ON THE SOLVABILITY OF A VARIATIONAL INEQUALITY PROBLEM AND APPLICATION TO A PROBLEM OF TWO MEMBRANES

A. ADDOU and E. B. MERMRI

(Received 17 March 2000)

ABSTRACT. The purpose of this work is to give a continuous convex function, for which we can characterize the subdifferential, in order to reformulate a variational inequality problem: find $u = (u_1, u_2) \in K$ such that for all $v = (v_1, v_2) \in K$, $\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + (f, v - u) \ge 0$ as a system of independent equations, where *f* belongs to $L^2(\Omega) \times L^2(\Omega)$ and $K = \{v \in H_0^1(\Omega) \times H_0^1(\Omega) : v_1 \ge v_2$ a.e. in $\Omega\}$.

2000 Mathematics Subject Classification. Primary 35J85.

1. Introduction. We are interested in the following variational inequality problem: find $u = (u_1, u_2) \in K$ such that for all $v = (v_1, v_2) \in K$,

$$\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + (f, v - u) \ge 0, \qquad (1.1)$$

where *f* belongs to $L^2(\Omega) \times L^2(\Omega)$ and *K* is a closed convex set of $H_0^1(\Omega) \times H_0^1(\Omega)$ defined by

$$K = \{ v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega) : v_1 \ge v_2 \text{ a.e. in } \Omega \}.$$
 (1.2)

Thanks to the orthogonal projection of the space $L^2(\Omega) \times L^2(\Omega)$ onto the cone \mathcal{X} defined by

$$\mathscr{H} = \{ \boldsymbol{v} = (\boldsymbol{v}_1, \boldsymbol{v}_2) \in L^2(\Omega) \times L^2(\Omega) : \boldsymbol{v}_1 \ge \boldsymbol{v}_2 \text{ a.e. in } \Omega \},$$
(1.3)

we construct a functional φ for which we can characterize the subdifferential at a point u, in order to reformulate problem (1.1) to a variational inequality without constraints; that is, find $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$,

$$\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + \varphi(v) - \varphi(u) + (h, v - u) \ge 0, \quad (1.4)$$

where φ is a continuous convex function from $H_0^1(\Omega) \times H_0^1(\Omega)$ to \mathbb{R} and h is an element of $L^2(\Omega) \times L^2(\Omega)$ depending only on f.

We prove that the solution $u = (u_1, u_2)$ can be obtained as a solution of a system of independent two Dirichlet problems

$$u_1, u_2 \in H_0^1(\Omega), \quad \Delta u_1 = g_1, \quad \Delta u_2 = g_2 \text{ in } \Omega,$$
 (1.5)

where g_1 and g_2 are two functions of $L^2(\Omega)$ determined in terms of f_1 and f_2 . We will give an algorithm for computing these functions.

This approach can be applied to study a variational inequality arising from a problem of two membranes [2].

2. Formulation of the problem. Let Ω be an open bounded set of \mathbb{R}^n with smooth boundary $\partial \Omega$. We equip $H_0^1(\Omega) \times H_0^1(\Omega)$ with the norm

$$a(u,v) = \int_{\Omega} \nabla u_1 \nabla v_1 + \int_{\Omega} \nabla u_2 \nabla v_2, \qquad (2.1)$$

where

$$u = (u_1, u_2), v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega).$$
(2.2)

For $r \in L^2(\Omega)$, we let

$$r^+ = \max\{r, 0\}, \quad r^- = \min\{r, 0\}.$$
 (2.3)

For $f = (f_1, f_2) \in L^2(\Omega) \times L^2(\Omega)$, we let

$$f^+ = (f_1^+, f_2^-), \qquad f^- = (f_1^-, f_2^+).$$
 (2.4)

For $v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$, we let

$$v_{+} = \left(v_{1} + \frac{(v_{2} - v_{1})^{+}}{2}, v_{2} - \frac{(v_{2} - v_{1})^{+}}{2}\right), \qquad v_{-} = \left(-\frac{(v_{2} - v_{1})^{+}}{2}, \frac{(v_{2} - v_{1})^{+}}{2}\right)$$
(2.5)

the projection of v onto the cone \mathcal{X} given by (1.3) with respect to the scalar product of $L^2(\Omega) \times L^2(\Omega)$ (respectively, the projection with respect to the scalar product of $L^2(\Omega) \times L^2(\Omega)$ on the polar cone of \mathcal{X} defined by $\mathcal{K}^0 = \{v = (-r, r) \in L^2(\Omega) \times L^2(\Omega) : r \ge 0 \text{ a.e. on } \Omega\}$). We easily verify that

