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Abstract. We present a numerical solution for the mathematical modeling of the hot-
pressing process applied to medium density fiberboard. The model is based on the work of
Humphrey (1982), Humphrey and Bolton (1989), and Carvalho and Costa (1998) with some
modifications and extensions in order to take into account mainly the convective effects
on the phase change term and also a conservative numerical treatment of the resulting
system of partial differential equations.
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1. Hot-pressing mathematical model. Hot pressing is the process in which a mat-

tress composed of wood fibers and resin is cured by applying heat and pressure in

a press (see Figure 1.1). Continuum and batch presses do exist, and one of the main

issues in reducing the cost of the final product is to reduce the press cycle time. In

order to improve the heat transfer between the press platens and the inner layers,

some amount of water is added to the mat. Another issue is to adjust the parameters

and the temperature history of the cycle in order to obtain a given density profile in

the board. Normally, it is desirable to have lower densities at the center of the board in

order to increase the mechanical rigidity for a given total mass per unit area. Predict-

ing the influence of these parameters, namely water content, press cycle duration, and

history (pressure and temperature) is one of the main concerns of numerical models.

Many numerical models have been reported to help in predicting the influence of

the process parameters in the final product. Among the most complete, we can find

the finite difference 2D (axisymmetrical) model presented by Humphrey [5] and, more

recently the 3D model of Carvalho and Costa [3]. Both consider conduction, phase

change of water from the adsorbed to the vapor state and convection. The stress devel-

opment and the determination of the density profile are not included in these models.

In this paper, we present a numerical model which includes all these features and

makes some corrections to the energy balance equation, as presented in [3]. The model

is based on the finite element model, so that it allows for a more versatile definition

of geometry, dimensionality and, eventually, coupling with other packages. It also will

allow the use of adaptive refinement, which may be an important issue at the lateral

borders, where the hot steam flows from the board to the ambient. However, this issue

is not considered in this paper.

1.1. Multiphase model. In order to avoid modeling the material down to the scale

of the microstructure (the fibers in this case), nonhomogeneous materials are solved
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Figure 1.1. Hot pressing process description.

via “averaged equations” so that the intricate microstructure results in a continuum

with averaged properties. The averaged equations and properties can be deduced in

a rigorous way through the theory of mixtures and averaging operators (see Whitaker

[14]).

1.2. Energy balance. We will not enter in the details of all the derivations but only

for the averaged energy balance equation, which can be found in the appendix. The

referred equation is

ρsCp
∂T
∂t
=∇·(k∇T −ρvVg

(
CpvT +λ+Ql

))−ṁ(λ+Ql), (1.1)

where T is the temperature, t the time, Cp the specific heat, k the thermal conductivity,

∇ the gradient operator, ρs the density of the dry board (solid phase), ρv vapor density,

Vg the volume averaged gas velocity, that is,

Vg = εvg, (1.2)

where vg is the velocity averaged on the phase (see the appendix), Cpv the specific heat

of vapor, ṁ the evaporation rate, λ the latent heat of vaporization of free water, andQl
the adsorption heat. The main difference between this equation and that presented by

both Carvalho and Costa [3] and Humphrey [5] is the addition of the water evaporation

heat term in the convection term instead of considering the phase change effect only

on the temporal term. This term should be included because both phases, the solid

material and the vapor are in relative motion and we think that its influence is not

negligible in a high temperature process.

