ON AN APPLICATION OF ALMOST INCREASING SEQUENCES

HÜSEYIN BOR

(Received 3 May 2000 and in revised form 25 October 2000)

Abstract

Using an almost increasing sequence, a result of Mazhar (1977) on $|C, 1|_{k}$ summability factors has been generalized for $|C, \alpha ; \beta|_{k}$ and $\left|\bar{N}, p_{n} ; \beta\right|_{k}$ summability factors under weaker conditions.

2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.

1. Introduction. A sequence of (b_{n}) of positive numbers is said to be δ-quasimonotone, if $b_{n} \rightarrow 0, b_{n}>0$ ultimately and $\Delta b_{n} \geq-\delta_{n}$, where (δ_{n}) is a sequence of positive numbers (see [2]). Let $\sum a_{n}$ be a given infinite series with $\left(s_{n}\right)$ as the sequence of its nth partial sums. Let σ_{n}^{α} and t_{n}^{α} denote the nth (C, α) means of the sequences (s_{n}) and ($n a_{n}$), respectively, that is,

$$
\begin{align*}
& \sigma_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v}, \tag{1.1}\\
& t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, \quad A_{0}^{\alpha}=1, \quad A_{-n}^{\alpha}=0, \quad \text { for } n>0 . \tag{1.3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$ and $\alpha>-1$, if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty, \tag{1.4}
\end{equation*}
$$

and it is said to be summable $|C, \alpha ; \beta|_{k}, k \geq 1, \alpha>-1$ and $\beta \geq 0$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\beta k+k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} n^{\beta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty . \tag{1.5}
\end{equation*}
$$

Let (p_{n}) be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty, P_{-i}=p_{-i}=0, i \geq 1 . \tag{1.6}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.7}
\end{equation*}
$$

defines the sequence (T_{n}) of the Riesz mean or simply the (\bar{N}, p_{n}) mean of the sequence (s_{n}), generated by the sequence of coefficients (p_{n}) (see [8]).

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta T_{n-1}\right|^{k}<\infty \tag{1.8}
\end{equation*}
$$

and it is said to be summable $\left|\bar{N}, p_{n} ; \beta\right|_{k}, k \geq 1$, and $\beta \geq 0$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|\Delta T_{n-1}\right|^{k}<\infty, \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta T_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 \tag{1.10}
\end{equation*}
$$

In the special case when $\beta=0$ (resp., $p_{n}=1$ for all values of n), $\left|\bar{N}, p_{n} ; \beta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ (resp., $|C, 1 ; \beta|_{k}$) summability.

Also it is known that $|C, \alpha ; \beta|_{k}$ and $\left|\bar{N}, p_{n} ; \beta\right|_{k}$ summabilities are, in general, independent of each other.

Mazhar [9] has proved the following theorem for $|C, 1|_{k}$ summability factors of infinite series.

Theorem 1.1 (see [9]). Let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers (B_{n}) such that it is δ-quasi-monotone with $\sum n \delta_{n} \log n<\infty, \sum B_{n} \log n$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O(\log m) \quad \text { as } m \rightarrow \infty, \tag{1.11}
\end{equation*}
$$

where $\left(t_{n}\right)$ is the $n t h(C, 1)$ mean of the sequence ($n a_{n}$), then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.
Remark 1.2. It should be noted that the condition " $\sum n B_{n} \log n$ is convergent" is enough to prove Theorem 1.1 rather than the conditions " $\sum n \delta_{n} \log n<\infty$ and $\sum B_{n} \log n$ is convergent."
2. The main result. In view of Remark 1.2, the aim of this paper is to generalize Theorem 1.1 for $|C, \alpha ; \beta|_{k}$ and $\left|\bar{N}, p_{n} ; \beta\right|_{k}$ summabilities under weaker conditions. For this we need the concept of almost increasing sequence. A positive sequence $\left(d_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence (c_{n}) and two positive constants A and B such that $A c_{n} \leq d_{n} \leq B c_{n}$ (see [1]). Obviously, every increasing sequence is almost increasing but the converse need not be true as can be seen from the example $d_{n}=n e^{(-1)^{n}}$. Since $\log n$ is increasing, we are weakening the hypotheses of the theorem replacing the increasing sequence by an almost increasing sequence.

