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Abstract. Recent advances in CR (Cauchy-Riemann) geometry have raised interesting fine
questions about the regularity of CRmappings between real analytic hypersurfaces. In anal-
ogy with the known optimal results about the algebraicity of holomorphic mappings be-
tween real algebraic sets, some statements about the optimal regularity of formal CR map-
pings between real analytic CR manifolds can be naturally conjectured. Concentrating on
the hypersurface case, we show in this paper that a formal invertible CR mapping between
two minimal holomorphically nondegenerate real analytic hypersurfaces in Cn is conver-
gent. The necessity of holomorphic nondegeneracy was known previously. Our technique
is an adaptation of the inductional study of the jets of formal CR maps which was discov-
ered by Baouendi-Ebenfelt-Rothschild. However, as the manifolds we consider are far from
being finitely nondegenerate, we must consider some new conjugate reflection identities
which appear to be crucial in the proof. The higher codimensional case will be studied in a
forthcoming paper.

2000 Mathematics Subject Classification. 32V25, 32V35, 32V40.

1. Introduction and statement of the results

1.1. Main theorem. Let (M,p) and (M′,p′) be two small pieces of real analytic

hypersurfaces of Cn, with n ≥ 2. Here, the two points p ∈ M and p′ ∈ M′ are con-

sidered to be “central points.” Let t = (t1, . . . , tn) be some holomorphic coordinates

vanishing at p and let ρ(t, t̄) = 0 be a real analytic power series, a defining equa-

tion for (M,p). Similarly, we choose a defining equation ρ′(t′, t̄′) = 0 for (M′,p′).
Let h(t) = (h1(t), . . . ,hn(t)) be a collection of formal power series hj(t) ∈ C[[t]]
with hj(0) = 0. We will say that h induces a formal CR (Cauchy-Riemann) mapping

between (M,p) and (M′,p′) if there exists a formal power series b(t, t̄) such that

ρ′(h(t),h̄(t̄)) ≡ b(t, t̄)ρ(t, t̄). Further, h will be a formal equivalence between (M,p)
and (M′,p′) if, in addition, the formal Jacobian determinant of h is nonzero, namely,

if det((∂hj/∂ti)(0))1≤i,j≤n ≠ 0. If the formal power series hj(t) are convergent, it fol-
lows from the identity ρ′(h(t),h̄(t̄))≡ b(t, t̄)ρ(t, t̄) that hmaps a neighborhood of p
inM biholomorphically onto a neighborhood of p′ inM′. We are interested in optimal

sufficient conditions on the triple {M,M′,h} which insure that the formal equivalence

h is convergent, namely, the series hj(t) converge for t small enough. To specify that

the mapping h is formal, we will write it “h : (M,p)→� (M′,p′),” with the index “�”

referring to the word “formal.” The hypersurface (M,p) will be called minimal (at p,
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in the sense of Trépreau-Tumanov) if there does not exist a small piece of a com-

plex (n−1)-dimensional manifold passing through p which is contained in (M,p).
Recall also that (M′,p′) is called holomorphically nondegenerate if there does not ex-

ist a nonzero (1,0) vector field with holomorphic coefficients whose flow stabilizes

(M′,p′). The present paper is essentially devoted to establish the following assertion.

Theorem 1.1. Let h : (M,p)→� (M′,p′) be a formal invertible CR mapping between

two real analytic hypersurfaces in Cn and assume that (M,p) is minimal. If (M′,p′) is

holomorphically nondegenerate, then h is convergent.

(The reader is referred to the monograph [3] and to the articles [2, 4, 9, 13] for fur-

ther backgroundmaterial.) This theorem provides a necessary and sufficient condition

for the convergence of an invertible formal CR map of hypersurfaces. The necessity

appears in a natural way (see Proposition 1.2 below). Geometrically, holomorphic non-

degeneracy has a clear signification: it means that there exist no holomorphic tangent

vector field to (M′,p′). This condition is equivalent to the nonexistence of a local com-

plex analytic foliation of (Cn,p′) tangent to (M′,p′). As matters stand, such a kind

of characterization for the regularity of CR maps happens to be known already in

case where at least one of the two hypersurfaces is algebraic (cf. [5, 6, 12]). In fact,

in the algebraic case, one can apply the classical “polynomial identities” in the spirit

of Baouendi-Jacobowitz-Treves. It was known that the true real analytic case requires

deeper investigations.