1.3. Steam mass balance. Carvalho and Costa [3] proposed the following steam

mass conservation equation

ṁ= MMw

R
ε∇·

[
−Dv∇

(
Pv
T

)
+ 1
ε

Vg
Pv
T

]
, (1.3)

where MMw is the molecular weight of water, R the gas constant, ε the board porosity,

Dv the diffusivity of water vapor in the air/vapor mixture, and Pv the vapor partial

pressure. Considering that the steam is treated as an ideal gas, then

Pv
T
=MMw

−1Rρv, (1.4)

so it may be written, assuming ε constant, as

ṁ=∇·[−εDv∇ρv+Vgρv
]
. (1.5)
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This expression is preferable to (1.3) because it is written in a conservative form that

is more agreeable for a numerical treatment. The left-hand side term represents the

mass interfacial transport and those in the right-hand side take into account the mass

diffusion and the mass convection. However, it should be noted that this last expres-

sion does not have a temporal term as every consistent balance equation does. For

example, if evaporation is not considered, then (1.5) is valid only for a steady situ-

ation, which is not the case in general. Then, we rewrite the steam mass balance as

ε
∂ρv
∂t

=∇[εDv∇ρv−Vgρv
]+ṁ. (1.6)

This is another difference between our model and that proposed by Carvalho and

Costa [3].

1.4. Gas mixture mass balance. Finally, because the gas phase is composed of two

main constituents, steam and air, we may use an additional equation for the mass

transport of the whole gas phase. Carvalho and Costa [3] considered

∂P
∂t
=−1

ε
∇·
(
− Kg
µ
P
T
∇P

)
T + ṁ

εMMa
TR+ P

T
∂T
∂t
, (1.7)

where P is the pressure of the gas phase and Kg the board permeability tensor. Again,

assuming ideal gas law as the state equation for this phase,

∂
∂t

(
P
T

)
=− R

εMMa
∇·
(
− Kg
µ
ρg∇P

)
+ ṁR
εMMa

, (1.8)

we arrive to

ε
∂ρg
∂t

=−∇·(ρgVg
)+ṁ. (1.9)

In order to close the system of equations we need to introduce a relationship be-

tween ṁ and ∂Pv/∂t. Consider the steam mass balance (1.6) and the relation

ρsH = ερv+ρL, (1.10)

that represents the fact that the board moisture content H is composed of vapor and

bound water ρL. If we assume that no liquid phase is considered, then bound water

may be transferred to the gas phase only (solid to steam). So

ṁ=−∂ρL
∂t
, (1.11)

and then

ρs
∂H
∂t

= ε∂ρv
∂t

+ ∂ρL
∂t

=∇·[εDv∇ρv−Vgρv
]
. (1.12)

The air mass balance equation can be obtained by subtracting (1.6) from (1.9)

ε
∂ρa
∂t

=∇·[−εDv∇ρv−Vgρa
]
. (1.13)

Due to the fact that the mean macroscopic diffusive fluxes should be null

Dv∇ρv+Da∇ρa = 0, (1.14)
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the air mass balance equation is transformed in the following expression:

ε
∂ρa
∂t

=∇·[εDa∇ρa−Vgρa
]
, (1.15)

which is very similar to (1.6) but here valid for the air. Obviously, the air transport

equation has no evaporation term.

2. Summary of equations and boundary conditions. In order to clarify the math-

ematical model that is finally used for the simulation of hot-pressing process, we

present the following brief summary of partial differential equations.

• Energy balance equation

ρsCp
∂T
∂t
=∇·(k∇T −ρvVg

(
CpvT +λ+Ql

))−ṁ(λ+Ql). (2.1)

• Water content balance equation

ρs
∂H
∂t

=∇·[εDv∇ρv−Vgρv
]
. (2.2)

• Air mass balance equation

ε
∂ρa
∂t

=∇·[εDa∇ρa−Vgρa
]
. (2.3)

The boundary conditions are the following.

• At the press platen

T = Tplaten(t), air/water mixture in equilibrium with platen temperature,

Vg · n̂= 0, no mass flow across the platen,

∂ρa
∂z

= 0, no air diffusion across the platen,

∂ρv
∂z

= 0, no vapor diffusion across the platen.

(2.4)

where n̂ is the normal to the platen surface.