$$a(v_+, v_-) = 0 \tag{2.6}$$

for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$. A function φ defined from $H_0^1(\Omega) \times H_0^1(\Omega)$ to \mathbb{R} is called lower semi-continuous (l.s.c.) if its epigraph defined by

$$\operatorname{epi}(\varphi) = \left\{ \nu = (\nu_1, \nu_2) \in H_0^1(\Omega) \times H_0^1(\Omega), \ \lambda \in \mathbb{R} : \varphi(\nu) \le \lambda \right\}$$
(2.7)

is closed in $H_0^1(\Omega) \times H_0^1(\Omega) \times \mathbb{R}$. Let $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, we denote by $\partial \varphi(u)$ the subdifferential of φ at u, defined by

$$\partial \varphi(u) = \{ \mu \in H^{-1}(\Omega) \times H^{-1}(\Omega) : \varphi(u) - \varphi(v) \le \langle \mu, u - v \rangle \ \forall v \in H^1_0(\Omega) \times H^1_0(\Omega) \}.$$
(2.8)

If φ is a convex l.s.c. function, then for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$, $\partial \varphi(v) \neq \emptyset$.

Let $f = (f_1, f_2) \in L^2(\Omega) \times L^2(\Omega)$. We denote by (\cdot, \cdot) and $\|\cdot\|$ the scalar product and the norm of $L^2(\Omega) \times L^2(\Omega)$, respectively. We consider the following variational inequality problem: find $u = (u_1, u_2) \in K$ such that

$$a(u, v - u) + (f, v - u) \ge 0 \quad \forall v = (v_1, v_2) \in K.$$
 (2.9)

It admits a unique solution. The functional φ defined from $L^2(\Omega) \times L^2(\Omega)$ to \mathbb{R} by $v \mapsto (f^+, v_+)$ is continuous on $H^1_0(\Omega) \times H^1_0(\Omega)$ and convex.

604

PROPOSITION 2.1. $u = (u_1, u_2)$ is a solution of the problem (2.9) if and only if u is the solution of the following problem: find $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that

$$a(u, v - u) + \varphi(v) - \varphi(u) + (f^{-}, v - u) \ge 0 \quad \forall v \in H^{1}_{0}(\Omega) \times H^{1}_{0}(\Omega).$$
(2.10)

PROOF. It is well known in the general theory of variational inequalities that problem (2.10) admits a unique solution. So, it is sufficient to show that the solution u of (2.10) is an element of K. Let $v = u_+$, then the inequality of (2.10) becomes

$$a(u, -u_{-}) + \varphi(u) - \varphi(u) + (f^{-}, -u_{-}) \ge 0.$$
(2.11)

By the relation (2.6) we deduce that $u_{-} = 0$, hence $u \in K$.

PROPOSITION 2.2. Problem (2.10) is equivalent to the following problem: find $\mu = (\mu_1, \mu_2) \in L^2(\Omega) \times L^2(\Omega)$, $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$,

$$a(u,v) + (\mu,v) + (f^-,v) = 0 \quad \forall v \in H^1_0(\Omega) \times H^1_0(\Omega), \ \mu \in \partial \varphi(u).$$

$$(2.12)$$

PROOF. If $u \in H_0^1(\Omega) \times H_0^1(\Omega)$ and $\mu \in L^2(\Omega) \times L^2(\Omega)$ are the solution of (2.12), then by definition of $\mu \in \partial \varphi(u)$, we have

$$a(u, v - u) + \varphi(v) - \varphi(u) + (f^{-}, v - u) \ge 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega).$$
(2.13)

Conversely, let *u* be the solution of problem (2.10). For $v = u \pm w$, with $w \in H_0^1(\Omega) \times H_0^1(\Omega)$, the inequality of (2.10) gives

$$a(u,w) + (f^{-},w) \ge -(f^{+},w^{+}) \ge -||f^{+}|| ||w||,$$

$$a(u,w) + (f^{-},w) \le (f^{+},(-w)^{+}) \le ||f^{+}|| ||w||.$$
(2.14)

We deduce that

$$|a(u,w) + (f^{-},w)| \le ||f^{+}|| ||w||.$$
 (2.15)

So the linear form

$$w \mapsto a(u,w) + (f^-,w) \tag{2.16}$$

is continuous on $H_0^1(\Omega) \times H_0^1(\Omega)$ equipped with the norm of $L^2(\Omega) \times L^2(\Omega)$. Where μ is an element of $L^2(\Omega) \times L^2(\Omega)$.