1.2. Brief history. Formal invertible CR mappings h : (M,p) →� (M′,p′) between
two local pieces of real analytic hypersurfaces in Cn have been proved to be conver-

gent in various circumstances. Firstly, in 1974 by Chern-Moser, assuming that (M′,p′)
is Levi-nondegenerate. Secondly, in 1997 by Baouendi-Ebenfelt-Rothschild in [2], as-

suming that h is invertible (i.e., with nonzero Jacobian at p) and that (M′,p′) is finitely
nondegenerate at p′. And more recently in 1999, by Baouendi-Ebenfelt-Rothschild [4],

assuming for instance (but this work also contains other results) that (M′,p′) is es-
sentially finite, that (M,p) is minimal and that h is not totally degenerate, a result

which is valid in arbitrary codimensions. (Again, the reader may consult [3] for es-

sential background on the subject, for definitions, concepts, and tools and also [9]

for related topics.) In summary, the above-mentioned results have all exhibited some

sufficient conditions.

1.3. Necessity. On the other hand, it is known (essentially since 1995, cf. [5]) that

holomorphic nondegeneracy of the hypersurface (M′,p′) constitutes a natural nec-

essary condition for h to be convergent, according to an important observation due

to Baouendi-Rothschild [2, 3, 5] (this observation followed naturally from the char-

acterization by Stanton of the finite-dimensionality of the space of infinitesimal CR

automorphisms of (M,p) [16]; Stanton’s discovery is fundamental in the subject). We

may restate this observation as follows (see its proof at the end of Section 4).

Proposition 1.2. If (M′,p′) is holomorphically degenerate, then there exists a non-

convergent formal invertible CR self map of (M′,p′), which is simply of the form

Cn � t′ �� exp(�′(t′)L′)(t′)∈ Cn, where L′ is a nonzero holomorphic tangent vector

to (M′,p′) and where the formal series �′(t′)∈ C[[t′]], �′(0)= 0, is nonconvergent.
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A geometric way to interpret this nonconvergentmapwould be to say that it is amap

which “slides in nonconvergent complex time” along the complex analytic foliation

induced by L′, which is tangent toM′ by assumption. By this, we mean that each point

q′ of an arbitrary complex curve γ′ of the flow foliation induced by L′ is “pushed”
inside γ′ by means of a nonconvergent series corresponding to the time parameter

of the flow. This intuitive language can be illustrated adequately in the generic case

where the vector field L′ is nonzero at p′. Indeed, we can suppose that L′ = ∂/∂t′1
after a straightening and the above nonconvergent formal mapping is simply t′ ��

(t′1+�(t′),t′2, . . . , t′n). Here, the t
′
1-lines are the leaves of the flow foliation of L′ and we

indeed “push” or “translate” the point (t′1, t
′
2, . . . , t′n) by means of �′(t′) inside a leaf.

Similar obstructions for the algebraic mapping problem stem from the existence

of complex analytic (or algebraic) foliations tangent to (M′,p′) (cf. [5, 6]). Again,

this shows that the geometric notion of holomorphic nondegeneracy discovered by

Stanton is crucial in the field.

1.4. Jets of Segre varieties. The holomorphically nondegenerate hypersurfaces are

considerably more general and more difficult to handle than Levi-nondegenerate ones

[14, 15, 17], finitely nondegenerate ones [2], essentially finite ones [3, 4] or even

Segre nondegenerate ones [9]. The explanation becomes clear after a reinterpreta-

tion of these conditions in the spirit of the important geometric definition of jets

of Segre varieties due to Diederich-Webster [7]. In fact, these five distinct nondegen-

eracy conditions manifest themselves directly as nondegeneracy conditions of the

morphism of kth jets of Segre varieties attached to M′, which is an invariant holo-

morphic map defined on its extrinsic complexification �′ = (M′)c (we follow the

notations of Section 2). Here, the letter “c” stands for the “complexification oper-

ator.” In local holomorphic normal coordinates t′ = (w′,z′) ∈ Cn−1 ×C, vanishing
at p′ with τ′ := (ζ′,ξ′) ∈ Cn−1 ×C denoting the complexed coordinates (w′,z′)c ,
such that the holomorphic equation of the extrinsic complexification �′ is written

