & =(-)^{K} B \tilde{X}
\end{align*}
$$

Since B is an isomorphism, we get

$$
\begin{equation*}
\tilde{F}^{K-1}=(-)^{K} I \tag{2.10}
\end{equation*}
$$

Let $\mathscr{F}(M)$ be the ring of real-valued differentiable functions on M, and let $\mathscr{\mathscr { L }}(M)$ be the module of derivatives of $\mathscr{F}(M)$. Then $\mathscr{X}(M)$ is Lie algebra over the real numbers and the elements of $\mathscr{X}(M)$ are called vector fields. Then M is equipped with $(1,1)$-tensor field F which is a linear map such that

$$
\begin{equation*}
F: \mathscr{X}(M) \longrightarrow \mathscr{X}(M) \tag{2.11}
\end{equation*}
$$

Let M be of degree K and let K be a positive odd integer greater than 2 . Then we consider a positive definite Riemannian metric with respect to which D_{ℓ} and D_{m} are orthogonal so that

$$
\begin{equation*}
g(X, Y)=g(H X, H Y)+g(m X, Y) \tag{2.12}
\end{equation*}
$$

where $H=F^{(K-1) / 2}$ for all $X, Y \in \mathscr{X}(M)$.
DEFINITION 2.4. The induced metric \tilde{g} defined by (2.2) is Hermitian if the following is satisfied:

$$
\begin{equation*}
\tilde{\mathfrak{g}}(H \tilde{X}, H \tilde{Y})=\tilde{\mathfrak{g}}(\tilde{X}, \tilde{Y}), \quad \text { where } H=F^{(K-1) / 2} \tag{2.13}
\end{equation*}
$$

THEOREM 2.5. If F-structure manifold has the following two properties, that is,
(a) \tilde{M} is an invariant submanifold of F-structure manifold M such that distribution D_{m} is never tangential to $\Psi(\tilde{M})$,
(b) the Riemannian metric g on M is defined by (2.12).

Then the induced metric \tilde{g} of \tilde{M} defined by (2.2) is Hermitian.

Proof. In view of (2.2) and (2.13) we obtain

$$
\begin{equation*}
\tilde{g}\left(\tilde{F}^{(K-1) / 2} \tilde{X}, \tilde{F}^{(K-1) / 2} \tilde{Y}\right)=g\left(B \tilde{F}^{(K-1) / 2} \tilde{X}, B \tilde{F}^{(K-1) / 2} \tilde{Y}\right) . \tag{2.14}
\end{equation*}
$$

Applying (2.4) and (2.12) in (2.14), we get

$$
\begin{align*}
\tilde{g}\left(\tilde{F}^{(K-1) / 2} \tilde{X}, \tilde{F}^{(K-1) / 2} \tilde{Y}\right) & =g\left(F^{(K-1) / 2} B \tilde{X}, F^{(K-1) / 2} B \tilde{Y}\right) \\
& =g(B \tilde{X}, B \tilde{Y})-g(m B \tilde{X}, B \tilde{Y}) . \tag{2.15}
\end{align*}
$$

Since the distribution D_{m} is never tangential to $\Psi(\tilde{M})$, on using (2.2) we get

$$
\begin{equation*}
\tilde{\mathcal{g}}\left(\tilde{F}^{(K-1) / 2} \tilde{X}, \tilde{F}^{(K-1) / 2} \tilde{Y}\right)=g(B \tilde{X}, B \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{Y}) . \tag{2.16}
\end{equation*}
$$

Now, we consider the second case and assume that the distribution D_{m} is always tangential to $\Psi(\tilde{M})$. In view of Case 2 , we have $m(B \tilde{X})=B \tilde{X}^{*}$, where $\tilde{X}^{*} \in T(\tilde{M})$ for some $\tilde{X}^{*} \in T(\tilde{M})$.

