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ON ALMOST INCREASING SEQUENCES
AND ITS APPLICATIONS
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Abstract. We prove a general theorem on |N̄,pn;δ|k summability factors, which gener-
alizes a theorem of Bor (1994) on |N̄,pn|k summability factors, under weaker conditions
by using an almost increasing sequence.
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1. Introduction. Let
∑
an be a given infinite series with partial sums (sn). Let (pn)

be a sequence of positive numbers such that

Pn =
n∑
v=0

pv �→∞ as n �→∞, (
P−i = p−i = 0, i≥ 1

)
. (1.1)

The sequence-to-sequence transformation

Tn = 1
Pn

n∑
v=0

pvsv (1.2)

defines the sequence (Tn) of the (N̄,pn)mean of the sequence (sn), generated by the
sequence of coefficients (pn) (see [4]). The series

∑
an is said to be summable |N̄,pn|k,

k≥ 1, if (see [1])
∞∑
n=1

(
Pn
pn

)k−1
|∆Tn−1|k <∞ (1.3)

and it is said to be summable |N̄,pn;δ|k, k≥ 1 and δ≥ 0, if (see [2])

∞∑
n=1

(
Pn
pn

)δk+k−1
|∆Tn−1|k <∞, (1.4)

where

∆Tn−1 =− pn
PnPn−1

n∑
v=1

Pv−1av, n≥ 1. (1.5)

In the special case when δ = 0, (respectively, pn = 1 for all values of n) |N̄,pn;δ|k
summability is the same as |N̄,pn|k (respectively, |C,1;δ|k) summability.
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Mishra and Srivastava [6] proved the following theorem for |C,1|k summability.

Theorem 1.1. Let (Xn) be a positive nondecreasing sequence and let there be se-
quences (βn) and (λn) such that

∣∣∆λn∣∣≤ βn, (1.6)

βn �→ 0 as n �→∞, (1.7)∣∣λn∣∣Xn =O(1) as n �→∞, (1.8)
∞∑
n=1

n
∣∣∆βn∣∣Xn <∞. (1.9)

If
m∑
n=1

1
n
∣∣sn∣∣k =O(Xm) asm �→∞, (1.10)

then the series
∑
anλn is summable |C,1|k, k≥ 1.

Bor [3] has generalized Theorem 1.1 for |N̄,pn|k summability in the form of the
following theorem.

Theorem 1.2. Let (Xn) be a positive nondecreasing sequence and the sequences (βn)
and (λn) such that conditions (1.6), (1.7), (1.8), and (1.9) of Theorem 1.1 are satisfied.
Furthermore, if (pn) is a sequence of positive numbers such that

Pn =O
(
npn

)
as n �→∞, (1.11)

m∑
n=1

pn
Pn
|sn|k =O

(
Xm

)
asm �→∞, (1.12)

then the series
∑
anλn is summable |N̄,pn|k, k≥ 1.

It should be noted that, if we take pn = 1 for all values of n, then condition (1.12)
will be reduced to condition (1.10). Also, it can be noticed that in this case condition
(1.11) is obvious.

2. The main result. The aim of this paper is to generalize Theorem 1.2 for |N̄,pn;δ|k
summability under weaker conditions. For this we need the concept of almost increas-
ing sequence. A positive sequence (bn) is said to be almost increasing if there exists
a positive increasing sequence (cn) and two positive constants A and B such that
Acn ≤ bn ≤ Bcn. Obviously every increasing sequence is almost increasing sequence
but the converse need not be true as can be seen from the example bn = ne(−1)n . So
we are weakening the hypotheses of Theorem 1.2 replacing the increasing sequence
by an almost increasing sequence.

Now, we will prove the following theorem.

Theorem 2.1. Let (Xn) be an almost increasing sequence and the sequences (βn)
and (λn) such that conditions (1.6), (1.7), (1.8), and (1.9) of Theorem 1.1 are satisfied.
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If (pn) is a sequence such that condition (1.11) of Theorem 1.2 is satisfied and

m∑
n=1

(
Pn
pn

)δk−1∣∣sn∣∣k =O(Xm) asm �→∞, (2.1)

∞∑
n=v+1

(
Pn
pn

)δk−1 1
Pn−1

=O
((
Pv
pv

)δk 1
Pv

)
, (2.2)

then the series
∑
anλn is summable |N̄,pn;δ|k for k≥ 1 and 0≤ δ < 1/k.

Remark 2.2. It may be noted that if we take (Xn) as a positive nondecreasing
sequence and δ= 0 in this theorem, then we get Theorem 1.2. In this case, condition
(2.1) reduces to condition (1.12) and condition (2.2) reduces to

∞∑
n=v+1

pn
PnPn−1

=O
(

1
Pv

)
, (2.3)

which always holds.

We need the following lemma for the proof of our theorem.

Lemma 2.3 (see [5]). Under the conditions on (Xn), (βn), and (λn) as taken in the
statement of the theorem, the following conditions hold, when (1.9) is satisfied:

nβnXn =O(1) as n �→∞, (2.4)
∞∑
n=1

βnXn <∞. (2.5)

Proof of Theorem 2.1. Let (Tn) denotes the (N̄,pn)mean of the series
∑
anλn.