• At the center line (r = 0), axial symmetry for all variables

∂T
∂r

= 0,
∂H
∂r

= 0,
∂ρa
∂r

= 0. (2.5)

• At the mid plane (z = 0), symmetry for all variables

∂T
∂z

= 0,
∂H
∂z

= 0,
∂ρa
∂z

= 0. (2.6)

• At the exit boundary (r = Rext),

∂T
∂r

= 0, null diffusive heat flux,

Pv = Pv,atm, equilibrium with external air/water mixture,

Pa = Pa,atm, equilibrium with external air/water mixture.

(2.7)
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3. Numerical method. The above system of equations contains three main un-

knowns, the temperature, the moisture content, and the air density representing the

dependent variables of the problem, also called the state variable. In this work we have

used as independent variables the time and two spatial coordinates (3D problems may

be computed much in the same way). Due to the physical and geometrical inherent

complexity of this problem this may be computed only by numerical methods. For the

spatial discretization we have employed finite elements with multilinear elements for

all the unknowns. Due to the high convective effects, the numerical scheme was sta-

bilized with the SUPG (for “Streamline Upwind-Petrov Galerkin” ) formulation (see [2]),

otherwise spurious oscillations arise. Once the spatial discretization is performed,

the partial differential system of equations is transformed into an ordinary differen-

tial system of equations like

U̇ = R(U), (3.1)

where U is the state vector containing the three unknowns in each node of the whole

mesh. So, the system dimension is 3N whereN is the number of nodes in the mesh. The

numerical procedure is as follow: knowing the state vector at the current time (tn),
that is, Uj(tn)= [Tj,Hj,ρa,j](tn), where j represents a specific node in the mesh. To

get the residual, right-hand side of (3.1), the following steps should be done:

• Obtain air pressure from the gas state equation ((T ,ρa)→ Pa).

• Obtain relative humidity from sorption isotherms ((T ,H)→HR).

• Compute saturated vapor pressure from Kirchoff expression (4.11) (T → Psat).

• Compute vapor pressure Pv =HRPsat.

• Obtain vapor density in air from vapor state equation (T ,Pv)→ ρv .

• Compute coefficients from additional constitutive laws (P,H,T) → (D,Kg,
kx,y ,Cp).

• Compute gradients of T , P from nodal values at the Gauss points using the finite

element interpolation.

• Assemble the element residual contributions in a global vector.

Once the whole residual vector at t = tn is computed, the unknown variables at the

next time step is updated with

Un+1 =Un+∆tR(Un). (3.2)

This kind of scheme, called explicit integration in time, is very simple to be imple-

mented but it has two major drawbacks, one is the limitation of the time step to en-

sure numerical stability and the other is the bad convergence rate for ill-conditioned

system of equations. In this application the last disadvantage is very restrictive be-

cause the characteristic times of each equation are very different. To circumvent this

drawback we have implemented an implicit numerical scheme

Un+1−∆tR(Un+1)=Un, (3.3)

where the residue is computed at the new state variable U(tn+1) instead of using

the current value U(tn). The non-linearities and the time dependency of the state

vector make this implementation more difficult and time consuming but more stable.
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This nonlinear equation in Un+1 is solved by the Newton method, which requires the

computation of the Jacobian

J = ∂R
∂U
. (3.4)

In order to avoid the explicit computation of the Jacobian, we compute an approximate

one by finite differences,

J ≈ Jnum = R(U+δU)−R(U)δU
. (3.5)

This can be done element-wise, so the cost involved is proportional to the number

of elements in the mesh. In our application and despite of the ill-condition of the

problem, we have found a good convergence at each time step, in average 4 iterations

per time step to reduce 10 orders of magnitude in the global residue.