Now, we prove the following theorems.
Theorem 2.1. Let (X_{n}) be an almost increasing sequence and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers (B_{n}) such that it is δ-quasi-monotone with $\sum n B_{n} X_{n}$ convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If the sequence (u_{n}^{α}), defined by (see [10])

$$
u_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right|, & \alpha=1 \tag{2.1}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, & 0<\alpha<1\end{cases}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\beta k-1}\left(u_{n}^{\alpha}\right)^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty \tag{2.2}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha ; \beta|_{k}, k \geq 1$ and $0 \leq \beta<\alpha \leq 1$.
Theorem 2.2. Let (X_{n}) be an almost increasing sequence and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers (B_{n}) such that it is δ-quasi-monotone with $\sum n B_{n} X_{n}$ convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If (p_{n}) is a sequence such that

$$
\begin{align*}
& \sum_{n=v+1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}}=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\beta k} \frac{1}{P_{v}}\right\}, \\
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty, \tag{2.3}\\
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty, \\
& \sum_{n=1}^{m} \frac{\left|\lambda_{n}\right|}{n}=O(1) \quad \text { as } m \rightarrow \infty,
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \beta\right|_{k}$ for $k \geq 1$ and $0 \leq \beta<1 / k$.
We need the following lemmas for the proof of our theorems.
LemmA 2.3 (see [5]). If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}\right| . \tag{2.4}
\end{equation*}
$$

Under the conditions of Theorem 2.2 we obtain the following result.
Lemma 2.4. The following equation holds:

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } n \rightarrow \infty . \tag{2.5}
\end{equation*}
$$

Proof. Since $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=X_{n}\left|\sum_{v=n}^{\infty} \Delta \lambda_{v}\right| \leq X_{n} \sum_{v=n}^{\infty}\left|\Delta \lambda_{v}\right| \leq \sum_{v=0}^{\infty} X_{v}\left|\Delta \lambda_{v}\right| \leq \sum_{v=0}^{\infty} X_{v}\left|B_{v}\right|<\infty . \tag{2.6}
\end{equation*}
$$

Hence $\left|\lambda_{n}\right| X_{n}=O(1)$ as $n \rightarrow \infty$.
3. Proof of Theorem 2.1. Let (T_{n}^{α}) be the nth (C, α), with $0<\alpha \leq 1$, mean of the sequence ($n a_{n} \lambda_{n}$). Then, by (1.1), we have

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} \tag{3.1}
\end{equation*}
$$

Applying Abel's transformation, we get

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{3.2}
\end{equation*}
$$

so that making use of Lemma 2.3, we have

$$
\begin{align*}
\left|T_{n}^{\alpha}\right| & \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} u_{v}^{\alpha}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| u_{n}^{\alpha} \tag{3.3}\\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha} .
\end{align*}
$$

Since

$$
\begin{equation*}
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}\right), \tag{3.4}
\end{equation*}
$$

to complete the proof of Theorem 2.1, it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\beta k-1}\left|T_{n, r}^{\alpha}\right|^{k}<\infty \quad \text { for } r=1,2 \tag{3.5}
\end{equation*}
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $1 / k+1 / k^{\prime}=$ 1, we get