Then, by definition and changing the order of summation, we have

Tn = 1
Pn

n∑
v=0

pv
v∑
i=0
aiλi = 1

Pn

n∑
v=0

(
Pn−Pv−1

)
avλv. (2.6)

Then, for n≥ 1, we have

Tn−Tn−1 = pn
PnPn−1

n∑
v=1

Pv−1avλv. (2.7)

By Abel’s transformation, we have

Tn−Tn−1 = pn
PnPn−1

n−1∑
v=1

∆
(
Pv−1λv

)
sv+ pnPn snλn

=− pn
PnPn−1

n−1∑
v=1

pvsvλv+ pn
PnPn−1

n−1∑
v=1

Pvsv∆λv+ pnPn snλn

= Tn,1+Tn,2+Tn,3,

(2.8)
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where Tn,i, i= 1,2,3, denotes the ith term in the sum. Since

∣∣Tn,1+Tn,2+Tn,3∣∣k ≤ 3k
(∣∣Tn,1∣∣k+∣∣Tn,2∣∣k+∣∣Tn,3∣∣k

)
, (2.9)

to complete the proof of the theorem, it is enough to show that

∞∑
n=1

(
Pn
pn

)δk+k−1∣∣Tn,r∣∣k <∞ for r = 1,2,3. (2.10)

Now, when k > 1 applying Hölder’s inequality with indices k and k′, where 1/k+1/k′ =
1, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1∣∣Tn,1∣∣k ≤
m+1∑
n=2

(
Pn
pn

)δk−1(
Pn−1

)−k

n−1∑
v=1

pv
∣∣sv∣∣∣∣λv∣∣



k

≤
m+1∑
n=2

(
Pn
pn

)δk−1 1
Pn−1

n−1∑
v=1

pv
∣∣sv∣∣k∣∣λv∣∣k


 1
Pn−1

n−1∑
v=1

pv



k−1

=O(1)
m∑
v=1

pv
∣∣sv∣∣k∣∣λv∣∣k

m+1∑
n=v+1

(
Pn
pn

)δk−1 1
Pn−1

=O(1)
m∑
v=1

(
Pv
pv

)δk−1∣∣sv∣∣k∣∣λv∣∣∣∣λv∣∣k−1

=O(1)
m∑
v=1

(
Pv
pv

)δk−1∣∣sv∣∣k∣∣λv∣∣

=O(1)
m−1∑
v=1

∆
∣∣λv∣∣

v∑
r=1

(
Pr
pr

)δk−1∣∣sr∣∣k

+O(1)∣∣λm∣∣
m∑
v=1

(
Pv
pv

)δk−1∣∣sv∣∣k

=O(1)
m−1∑
v=1

∣∣∆λv∣∣Xv+O(1)∣∣λm∣∣Xm

=O(1)
m−1∑
v=1

βvXv+O(1)
∣∣λm∣∣Xm

=O(1) asm �→∞,
(2.11)

by virtue of the hypotheses of Theorem 1.2 and Lemma 2.3.
Since vβv = O(1/Xv) by (2.4), using the fact that Pv = O(vpv) by (1.11), and

|∆λn| ≤ βn by (1.6), and after applying Hölder’s inequality again, we have
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m+1∑
n=2

(
Pn
pn

)δk+k−1∣∣Tn,2∣∣k ≤
m+1∑
n=2

(
Pn
pn

)δk−1(
Pn−1

)−k

n−1∑
v=1

Pv
∣∣∆λv∣∣∣∣sv∣∣



k

=O(1)
m+1∑
n=2

(
Pn
pn

)δk−1(
Pn−1

)−k

n−1∑
v=1

vpvβv
∣∣sv∣∣



k

=O(1)
m+1∑
n=2

(
Pn
pn

)δk−1 1
Pn−1

n−1∑
v=1

(
vβv

)kpv∣∣sv∣∣k

 1
Pn−1

n−1∑
v=1

pv



k−1

=O(1)
m∑
v=1

(
vβv

)kpv∣∣sv∣∣k
m+1∑
n=v+1

(
Pn
pn

)δk−1 1
Pn−1

=O(1)
m∑
v=1

(
vβv

)k( Pv
pv

)δk−1∣∣sv∣∣k

=O(1)
m∑
v=1

(
vβv

)k−1(vβv)
(
Pv
pv

)δk−1∣∣sv∣∣k

=O(1)
m∑
v=1

(
vβv

)( Pv
pv

)δk−1∣∣sv∣∣k

=O(1)
m−1∑
v=1

∆
(
vβv

) v∑
r=1

(
Pr
pr

)δk−1
|sr |k

+O(1)mβm
m∑
v=1

(
Pv
pv

)δk−1∣∣sv∣∣k

=O(1)
m−1∑
v=1

∣∣∆(vβv)∣∣Xv+O(1)mβmXm

=O(1)
m−1∑
v=1

v
∣∣∆βv∣∣Xv+O(1)

m−1∑
v=1

βv+1Xv+1+O(1)mβmXm

=O(1) asm �→∞,
(2.12)

by virtue of the hypotheses of Theorem 1.2 and Lemma 2.3.
Finally, using the fact that Pv =O(vpv) by (1.11), as in Tn,1, we have

m∑
n=1

(
Pn
pn

)δk+k−1∣∣Tn,3∣∣k =O(1)
m∑
n=1

(
Pn
pn

)δk−1∣∣sn∣∣k∣∣λn∣∣

=O(1) asm �→∞.
(2.13)

Therefore, we get (2.10) and this completes the proof of the theorem.

If we take pn = 1 for all values of n in this theorem, then we get a result concerning
the |C,1;δ|k summability factors.
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