4. Physical and transport properties

4.1. Thermal conductivity. Following Humphrey [5], the influence of board den-

sity, moisture content, and temperature on the thermal conductivity is considered as

an independent correction factor obtained experimentally

κz = Fκ,HFκ,T
(
1.172×10−2+1.319×10−4ρs

)
,

Fκ,H = 1+9.77×10−3(H−12),

Fκ,T = (T −20)×1.077×103+1,

(4.1)

where κz is the thermal conductivity in the pressing direction in W/m◦K and ρs is

the oven dry density of the material in Kg/m3. The moisture correction factor Fκ,H
(see [5, 7]) assumes H, the moisture content of the board material, in %, and the

temperature correction factor Fκ,T (see [5, 8]) assumes T in ◦C.

4.1.1. Heat flux direction correction. By far the greater part of conductive heat

translation takes place in the vertical plane. However, the energy lost from the mat-

tress is largely the result of radial vapor migration from the center toward the at-

mosphere. The associated horizontal relative humidity gradient leads to a horizontal

temperature gradient. Even though this gradient is always lower than the vertical one,

its influence should be taken into account if multidimensional analysis is required.

Ward and Skaar [13] made experimental measurements, and they observed that at a

first glance a factor of approximately 1.5 may be a good initial guess before doing

some extra measurements. Then

κxy = 1.5κz. (4.2)

4.2. Permeability. The evaporation and condensation of water changes the vapor

density and consequently its partial pressure in the voids within the composite. A

vertical pressure gradient leads to the flow of water vapor from the press platens

toward the central plane of the board. At the same time a horizontal vapor flow is

set up in response to the pressure gradient established in the same direction. The

relation between the pressure gradient and the flow features may be assigned to the

material permeability. Permeability is a measure of the ease with which a fluid may
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flow through a porous medium under the influence of a given pressure gradient. Dif-

ferent mechanisms may be involved in this flow, a viscous laminar flow, a turbulent

flow and a slip or Knudsen flow. In this study only the first type is included with the

assumption that Darcy’s law is obeyed. This may be written as

Vg =−
Kg
µg
∇p, (4.3)

where ∇p is the driving force and vg is the flow variable, Kg/µg is called the super-

ficial permeability, with µg the dynamic viscosity of the gas phase and Kg the specific

permeability.

The kinetic theory of gases suggests that at normal pressure the viscosity is inde-

pendent of pressure and it varies as the square root of the absolute temperature,

µ∝
√
T , 103 <p < 106. (4.4)

Corrections with the absolute temperature are often considered by Sutherland law

µ = BT
3/2

T +C , (4.5)

with B and C characteristic constants of the gas or vapor, µ in Kgm−1 s−1. Values for

B and C are available from Keenan and Keyes [6]. For this application the following

expression was adopted,

µ = 1.112×10−5× (T +273.15)1.5

(T +3211.0)
(4.6)

with T in ◦C.

4.2.1. Variation of vertical permeability with board material density. Even though

we consider that the press is closed and the density profile is set up and fixed, we

include here some conclusions from Humphrey [5] with results obtained by Denisov

et al. [4] for 19 mm boards and others from Sokunbi [10]. The data to be fitted are the

following.

4.2.2. Horizontal permeability. Sokunbi measures included in [5, Figure 2.7] shows

the relation between the board thickness in mm and horizontal permeability. For ap-

proximately 15mm board thickness and ρs = 586Kg/m3, the horizontal permeability

is 59 times the vertical value, in agreement with the values assumed by Carvalho and

Costa [3].

4.3. Steam in air diffusivity. The interdiffusion coefficient of steam in air can be

calculated from the following semi-empirical equation (see Stanish et al. [11]),

Da = 2.20×10−5
(

101325
P

)(
T

273.15

)
, (4.7)

where the diffusivity is in m2/s, pressure in N/m2 and T in ◦K.

4.4. Vapor density. For the pressure range likely to occur during hot pressing

(between 103 and 3×105 N/m2), a linear relationship between saturated vapor pressure
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Table 4.1. Vertical permeability density correction data.