We set

$$C = \{ v \in L^2(\Omega) \times L^2(\Omega), (v, v) \le \varphi(v) \ \forall v \in L^2(\Omega) \times L^2(\Omega) \}.$$
(2.17)

LEMMA 2.3. Let $u \in L^2(\Omega) \times L^2(\Omega)$, then the following properties are equivalent: (a) $\mu \in \partial \varphi(u)$. (b) $\mu \in C$ and $(\mu, u) = \varphi(u)$. (c) $\mu \in C$ and $(\nu - \mu, u) \le 0$ for all $\nu \in C$.

PROOF. (a) \Rightarrow (b). Let $\mu \in \partial \varphi(u)$, we have

$$\varphi(v) - \varphi(u) \ge (\mu, v - u) \quad \forall v \in L^2(\Omega) \times L^2(\Omega).$$
(2.18)

605

We put v = 0, next v = 2u in (2.18). Since φ is positively homogeneous of degree 1, we obtain $\varphi(u) = (\mu, u)$ and consequently

$$\varphi(v) \ge (\mu, v) \quad \forall v \in L^2(\Omega) \times L^2(\Omega).$$
(2.19)

(c) \Rightarrow (a). For all $v \in V$, we have

$$(\mu, \nu - u) \le \varphi(\nu) - (\mu, u) \le \varphi(\nu) - (\nu, u) \quad \forall \nu \in C.$$
(2.20)

Hence for $v \in \partial \varphi(u)$, we have $(v, u) = \varphi(u)$, consequently $\mu \in \varphi(u)$.

We deduce from Lemma 2.3 the following relations:

$$\mu_1 + \mu_2 = f_1^+ + f_2^-, \quad f_2^- \le \mu_2 \le \mu_1 \le f_1^+ \text{ a.e. in } \Omega.$$
 (2.21)

Indeed, the function φ being positively homogeneous of degree 1, $\mu \in \partial \varphi(u)$ implies

$$(\mu, u) = \varphi(u), \tag{2.22}$$

$$(\mu, \nu) \le \varphi(\nu) \quad \forall \nu \in L^2(\Omega) \times L^2(\Omega).$$
 (2.23)

Finally, it is sufficient to take in (2.23) elements $v = (v_1, v_2)$ with suitable choices on the components v_1 and v_2 .

Let $V = H_0^1(\Omega) \times H_0^1(\Omega)$, and taking into account Lemma 2.3, we can write problem (2.12) as follows: find $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, $\mu \in C$,

$$a(u,v) + (\mu,v) + (f^{-},v) = 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega), (v-\mu,u) \le 0 \quad \forall v \in C.$$
(2.24)

Let *A* be the Riesz-Fréchet representation of $H^{-1}(\Omega) \times H^{-1}(\Omega)$ in $H^1_0(\Omega) \times H^1_0(\Omega)$. We set M = A(C), this is a closed convex subset in $H^1_0(\Omega) \times H^1_0(\Omega)$ characterized by

$$M = \{ w \in H_0^1(\Omega) \times H_0^1(\Omega) : a(w, v) \le \varphi(v) \ \forall v \in H_0^1(\Omega) \times H_0^1(\Omega) \}.$$
(2.25)

Problem (2.24) can be written in the following form: find $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, $z \in M$,

$$a(u+z+t,v) = 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega),$$

$$a(w-z,u) \le 0 \quad \forall w \in M.$$
(2.26)

with $z = A(\mu)$ and $t = A(f^{-})$. Hence

$$u = -z - t, \quad z = P_M(-t),$$
 (2.27)

where $P_M(-t)$ is the projection of -t onto the closed convex set M with respect to the scalar product $a(\cdot, \cdot)$ of $H_0^1(\Omega) \times H_0^1(\Omega)$.