ξ′ = z′ − iΘ′(ζ′, t′) = z′ − i
∑

γ∈Nn−1∗ ζ′γΘ′γ(t′) (cf. (2.3)), the conjugate complexified

Segre variety is defined by �′t′ := {τ′ : ξ′ = z′−iΘ′(ζ′, t′)} (here, t′ is fixed; see [10] for
a complete exposition of the geometry of complexified Segre varieties) and the jet of

order k of the complex (n−1)-dimensional manifold �′t′ at the point τ′ ∈�′t′ defines
a holomorphic map

ϕ′
k : �′ � (t′,τ′) � �→ jkτ′�

′
t′ ∈ Cn+Nn−1,k , Nn−1,k = (n−1+k)!

(n−1)!k! , (1.1)

given explicitly in terms of such a defining equation by a collection of power series

ϕ′
k
(
t′,τ′

)
:= jkτ′�

′
t′ =

(
τ′,

{
∂βζ′
[
ξ′ −z′ +iΘ′(ζ′, t′)]}β∈Nn−1,|β|≤k

)
. (1.2)

For k large enough, the various possible properties of this holomorphic map govern

some different nondegeneracy conditions on M′ which are appropriate for some gen-

eralizations of the Lewy-Pinchuk reflection principle. Let p′c := (p′, p̄′)∈�′. We give

here an account of five conditions, which can be understood as definitions.

(I) (M′,p′) is Levi-nondegenerate at p′ if and only if ϕ′
1 is an immersion at p′c .

(II) (M′,p′) is finitely nondegenerate at p′ if and only if there exists k0 ∈N∗,ϕ′
k is

an immersion at p′c , for all k≥ k0.
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(III) (M′,p′) is essentially finite at p′ if and only if there exists k0 ∈N∗,ϕ′
k is a finite

holomorphic map at p′c , for all k≥ k0.
(IV) (M′,p′) is S-nondegenerate at p′ if and only if there exists k0 ∈N∗, ϕ′

k|�′p̄′ is
of generic rank dimC�′p̄′ =n−1, for all k≥ k0.

(V) (M′,p′) is holomorphically nondegenerate at p′ if and only if there exists k0 ∈
N∗, ϕ′

k is of generic rank dimC�′ = 2n−1, for all k≥ k0.

Remarks. (1) It follows from the biholomorphic invariance of Segre varieties that

two Segremorphisms of k-jets associated to two different local coordinates for (M′,p′)
are intertwined by a local biholomorphic map of Cn+Nn−1,k . Consequently, the proper-

ties of ϕ′
k are invariant.

(2) The condition (I) is classical. The condition (II) is studied by Baouendi-Ebenfelt-

Rothschild [2, 3] and appeared already in Pinchuk’s thesis, in Diederich-Webster [7]

and in some of Han’s works. The condition (III) appears in Diederich-Webster [7] and

was studied by Baouendi-Jacobowitz-Treves and by Diederich-Fornaess. The condition

(IV) seems to be new and appears in [9]. The condition (V) was discovered by Stanton

in her concrete study of infinitesimal CR automorphisms of real analytic hypersur-

faces (see [16] and the references therein) and is equivalent to the nonexistence of a

holomorphic vector field with holomorphic coefficients tangent to (M′,p′). We claim

that (I)⇒(II)⇒(III)⇒(IV)⇒(V) (only the implication (IV)⇒(V) is not straightforward, see
Lemma 5.4 below for a proof). Finally, this progressive list of nondegeneracy condi-

tions is the same, word by word, in higher codimensions.

1.5. A general commentary. To confirm evidence of the strong differences be-

tween these five levels of nondegeneracy, we point out some facts which are clear

at an intuitive and informal level. The immersive or finite local holomorphic maps

ϕ : (X,p)→ (Y ,q) between local pieces of complex manifolds with dimCX ≤ dimCY
are very rare (from the point of view of complexity) in the set of maps of generic rank

equal to dimCX, or even in the set of maps having maximal generic rank m over a

submanifold (Z,p) ⊂ (X,p) of positive dimension m ≥ 1. Thus condition (V) is by

far the most general. Furthermore, an important difference between (V) and the other

conditions is that (V) is the only condition which is nonlocal, in the sense that it hap-

pens to be satisfied at every point if it is satisfied at a single point only, provided, of

course, that the local piece (M′,p′) is connected. On the contrary, it is obvious that the
other four conditions are really local, even though they happen to be satisfied at one

point, there exist in general many other points where they fail to be satisfied. In this

concern, we recall that any (M′,p′) satisfying (V) must satisfy (II) locally—hence also

(III) and (IV)—over a Zariski dense open subset of points of (M′,p′) (this important

fact is proved in [3]). Therefore, the points satisfying (III) but not (II), or (IV) but not

(III), or (V) but not (IV), can appear to be more and more exceptional and rare from the

point of view of a point moving at random in (M′,p′), but however, from the point of

view of local analytic geometry, which is the adequate viewpoint in this matter, they

are more and more generic and general, in truth.