Mean density Mean vertical permeability[
Kg/m3

] [
m2×1015

]
425 64
475 40
525 24
575 16
625 11
675 7
725 5
775 3
825 2
875 2

and vapor density may be assumed. For fitting experimental data, Humphrey [5] pro-

posed the following expression:

ρv = Psat6.0×10−8HR, (4.8)

with ρv in Kg/m3, Psat in N/m2, and the relative humidity HR in %. This can be deduced

from the relative humidity definition

HR= Pv
Psat

, (4.9)

and applying ideal gas law for gaseous phase

Pv
ρv

= R̄
MMwT

. (4.10)

Taking R̄ = 8314J/Kmol/K and MMw = 18Kg/Kmol with T ≈ 360◦K we obtain (4.8).

4.5. Saturated vapor pressure. Following the Kirchoff expression with data pre-

sented by Keenan and Keyes [6], we include here the following equation:

log10Psat = 10.745−
(

2141.0
T +273.15

)
, (4.11)

with Psat in N/m2 and T in ◦C.

4.6. Latent heat of evaporation and heat of wetting. Using Clausius-Clapeyron

equation in differential form and after some simplification, the latent heat of vapor-

ization of free water may be written as

λ= 2.511×106−2.48×103T , (4.12)

with λ in J/Kg and T in ◦C.

For the differential heat of sorption we follow Humphrey [5] who used (see Bramhall

[1])

Ql = 1.176×106e−0.15H, (4.13)

with Ql in J/Kg and H in %.
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4.7. Specific heat of mattress material. It is computed by adding the specific heat

of dry wood and that of water according to the material porosity and assuming full

saturation. The specific heat of dry mattress material is taken as 1357J/Kg/K and the

specific heat of water has been taken to be 4190J/Kg/K. From Siau [9], the expression

for specific heat of moist wood is

Cp = 4180
0.268+0.0011(T −273.15)+H

1+H , (4.14)

where T in ◦K and H in %.

4.8. Porosity. According to Humphrey [5], the volume of voids within the region

may be computed with

ε= Vvoids

V
=
(

1− ρ
ρs

)
, (4.15)

where ε is the porosity, ρ is the density of the region, and ρs is the dry density of the

board material.

Carvalho and Costa [3] included the expression of Suzuki and Kato [12]

ε= 1−ρs
1/ρf +yr/ρr

1+yr
, (4.16)

where ρr is the cure resin density, ρf is the oven dry fiber density, and yr is the

resin content (resin weight/board weight). In [3], the authors used yr = 8.5% with

ρf = 900Kg/m3 and ρr = 1100Kg/m3.

5. Numerical results. In this section, we present some results that can be com-

pared with those reported in [5]. This numerical experiment allows the validation of

the mathematical model and its numerical implementation for future applications

to hot-pressing process simulation and control. This experiment consists of a round

fiberboard of 15mm of thickness and 0.2828m of radius that according to its axi-

symmetrical geometry needs as spatial coordinates only the radius r and the axial

coordinate z, assuming no variation in the circumferential coordinate. The axisym-

metrical domain is discretized in 20×20 elements in each direction with a grading

toward the press platen and the external radius as may be visualized in Figure 5.1.

In order to follow the same assumptions as in that work we fixed the air density to a

very low value (ρa ≈ 10−6), as if the press was close with no air inside the fiberboard.

The boundary conditions are as in Section 2.

For the press platen temperature, we have applied a ramp from 30◦C at time t = 0

to 160◦C at t = 72s with a least square fitting from data in [5]. As initial conditions we

have assumed a uniform temperature of T(t = 0)= 30◦C in the whole solid material,

with a uniform moisture content ofH = 11%. The external atmosphere was considered

to be at Tatm = 30◦C, HRatm = 65%, in such a way that the internal moisture content is,

at the initial state, in equilibrium with the external atmosphere.

In the next section we include the results obtained by using the model above cited

to the original problem presented in [5]. Next we present some other experiments

showing some phenomena that deserve more attention for future studies.
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Figure 5.1. Finite element mesh.
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Figure 5.2. Axial temperature profile at r = 0.