From the equality of Proposition 2.2, we deduce that the solution u of problem (2.9) verifies the following equations:

$$\Delta u_1 = \mu_1 + f_1^-, \quad \Delta u_2 = \mu_2 + f_2^+ \quad \text{in } \Omega.$$
(2.28)

We notice that the prior knowledge of $\mu = (\mu_1, \mu_2)$ in terms of data of problem (2.9) yields the solutions u_1 and u_2 as solutions of two independent Dirichlet problems given by the system (2.28). We recall that for each element f of $L^p(\Omega)$, the solution of the problem

$$u \in H_0^1(\Omega), \quad -\Delta u = f \quad \text{in } \Omega,$$
 (2.29)

verifies the following properties (see [2]):

$$u \in H^{2,p}(\Omega), \quad \|u\|_{H^{2,p}} \le C \|f\|_{L^p},$$
(2.30)

where *C* is a constant depending only on *p* and Ω . We deduce from (2.28) that u_1, u_2 are in $H^2(\Omega)$ and

$$\begin{aligned} ||u_1||_{H^2(\Omega)} &\leq c_1 ||\mu_1 + f_1^-||_{L^2(\Omega)}, \\ ||u_2||_{H^2(\Omega)} &\leq c_2 ||\mu_2 + f_2^-||_{L^2(\Omega)}, \\ ||u_1 + u_2||_{H^2(\Omega)} &\leq c ||f_1 + f_2||_{L^2(\Omega)}, \end{aligned}$$
(2.31)

where c, c_1 , and c_2 are constants depending only on Ω . We define the domain of noncoincidence [2] by

$$\Omega^+ = \{ x \in \Omega : u_1(x) > u_2(x) \}.$$
(2.32)

From relations (2.21), (2.22), and (2.23) we deduce that

$$\mu_1 = f_1^+, \quad \mu_2 = f_2^- \quad \text{a.e. in } \Omega^+.$$
 (2.33)

When u_1 and u_2 are continuous on Ω , the following relations are verified:

$$\Delta u_1 = f_1, \quad \Delta u_2 = f_2 \quad \text{in } \Omega^+. \tag{2.34}$$

2.1. Algorithm for computing *z*. We consider the following projection problem:

$$z \in H_0^1(\Omega) \times H_0^1(\Omega), \quad z = P_M(t'), \text{ where } t' = -t.$$
 (2.35)

Let z_0 belong to M, we compute the element w_0 of M which verifies the following inequality:

$$a(w - w_0, z_0 - t') \ge 0 \quad \forall w \in M.$$
 (2.36)

Next we compute

$$z_1 = P_{[z_0, w_0]}(t'). \tag{2.37}$$

So, the algorithm is: z_n being given in M, we construct w_n verifying

$$a(w - w_n, z_n - t') \ge 0 \quad \forall w \in M.$$

$$(2.38)$$

Next $z_{n+1} = P_{[z_n,w_n]}(t')$. The sequence $\{z_n\}$ converges in $H_0^1(\Omega) \times H_0^1(\Omega)$ strongly to the solution of problem (2.35) [1]. Since M = A(C), then the inequality (2.38) implies that there exists $\{v_n\}$ in C which verifies

$$(v - v_n, t' - z_n) \le 0 \quad \forall v \in C \tag{2.39}$$

and Lemma 2.3 shows that v_n is an element of $\partial \varphi(t' - z_n)$.

2.2. Application. This method of solvability can be applied to the study of a variational inequality arising from a problem of two membranes [2],

$$\Delta u_{1} + \lambda u_{1} = f_{1}, \quad \Delta u_{2} = f_{2} \text{ in } \Omega^{+}, \quad u_{1} = u_{2},$$

$$\frac{\partial u_{1}}{\partial x_{i}} = \frac{\partial u_{2}}{\partial x_{i}}, \quad 1 \le i \le n,$$

$$\Delta u_{1} + \left(\frac{\lambda}{2}\right) u_{1} = \frac{1}{2} (f_{1} + f_{2}) \quad \text{in } \Omega^{-},$$
(2.40)

where Ω^+ and Ω^- , are two parts of Ω (unknown) separated by a hypersurface Γ of \mathbb{R}^n such that $\Omega = \Omega^+ \cup \Gamma \cup \Omega^-$; f_1 , f_2 are two regular functions and $\lambda \in \mathbb{R}$. Formally, Ω^+ is the non-coincidence domain given by (2.32).

References

- [1] A. Degueil, *Résolution par une méthode d'éléments finis d'un problème de Stephan en terme de temperature et en teneur en matériau non gelé*, Thèse 3ème cycle, Université de Bordeaux, Bordeaux, 1977.
- [2] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Pure and Applied Mathematics, vol. 88, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980. MR 81g:49013. Zbl 457.35001.

A. ADDOU: UNIVERSITY MOHAMED I, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, OUJDA, MOROCCO *E-mail address*: addou@sciences.univ-oujda.ac.ma

E. B. MERMRI: UNIVERSITY MOHAMED I, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, OUJDA, MOROCCO

E-mail address: mermri@sciences.univ-oujda.ac.ma, mermri@hotmail.com

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