Remark 1.3. An important feature of the theory of CRmanifolds is to propagate the

properties of CR functions and CR maps along Segre chains, when (M,p) is minimal,
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like iteration of jets [3], support of CR functions, and so forth. Based on this heuristic

idea, and believing that the generic rank of the Segre morphism over a Segre variety

is a propagating property, I have claimed in February 1999 (and provided a too quick

invalid proof) that any real analytic (M′,p′) which is minimal at p′ happens to be

holomorphically nondegenerate if and only if it is Segre nondegenerate at p′. This is
not true for a general (M′,p′) as is shown, for instance, by an example from [4]. We

take in C3 equipped with the affine coordinates (z′1,z
′
2,z

′
3)

M′ :y ′
3 =

∣∣z′1∣∣2∣∣1+z′1z̄′2∣∣2(1+Re(z′1z̄′2))−1−x′3 Im(z′1z̄′2)(1+Re(z′1z̄′2))−1. (1.3)

This algebraic hypersurface is holomorphically nondegenerate but is not Segre non-

degenerate at the origin (use Lemmas 3.2 and 5.4 for a checking).

1.6. Summary of the proof. To the mapping h, we will associate the so-called in-

variant reflection function �′
h(t, ν̄′) as a C-valued map of (t, ν̄′) ∈ (Cn,p)× (C̄n,p̄)

which is a series a priori only formal in t and holomorphic in ν̄′ (the interest of study-
ing the reflection function without any nondegeneracy condition on (M′,p′) has been
pointed out for the first time by the author and Meylan in [11]). We prove in a first

step that �′
h and all its jets with respect to t converge on the first Segre chain. Then

using Artin’s approximation theorem [1] (the interest of this theorem of Artin for

the subject has been pointed out by Derridj in 1986, Séminaire sur les équations aux

dérivées partielles, Exposé no. XVI, Sur le prolongement d’applications holomorphes,

10pp., see page 5) and holomorphic nondegeneracy of (M′,p′), we establish that the

formal CRmaph converges on the second Segre chain. Finally, theminimality of (M,p)
together with a theorem of Gabrielov reproved elementarily by Eakin and Harris [8]

will both imply that h is convergent in a neighborhood of p. An important novelty is

the use of the conjugate reflection identities (5.5) below.

1.7. Closing remark. Two months after a first preliminary version of this paper

was finished (November 1999), distributed (January 2000) and then circulated as a

preprint, the author received in March 2000 a preprint (now published) [13] where

Theorems 1.1 and 9.1 were proved, using, in the first steps, an induction on the con-

vergence of the mapping and its jets along Segre sets which was devised by Baouendi-

Ebenfelt-Rothschild in [2]. But the proof that we provide here differs from the one in

[13] in the last step essentially. For our part, we introduce here in (5.5) and (8.2) a

crucial object which we call conjugate reflection identities. Essentially, this means that

both equivalent equations r ′(t′,τ′)= 0 and r̄ ′(τ′, t′)= 0 for (M′,p′) (see Section 2.3)

must be considered and differentiated. More precisely, we mean that the CR deriva-

tions �β of Section 5.1 must be applied to (5.1), and to the conjugate of (5.1), which

yields (5.5). The author knows no previous paper where such an observation is done

and exploited. With this crucial remark at hand, the generalizations of Theorems 1.1

and 9.1 to higher codimensions can be performed completely, see the preprint Étude

de la convergence de l’application de symétrie CR formelle (in French), http://arxiv.org/

abs/math.CV/0005290, May 2000 (translated with the same proof in July 2000). The

first version of that preprint (http://arxiv.org/abs/math.CV/0005290v1) contained

some explicit hints in Section 18 for a second proof using conjugation of reflection

http://arxiv.org/abs/math.CV/0005290
http://arxiv.org/abs/math.CV/0005290
http://arxiv.org/abs/math.CV/0005290v1
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identities and the last step of the proof given in [13]. The author believes that without

the use of the conjugation relation between r ′(t′,τ′) and r̄ ′(τ′, t′), no elementary

proof of Theorems 1.1 and 9.1 can be provided in higher codimension.