5.1. Original numerical experiment. Figure 5.2 shows the temperature distribu-

tion in time and the axial coordinate at r = 0 (centerline). We can note the penetration

in the axial direction of the temperature profile in time for t = 1,10,50,100,200,
300, and 400s. Figure 5.3 shows the same kind of plot for moisture content. For r
not too close to the external radius, the problem is almost one-dimensional in the z
direction. As the thermal front penetrates into the board, water evaporates. This va-

por advances to lower pressure regions near the symmetry plane and, as it encounters

lower temperatures, it condenses releasing heat. This process can be clearly seen from

the wave in moisture content (Figure 5.3) exceeding the initial water content of 11%

and results in an improvement in the heat transfer with respect to the pure conduction

case. Also this phenomenon is responsible of the change in curvature of the tempera-

ture curves, mainly at t = 10, 50, and 100s (see Figure 5.2). The total water content in
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Figure 5.4. Axial temperature profile at r = R = 0.2828m.

the board at a given instant can be found by integrating the bound water content and

the water in vapor phase. However, this last is negligible. We can see in Figure 5.3 that

the depression in water content near the board (for instance at t = 400s) is larger than

the water enrichment near the center plane. This is due to water migration from the

center of the board to the external radius, where it flows to the external atmosphere.

The following figures show similar plots but at different locations:

• Figure 5.4: temperature at external radius,

• Figure 5.5: moisture content at external radius,
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• Figure 5.6: temperature at axial centerline (z = 0),
• Figure 5.7: moisture content at axial centerline (z = 0),
• Figure 5.8: moisture content at press platen.

Figure 5.9 shows several isotherms at t = 200 s distributed in the r ,z plane.

Figure 5.10 shows a three-dimensional view for moisture content represented by

the third coordinate axis at t = 200s as a function of r ,z.

These results are in good agreement with those presented by Humphrey [5]. How-

ever the cited author did not present his results at some locations that in our opinion

should be treated with some care, for example at the external radius.
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5.2. Further numerical experiments. In [5], Humphrey included results for mois-

ture and temperature in the vertical and radial directions at both central planes, r = 0

and z = 0, respectively. No mention about the vertical distribution at r = R = 0.2828m

or about the moisture content at press platen. Moreover, he had used a uniform mesh

of 10× 10 elements without showing what happens at the last annuli of elements

corresponding to the external radius.

Our results present some overshooting in the temperature profile very close to the

radial exit contour, and at the first moment we thought about a spurious numerical
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Figure 5.9. Isotherms at t = 200s (z and r axis not to scale).
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Figure 5.10. 3D view for moisture content at t = 200s.

problem, but it is due to large variations of the magnitude of vapor pressure and

density at the boundary. In typical runs, vapor pressure varies from near 2atm at the

center of the board to 0.01atm at the external radius. We think that this problem will

be fixed if we solve for the air density also, but then a very fine grid will be necessary

at the exit boundary, since large variations of the vapor molar fraction are expected

(see Figure 5.11). Molar fraction varies from nearly 100% at the interior of the mat to

a 2% at the external atmosphere. This variation is produced in a thin layer of width δ
proportional to the diffusivity of vapor in air which is very small.
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Figure 5.11. Boundary layer in vapor partial pressure at external radius.

6. Conclusion. We presented a numerical model for the heat and mass transfer in

the hot-pressing model of an MDF fiberboard. The model includes convective

effects on the phase change term and also a conservative numerical treatment of the

resulting system of partial differential equations. Convective effects are responsible

of an increase in heat transfer from the platen to the center of the board due to water

vapor evaporation and condensation. Two-dimensional simulations allow to estimate

border effects.