We define (1,1)-tensor fields \tilde{m} and $\tilde{\ell}$ in \tilde{M} as follows:

$$
\begin{array}{cc}
\tilde{\ell}=(-)^{K} \tilde{F}^{K-1}, & \tilde{m}=\tilde{I}+(-)^{K+1} \tilde{F}^{K-1} \\
\tilde{m} \tilde{X}=\tilde{X}^{*}, & m(B \tilde{X})=B(\tilde{m} \tilde{X}) . \tag{2.17b}
\end{array}
$$

Theorem 2.6. We have

$$
\begin{equation*}
B(\tilde{\ell} \tilde{X})=\ell(B \tilde{X}) . \tag{2.18}
\end{equation*}
$$

Proof. In view of (2.17a), equation (2.18) assumes the following form:

$$
\begin{equation*}
B(\tilde{\ell} \tilde{X})=B\left((-)^{K} \tilde{F}^{K-1} \tilde{X}\right)=(-)^{K} B\left(\tilde{F}^{K-1} \tilde{X}\right) \tag{2.19}
\end{equation*}
$$

Making use of (2.6) and (2.15) in (2.19), we get

$$
\begin{equation*}
B(\tilde{\ell} \tilde{X})=(-)^{K} \tilde{F}^{K-1}(B \tilde{X})=\tilde{\ell}(B \tilde{X}) \tag{2.20}
\end{equation*}
$$

Theorem 2.7. For $\tilde{\ell}$ and \tilde{m} satisfying (2.17a), we have

$$
\begin{equation*}
\tilde{\ell}+\tilde{m}=\tilde{I}, \quad \tilde{\ell}^{2}=\tilde{\ell}, \quad \tilde{m}^{2}=\tilde{m} . \tag{2.21}
\end{equation*}
$$

Proof. From (1.3) we have $\ell+m=I$, which can be written as $(\ell+m) B \tilde{X}=B \tilde{X}$, thus we have

$$
\begin{equation*}
\ell B \tilde{X}+m B \tilde{X}=B \tilde{X} \tag{2.22}
\end{equation*}
$$

which in view of (2.17b) and (2.18) becomes

$$
\begin{equation*}
B(\tilde{\ell} \tilde{X})+B(\tilde{m} \tilde{X})=B(\tilde{\ell}+\tilde{m}) \tilde{X}=B \tilde{X} \tag{2.23}
\end{equation*}
$$

Therefore $\tilde{\ell}+\tilde{m}=\tilde{I}$ since B is an isomorphism. Proof of the other relations follows in a similar manner.

Theorem 2.7 shows that $\tilde{\ell}$ and \tilde{m} defined by (2.17a) are complementary projectionoperators on \tilde{M}.

Theorem 2.8. If F-structure manifold has the following property, that is, \tilde{M} is an invariant submanifold of F-structure manifold M such that distribution D_{m} is always tangential to $\Psi(\tilde{M})$. Then there exists an induced \tilde{F}-structure manifold which admits a similar Riemannian metric \tilde{g} satisfying

$$
\begin{equation*}
\tilde{g}(\tilde{X}, \tilde{Y})=\tilde{g}(\tilde{H} \tilde{X}, \tilde{H} \tilde{Y})+\tilde{g}(\tilde{m} \tilde{X} \tilde{Y}) \tag{2.24}
\end{equation*}
$$

Proof. From (2.4b) we get

$$
\begin{equation*}
B\left(\tilde{F}^{(K-1) / 2} \tilde{X}\right)=F^{(K-1) / 2}(B \tilde{X}) . \tag{2.25}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
B\left(\tilde{F}^{K} \tilde{X}\right)=F^{K}(B \tilde{X}) \tag{2.26}
\end{equation*}
$$

which in view of (1.1) and (2.4a) yields

$$
\begin{equation*}
B\left(\tilde{F}^{K} \tilde{X}\right)=B\left(-(-)^{K+1} \tilde{F} \tilde{X}\right) \tag{2.27}
\end{equation*}
$$

which shows that \tilde{F} defines an \tilde{F}-structure manifold which satisfies

$$
\begin{equation*}
\tilde{F}^{K}+(-)^{K+1} \tilde{F}=0 \tag{2.28}
\end{equation*}
$$