2. Preliminaries and notations

2.1. Defining equations. We will never speak of a germ. Thus, we will assume con-

stantly that we are given two small local real analytic manifold-pieces (M,p) and

(M′,p′) of hypersurfaces in Cn with centered points p ∈ M and p′ ∈ M′. We first

choose local holomorphic coordinates t = (w,z) ∈ Cn−1 ×C, z = x + iy and t′ =
(w′,z′) ∈ Cn−1×C, z′ = x′ +iy ′, vanishing at p and p′ such that the tangent spaces

toM and toM′ at 0 are given by {y = 0} and by {y ′ = 0} in these coordinates. By this

choice, we carry out (cf. [3]) the equations of M and of M′ in the form

M : z = z̄+iΘ̄(w,w̄, z̄
)
, M′ : z′ = z̄′ +iΘ̄′(w′,w̄′, z̄′

)
, (2.1)

where the power series Θ̄ and Θ̄′ converge normally in (2r∆)2n−1 for some small

r > 0. We denote by |t| := sup1≤i≤n |ti| the polydisc norm, so that (2r∆)2n−1 =
{(w,ζ,ξ) : |w|,|ζ|,|ξ| < 2r}. Here, if we denote by τ := (t̄)c := (ζ,ξ) the extrinsic

complexification of the variable t̄, the equations of the complexified hypersurfaces

� :=Mc and �′ := (M′)c are simply obtained by complexifying (2.1)

� : z = ξ+iΘ̄(w,ζ,ξ), �′ : z′ = ξ′ +iΘ̄′(w′,ζ′,ξ′
)
. (2.2)

As in [3], we assume for convenience that the coordinates (w,z) and (w′,z′) are

normal, that is, they are already straightened in order that Θ(ζ,0,z)≡ 0, Θ(0,w,z)≡
0 and Θ′(ζ′,0,z′) ≡ 0, Θ′(0,w′,z′) ≡ 0. This implies, in particular, that the Segre

varieties �0 = {(w,0) : |w| < 2r} and �′0 = {(w′,0) : |w′| < 2r} are straightened to

the complex tangent plane to M at 0 and that, if we develop Θ̄ and Θ̄′ with respect to

powers of w and w′, then we can write

z = ξ+i
∑

β∈Nn−1∗

wβΘ̄β(ζ,ξ), z′ = ξ′ +i
∑

β∈Nn−1∗

w′βΘ̄′β
(
ζ′,ξ′

)
. (2.3)

Here, we denote Nn−1∗ := Nn−1\{0}. So we mean that the two above sums begin with

a w and w′ exponent of positive length |β| = β1+···+βn−1 > 0. It is now natural

to set for notational convenience Θ̄0(ζ,ξ) := ξ and Θ̄′0(ζ′,ξ′) := ξ′. Although normal

coordinates are in principle unnecessary, the reduction to such normal coordinates

will simplify a little the presentation of all our formal calculations below.

2.2. Complexification of the map. Now, the map h is by definition an n-vectorial
formal power series h(t) = (h1(t), . . . ,hn(t)) where hj(t) ∈ C[[t]], hj(0) = 0 and

det(∂hj/∂tk(0))1≤j,k≤n ≠ 0, which means that h is formally invertible. This map yields

by extrinsic complexification a map hc = hc(t,τ)= (h(t),h̄(τ)) between the two com-

plexifications (�,0) and (�′,0). In other words, if we denote h= (g,f )∈ Cn−1×C in

accordance with the splitting of coordinates in the target space, the assumption that

hc(�)⊂� �′ reads as two equivalent fundamental equations

�

f(w,z)= [f̄ (ζ,ξ)+iΘ̄′(g(w,z), ḡ(ζ,ξ), f̄ (ζ,ξ)

)]
ξ:=z−iΘ(ζ,w,z),

f̄ (ζ,ξ)= [f(w,z)−iΘ′(ḡ(ζ,ξ),g(w,z),f (w,z)
)]

z:=ξ+iΘ̄(w,ζ,ξ),
(2.4)
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after replacing ξ by z−iΘ(ζ,w,z) in the first line and z by ξ+iΘ̄(w,ζ,ξ) in the second
line. In fact, these (equivalent) identities must be interpreted as formal identities in

the rings of formal power series C[[ζ,w,z]] and C[[w,ζ,ξ]], respectively. Of course,
according to (2.2), we can equally choose the coordinates (ζ,w,z) or (w,ζ,ξ) over �.