Appendix

Derivation of the averaged energy balance equation. The microscopic energy bal-

ance equation in the gas phase is

∂
∂t
(ρh)+∇·(ρvh)=−∇·(k∇T), (A.1)

where h is enthalpy. For the other phases (solid and bound water) a similar expression

holds, but neglecting the advective term. Applying the volume average operator [14],

we arrive to the following equation averaged on the gas phase:

∂
∂t
(
εg〈ρh〉g

)+∇·(εg〈ρhv〉g)=∇·(εg〈k∇T〉g)+Qg, (A.2)

where εg is the volumetric fraction of phase g (i.e., gas) and 〈X〉g is the average of

quantity X on the volume occupied by phase g,

〈X〉g = 1
Ωg

∫
Ωg
XdΩ. (A.3)

The term Qg is the total enthalpy flux through the solid-gas interface Γ

Qg =
∫
Γ
(ρh)g(v−w)· n̂dΓ , (A.4)

where (X)g is the value of property X on the g side of the interface and w is the

velocity of the interface. Assuming that hg is constant on all Ωg (for a certain volume

control) then

Qg = 〈h〉g
∫
Γ
(ρ)g(v−w)· n̂dΓ = 〈h〉gṁ, (A.5)
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where ṁ is the rate of mass of water being evaporated. A common drawback of aver-

aged equations is that, when products of variables like ρh appear in the microscopic

equation, the average of the product 〈ρh〉g is obtained in the averaged equation. Now,

it is not true that

〈ρh〉g = 〈ρ〉g〈h〉g, (A.6)

so that the averaged equation contains more unknowns than the original equation.

A common assumption is that no correlation exists between variables and so (A.6)

is approximately valid. This can be justified, for instance, if the variations of each

quantity around the mean is small.

Then, applying the volume average operator over the gas, solid, and bound wa-

ter phases and assuming no correlations between variables, we obtain the following

averaged equations for the three phases:

∂
∂t
(
εgρghg

)+∇·(εgρgvghg
)=∇·(εg〈k∇T〉g)−ṁhg, for the gas phase,

∂
∂t
(
εsρshs

)=∇·(εs〈k∇T〉s), for the solid phase,

∂
∂t
(
εlρlhl

)= ṁhl, for the liquid phase.

(A.7)

Also, the average operator is dropped from here on, and a subindex g or s implies

averaging on that phase. Also, Vg the volume averaged gas velocity is

Vg = 1
Ω

∫
Ωg
v dΩ = εgvg. (A.8)

Note that in the body of the text Vg is used instead of vg . Now, summation of these

three equations gives

∂
∂t
(
εgρghg+εsρshs+εlρlhl

)+∇·(εgvgρghg
)

=∇(εg〈k∇T〉g+εs〈k∇T〉s)+ṁ(hl−hg).
(A.9)

Now,

εg〈k∇T〉g+εs〈k∇T〉s = keff∇〈T〉, (A.10)

where keff is the average conductivity of the solid + water + gas mixture. The gas is

assumed as an ideal mixture, so that the enthalpy is the sum of the enthalpy of its

constituents, and neglect the contribution of the air constituent so that

ρghg = ρaha+ρvhv ≈ ρvhv. (A.11)

Taking a reference state for the enthalpy at a point on the adsorbed state

hv = Cpv
(
T −Tref

)+λ+Ql. (A.12)

We also neglect the enthalpy of the gas phase with respect to the solid + water phases

and put

εsρshs+εlρlhl =
(
ρCp

)
eff

(
T −Tref

)
, (A.13)



HOT-PRESSING PROCESS MODELING FOR MEDIUM . . . 729

where ρeff and Cpeff are averaged properties for the moist board, as a function of

temperature and moisture content. Finally, the averaged equation is

∂
∂t
[(
ρCp

)
eff

(
T−Tref

)]+∇·[εgρvvg
(
Cpv

(
T−Tref

)+λ+Ql)]=∇·(keffT)−ṁ
(
λ+Ql

)
.

(A.14)

This is equivalent to (1.1) through relation (1.2) and assuming Tref = 0◦C.
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