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\beta k-1}\left|T_{n, 1}^{\alpha}\right|^{k} \\
& \quad \leq \sum_{n=2}^{m+1} n^{\beta k-1}\left(A_{n}^{\alpha}\right)^{-k}\left\{\sum_{v=1}^{n-} A_{v}^{\alpha} u_{v}^{\alpha}\left|B_{v}\right|\right\}^{k}
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{n=2}^{m+1} n^{\beta k-1}\left(A_{n}^{\alpha}\right)^{-k}\left\{\sum_{v=1}^{n-1}\left(A_{v}^{\alpha}\right)^{k}\left(u_{v}^{\alpha}\right)^{k}\left|B_{v}\right|\right\}\left\{\sum_{v=1}^{n-1}\left|B_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} n^{\beta k-\alpha k-1}\left\{\sum_{v=1}^{n-1} v^{\alpha k}\left(u_{v}^{\alpha}\right)^{k}\left|B_{v}\right|\right\} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(u_{v}^{\alpha}\right)^{k}\left|B_{v}\right| \sum_{n=v+1}^{m+1} \frac{1}{n^{1+\alpha k-\beta k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(u_{v}^{\alpha}\right)^{k}\left|B_{v}\right| \int_{v}^{\infty} \frac{d x}{x^{1+\alpha k-\beta k}} \\
& =O(1) \sum_{v=1}^{m} v^{\beta k}\left(u_{v}^{\alpha}\right)^{k}\left|B_{v}\right|=O(1) \sum_{v=1}^{m} v\left|B_{v}\right| v^{\beta k-1}\left(u_{v}^{\alpha}\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|B_{v}\right|\right) \sum_{r=1}^{v} r^{\beta k-1}\left(u_{r}^{\alpha}\right)^{k}+O(1) m\left|B_{m}\right| \sum_{v=1}^{m} v^{\beta k-1}\left(u_{v}^{\alpha}\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|B_{v}\right|\right)\right| X_{v}+O(1) m\left|B_{m}\right| X_{m} \\
& =O \text { (1) } \sum_{v=1}^{m-1} v\left|B_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}(v+1)\left|B_{v+1}\right| X_{v+1}+O(1) m\left|B_{m}\right| X_{m} \\
& =O \text { (1) as } m \rightarrow \infty, \tag{3.6}
\end{align*}
$$

by virtue of the hypotheses of Theorem 2.1.
Finally, since $\left|\lambda_{n}\right|=O(1)$, by hypothesis

$$
\begin{align*}
\sum_{n=1}^{m} n^{\beta k-1}\left|T_{n, 2}^{\alpha}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1} n^{\beta k-1}\left(u_{n}^{\alpha}\right)^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| n^{\beta k-1}\left(u_{n}^{\alpha}\right)^{k} \sum_{v=n}^{\infty}\left|\Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \sum_{n=1}^{v} n^{\beta k-1}\left(u_{v}^{\alpha}\right)^{k} \tag{3.7}\\
& =O(1) \sum_{v=1}^{\infty}\left|B_{v}\right| X_{v}<\infty,
\end{align*}
$$

by virtue of the hypotheses of Theorem 2.1.
Therefore, we get

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\beta k-1}\left|T_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } m \rightarrow \infty, \text { for } r=1,2 \tag{3.8}
\end{equation*}
$$

This completes the proof of Theorem 2.1.
Remark 3.1. It is natural to ask whether our theorem is true with $\alpha>1$. All we can say with certainty is that our proof fails if $\alpha>1$, for our estimate of $T_{n, 1}^{\alpha}$ depends upon Lemma 2.3, and Lemma 2.3 is known to be false when $\alpha>1$ (see [5] for details).

Proof of Theorem 2.2. Let $\left(T_{n}\right)$ denotes the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, by definition and changing the order of summation, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} . \tag{3.9}
\end{equation*}
$$

Then, for $n \geq 1$, we have

$$
\begin{equation*}
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v} \tag{3.10}
\end{equation*}
$$

By Abel's transformation, we have

$$
\begin{align*}
T_{n}-T_{n-1}= & \frac{n+1}{n P_{n}} p_{n} t_{n} \lambda_{n}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v} \frac{v+1}{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} t_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \lambda_{v+1} \frac{1}{v} \tag{3.11}\\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} .
\end{align*}
$$

Since

$$
\begin{equation*}
\left|T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}\right|^{k} \leq 4^{k}\left(\left|T_{n, 1}\right|^{k}+\left|T_{n, 2}\right|^{k}+\left|T_{n, 3}\right|^{k}+\left|T_{n, 4}\right|^{k}\right), \tag{3.12}
\end{equation*}
$$

to complete the proof of Theorem 2.2, it is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|T_{n, r}\right|^{k}<\infty \quad \text { for } r=1,2,3,4 . \tag{3.13}
\end{equation*}
$$