In symbolic notation, we just write hc(�,0)⊂� (�′,0) to mean the identities (2.4).

2.3. Conjugate equations, vector fields, and the reflection function. We also de-

note r(t,τ) := z−ξ−iΘ̄(w,ζ,ξ), r̄ (τ,t) := ξ−z+iΘ(ζ,w,z) and similarly r ′(t′,τ′) :=
z′−ξ′−iΘ̄′(w′,ζ′,ξ′), r̄ ′(τ′, t′) :=ξ′−z′+iΘ′(ζ′,w′,z′), so that�={(t,τ) : r(t,τ)=0},
�′ = {(t′,τ′) : r ′(t′,τ′) = 0} and the complexified Segre varieties are given by �τp =
{(t,τp) : r(t,τp)= 0}⊂� for fixed τp , and�tp ={(tp,τ) : r(tp,τ)= 0}⊂� for fixed tp
and similarly for �′τ′p′

, �′t′p′
(again, the reader is referred to [10] for a complete ex-

position of the geometry of complexified Segre varieties). Finally, we introduce the

(n−1) complexified (1,0) and (0,1) CR vector fields tangent to �, that we denote by

�= (�1, . . . ,�n−1) and�= (�1, . . . ,�n−1), and which can be given in symbolic vectorial

notation by

�= ∂
∂w

+iΘ̄w(w,ζ,ξ)
∂
∂z

, �= ∂
∂ζ
−iΘζ(ζ,w,z)

∂
∂ξ

. (2.5)

The reflection function �′
h(t, ν̄′), t ∈ Cn, ν̄′ = (λ̄′, µ̄′)∈ Cn−1×C, will be, by definition,

the formal power series

�′
h
(
t, ν̄′

)=�′
h
(
w,z,λ̄′, µ̄′

)= µ̄′ −f(w,z)+i
∑

β∈Nn−1∗

λ̄′
β
Θ′β
(
g(w,z),f (w,z)

)
. (2.6)

We notice that this power series in fact belongs to the local “hybrid” ring C{ν̄′}[[t]].

3. Minimality and holomorphic nondegeneracy

3.1. Two characterizations. At first, we need to remind the two explicit charac-

terizations of each one of the main two assumptions of Theorem 1.1. Let M be a real

analytic CR hypersurface given in normal coordinates (w,z) as above in (2.1).

Lemma 3.1 (see [3]). The following properties are equivalent:

(1) Θ̄(w,ζ,0) �≡ 0.

(2) (∂Θ̄/∂ζ)(w,ζ,0) �≡ 0.

(3) M is minimal at 0.

(4) The Segre variety S0 is not contained in M .

(5) The holomorphic mapC2n−2 � (w,ζ)� (w,iΘ̄(w,ζ,0))∈ Cn has generic rankn.

Lemma 3.2 (see [2, 3, 16]). If the coordinates (w′,z′) are normal as in (2.1), then the

real analytic hypersurfaceM′ is holomorphically nondegenerate at 0 if and only if there

exist β1, . . . ,βn−1 ∈Nn−1∗ , βn := 0, such that

det

(∂Θ′βi
∂t′j

(
w′,z′

))
1≤i,j≤n

�≡ 0 in C
{
w′,z′

}
. (3.1)

Remark 3.3. Since for β = 0, we have Θ′β(t′) = Θ′0(t′) = z′, we see that (3.1) holds
if and only if det((∂Θ′βi/∂w

′
j)(w′,z′))1≤i,j≤n−1 �≡ 0. Further, we can precise the other
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classical nondegeneracy conditions (I), (II), and (III) of Section 1 (for condition (IV),

see Lemma 5.4).

Lemma 3.4. The following concrete characterizations hold in normal coordinates.

(1) M′ is Levi nondegenerate at 0 if and only if the map w′ � (Θβ(w′,0))|β|=1 is

immersive at 0.