In consequence of (2.2), (2.4b), and (2.12) we obtain

$$
\begin{align*}
\tilde{g}(\tilde{H}, \tilde{X}, \tilde{H} \tilde{Y})+\tilde{g}(\tilde{m} \tilde{X}, \tilde{Y}) & =g(B \tilde{H} \tilde{X}, B \tilde{H} \tilde{Y})+g(B \tilde{m} \tilde{X}, B \tilde{Y}) \\
& =g(H B \tilde{X}, H B \tilde{Y})+g(m B \tilde{X}, B \tilde{Y}) \tag{2.29}\\
& =g(B \tilde{X}, B \tilde{Y}), \quad \text { where } \tilde{H}=\tilde{F}^{(K-1) / 2}
\end{align*}
$$

which in view of the fact that B is an isomorphism gives

$$
\begin{equation*}
\tilde{\mathfrak{g}}(\tilde{H}, \tilde{X}, \tilde{H} \tilde{Y})+\tilde{g}(\tilde{m} \tilde{X}, \tilde{Y})=\tilde{\mathfrak{g}}(\tilde{X}, \tilde{Y}) \tag{2.30}
\end{equation*}
$$

3. Integrability conditions. The Nijenhuis tensor N of the type (1.2) of F satisfying (1.1) in M is given by (see [2])

$$
\begin{equation*}
N(X, Y)=[F X, F Y]-F[F X, Y]-F[X, F, Y]+F^{2}[X, Y], \tag{3.1}
\end{equation*}
$$

and the Nijenhuis tensor \tilde{N} of \tilde{F} satisfying (2.28) in \tilde{M} is given by

$$
\begin{equation*}
N(\tilde{X}, \tilde{Y})=[\tilde{F} \tilde{X}, \tilde{F} \tilde{Y}]-\tilde{F}[\tilde{F} \tilde{X}, \tilde{Y}]-\tilde{F}[\tilde{X} \tilde{F} \tilde{Y}]+\tilde{F}^{2}[\tilde{X}, \tilde{Y}] . \tag{3.2}
\end{equation*}
$$

Theorem 3.1. The Nijenhuis tensors N and \tilde{N} of M and \tilde{M} given by (3.1) and (3.2) satisfy the following relation:

$$
\begin{equation*}
N(B \tilde{X}, B \tilde{Y})=B \tilde{N}(\tilde{X}, \tilde{Y}) . \tag{3.3}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
N(B \tilde{X}, B \tilde{Y})=[F(B \tilde{X}), F(B \tilde{Y})]-F[F(B \tilde{X}), B \tilde{Y}]-F[B \tilde{X}, F(B \tilde{Y})]+F^{2}[B \tilde{X}, B \tilde{Y}] \tag{3.4}
\end{equation*}
$$

which in view of (2.4a) becomes

$$
\begin{align*}
N(B \tilde{X}, B \tilde{Y}) & =B[\tilde{F} \tilde{X}, \tilde{F} \tilde{Y}]-F[B(\tilde{F} \tilde{X}), B \tilde{Y}]-F[(B \tilde{X}, B \tilde{F} \tilde{Y})]+F^{2}[B \tilde{X}, B \tilde{Y}] \\
& =B[\tilde{F} \tilde{X}, \tilde{F} \tilde{Y}]-F B[\tilde{F} \tilde{X}, \tilde{Y}]-F B[\tilde{X}, \tilde{F} \tilde{Y}]+B F^{2}[\tilde{X}, \tilde{Y}] \tag{3.5}\\
& =B[\tilde{F} \tilde{X}, \tilde{F} \tilde{Y}]-B \tilde{F}[\tilde{F}, \tilde{X}, \tilde{Y}]-B \tilde{F}[\tilde{X}, \tilde{F} \tilde{Y}]+B \tilde{F}^{2}[\tilde{X}, \tilde{Y}]=B \tilde{N}(\tilde{X}, \tilde{Y})
\end{align*}
$$