Since $\left(\lambda_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ by the hypothesis of Theorem 2.2, we have

$$
\begin{align*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|T_{n, 1}\right|^{k}= & O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1}\left|t_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\beta k-1}\left|t_{v}\right|^{k} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1}\left|t_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \sum_{n=1}^{m-1}\left|B_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } m \rightarrow \infty \tag{3.14}
\end{align*}
$$

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $1 / k+$ $1 / k^{\prime}=1$, as in $T_{n, 1}$, we have

$$
\begin{align*}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|T_{n, 2}\right|^{k}= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right\} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \tag{3.15}\\
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta k-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|=O(1) \quad \text { as } m \rightarrow \infty
\end{align*}
$$

Again, we have

$$
\begin{align*}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|T_{n, 3}\right|^{k}= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}}\left\{\sum_{v=1}^{n-1} P_{v}\left|B_{v}\right|\left|t_{v}\right|^{k}\right\} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v}\left|B_{v}\right|\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} P_{v}\left|B_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left|B_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\beta k}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m} v\left|B_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\beta k} \frac{1}{v}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|B_{v}\right|\right) \sum_{i=1}^{v}\left(\frac{P_{i}}{p_{i}}\right)^{\beta k} \frac{1}{i}\left|t_{i}\right|^{k} \tag{3.16}\\
& +O(1) m\left|B_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta k} \frac{1}{v}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|B_{v}\right|\right)\right| X_{v}+O(1) m\left|B_{m}\right| X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v X_{v}\left|B_{v}\right|+O(1) \sum_{v=1}^{m-1}(v+1)\left|B_{v+1}\right| X_{v+1} \\
& +O(1) m\left|B_{m}\right| X_{m} \\
= & O(1) \text { as } m \rightarrow \infty,
\end{align*}
$$

by virtue of the hypotheses of Theorem 2.2.

Finally, we have

$$
\begin{align*}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|T_{n, 4}\right|^{k}= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \frac{\left|\lambda_{v+1}\right|}{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} P_{v} \frac{\left|\lambda_{v+1}\right|}{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k-1} \frac{1}{P_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\beta k} \frac{1}{v}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\beta k} \frac{1}{r}\left|t_{r}\right|^{k} \tag{3.17}\\
& +O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta k} \frac{1}{v}\left|t_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \sum_{v=1}^{m-1}\left|B_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
= & O(1) \text { as } m \rightarrow \infty,
\end{align*}
$$

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.
Therefore, we get

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta k+k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } m \rightarrow \infty, \text { for } r=1,2,3,4 . \tag{3.18}
\end{equation*}
$$

This completes the proof of Theorem 2.2.
If we take $p_{n}=1$ for all values of n in this theorem, then we get a result concerning the $|C, 1 ; \beta|_{k}$ summability factors.

References

[1] S. Aljančić and D. Arandelović, 0 -regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 22(36) (1977), 5-22. MR 57\#6317. Zbl 379.26003.
[2] R. P. Boas, Jr., Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. (3) 14a (1965), 38-46. MR 31\#2556. Zbl 128.29302.
[3] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147-149. MR 86d:40004. Zbl 554.40008.
[4] . On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. 179 (1993), no. 2, 646-649. MR 95a:42002. Zbl 797.42005.
[5] L. S. Bosanquet, A mean value theorem, J. London Math. Soc. 16 (1941), 146-148. MR 3,144e. Zbl 028.21901.
[6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (3) 7 (1957), 113-141. MR 19,266a. Zbl 109.04402.
\qquad , Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc. (3) 8 (1958), 357-387. MR 21\#1481. Zbl 109.04502.
[8] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949. MR 11:25a. Zbl 032.05801.
[9] S. M. Mazhar, On generalized quasi-convex sequence and its applications, Indian J. Pure Appl. Math. 8 (1977), no. 7, 784-790. MR 58\#29572. Zbl 415.42008.
[10] T. Pati, The summability factors of infinite series, Duke Math. J. 21 (1954), 271-283. MR 15,950e. Zbl 057.30002.

HüSEyín Bor: Department of Mathematics, Erciyes University 38039, Kayseri, Turkey
E-mail address: bor@erciyes.edu.tr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