THEOREM 3.2. The following identities hold:

$$
\begin{gather*}
B \tilde{N}(\tilde{\ell} \tilde{X}, \tilde{\ell} \tilde{Y})=N(\tilde{\ell} B \tilde{X}, \tilde{\ell} B \tilde{Y}), \quad B \tilde{N}(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y})=N(\tilde{m} B \tilde{X}, \tilde{m} B \tilde{Y}) \\
B\{\tilde{m} \tilde{n}(\tilde{X}, \tilde{Y})\}=m N(B \tilde{X}, B \tilde{Y}) \tag{3.6}
\end{gather*}
$$

Proof. The proof of (3.6) follows by virtue of Theorem 3.1, equations (1.4a), (2.4a), (2.17a), (2.17b), and (3.3).

For \tilde{F} satisfying (2.28), there exists complementary distribution $D_{\tilde{\ell}}$ and $D_{\tilde{m}}$ corresponding to the projection operators $\tilde{\ell}$ and \tilde{m} in \tilde{M} given by (2.17a). Then in view of the integrability conditions of \tilde{F} structure we state the following theorems.

THEOREM 3.3. If D_{ℓ} is integrable in M, then $D_{\tilde{\ell}}$ is also integrable in \tilde{M}. If D_{m} is integrable in M, then $D_{\tilde{m}}$ is also integrable in \tilde{M}.

THEOREM 3.4. If D_{ℓ} and D_{m} are both integrable in M, then $D_{\tilde{\ell}}$ and $D_{\tilde{m}}$ are also integrable in \tilde{M}.

THEOREM 3.5. If F-structure is integrable in M, then the induced structure \tilde{F} is also integrable in \tilde{M}.

REFERENCES

[1] D. E. Blair, G. D. Ludden, and K. Yano, Semi-invariant immersions, Kōdai Math. Sem. Rep. 27 (1976), no. 3, 313-319. MR 53\#9074. Zbl 327.53039.
[2] S. Ishihara and K. Yano, On integrability conditions of a structure f satisfying $f^{3}+f=0$, Quart. J. Math. Oxford Ser. (2) 15 (1964), 217-222. MR 29\#3991. Zbl 173.23605.
[3] J. B. Kim, Notes on f-manifolds, Tensor (N.S.) 29 (1975), no. 3, 299-302. MR 51\#8983. Zbl 304.53031.
[4] Y. Kubo, Invariant submanifolds of codimension 2 of a manifold with (F, G, u, v, λ)structure, Kōdai Math. Sem. Rep. 24 (1972), 50-61. MR 46\#8118. Zbl 245.53042.
[5] H. Nakagawa, f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kōdai Math. Sem. Rep. 18 (1966), 161-183. MR 34\#736. Zbl 146.17801.
[6] K. Yano and S. Ishihara, Invariant submanifolds of an almost contact manifold, Kōdai Math. Sem. Rep. 21 (1969), 350-364. MR 40\#1946. Zbl 197.18403.
[7] K. Yano and M. Okumura, On (F, $\mathcal{g}, u, v, \lambda)$-structures, Kōdai Math. Sem. Rep. 22 (1970), 401-423. MR 43\#2638. Zbl 204.54801.
[8] _, Invariant hypersurfaces of a manifold with (f, g, u, v, λ)-structure, Kōdai Math. Sem. Rep. 23 (1971), 290-304. MR 45\#1066. Zbl 221.53044.

Lovejoy S. Das: Department of Mathematics and Computer Science, Kent State University, Tuscarawas Campus, New Philadelphia, OH 44663, USA

E-mail address: 1das@tusc.kent.edu

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