(2) M′ is finitely nondegenerate at 0 if and only if there exists k0 ∈N∗ such that the

map Cn−1 �w′� (Θ′β(w′,0))1≤|β|≤k0 is immersive at 0 for all k≥ k0.
(3) M′ is essentially finite at 0 if and only if there exists k0 ∈ N∗ such that the map

Cn−1 �w′� (Θ′β(w′,0))1≤|β|≤k0 is finite at 0 for all k≥ k0.

3.2. Switch of the assumptions. It is now easy to observe that the nondegeneracy

conditions upon M transfer to M′ through h and vice versa.

Lemma 3.5. Let h : (M,0) →� (M′,0) be a formal invertible CR map between two

real analytic hypersurfaces. Then

(1) (M,0) is minimal if and only if (M′,0) is minimal.

(2) (M,0) is holomorphically nondegenerate if and only if (M′,0) is holomorphically

nondegenerate.

Proof. We admit and use in the proof that minimality and holomorphic nonde-

generacy are biholomorphically invariant properties. Let N ∈ N∗ be arbitrary. Since

h is invertible, after composing h with a biholomorphic and polynomial mapping

Φ : (M′,0) → (M′′,0) which cancels low order terms in the Taylor series of h at the

origin, we can achieve that h(t) = t+O(|t|N). Since the coordinates for (M′′,0) may

be nonnormal, we must compose Φ◦h with a biholomorphism Ψ : (M′′,0)→ (M′′′,0)
which straightens the real analytic Levi-flat union of Segre varieties

⋃
|x|≤r S′′h(0,x) into

the real hyperplane {y ′′′ = 0} (this is how one constructs normal coordinates). One

can also verify that Ψ(t) = t+O(|t|N). Then all terms of degree ≤ N in the power

series of Θ′′′ coincide with those of Θ. Each one of the two characterizing properties

(1) of Lemma 3.1 and (3.1) of Lemma 3.2, is therefore satisfied by Θ if and only if it is

satisfied by Θ′′′.

4. Formal versus analytic

4.1. Approximation theorem. We collect here some useful statements from local

analytic geometry that we will repeatedly apply in the article. One of the essential

arguments in the proof of the main theorem (Theorem 1.1) rests on the existence of

analytic solutions arbitrarily close in the Krull topology to formal solutions of some

analytic equations, a fact which is known as Artin’s approximation theorem. Let m(w)
denote the maximal ideal of the local ring C[[w]] of formal power series in w ∈ Cn,

n∈N∗. Here is the first of our three fundamental tools, which will be used to get the

Cauchy estimates which show that the reflection function converges on the first Segre

chain (see Lemma 6.3).

Theorem 4.1 (see [1]). Let R(w,y) = 0, R = (R1, . . . ,RJ), where w ∈ Cn, y ∈ Cm,

Rj ∈ C{w,y}, Rj(0) = 0, be a converging system of holomorphic equations. Suppose

ĝ(w)= (ĝ1(w), . . . , ĝm(w)), ĝk(w)∈ C[[w]], ĝk(0)= 0, are formal power series which
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solve R(w,ĝ(w)) ≡ 0 in C[[w]]. Then for every integer N ∈ N∗, there exists a con-

vergent series solution g(w)= (g1(w), . . . ,gm(w)), that is, satisfying R(w,g(w))≡ 0,

such that g(w)≡ ĝ(w) (modm(w)N).

4.2. Formal implies convergent: first recipe. The second tool will be used to prove

that h is convergent on the second Segre chain, that is, h(w,iΘ̄(ζ,w,0)) ∈ C{w,ζ}
(see Section 8).

Theorem 4.2. Let R(w,y)=0, where R=(R1, . . . ,RJ),w∈Cn,y∈Cm, Rj∈C{w,y},
Rj(0)=0, be a system of holomorphic equations. Suppose that ĝ(w)=(ĝ1(w), . . . , ĝm(w))
∈ C[[w]]m, ĝk(0) = 0 are formal power series solving R(w,ĝ(w)) ≡ 0 in C[[w]]. If

J ≥m and if there exist j1, . . . ,jm with 1≤ j1 < j2 < ···< jm ≤ J such that

det

(
∂Rjk
∂yl

(
w,ĝ(w)

))
1≤k,l≤m

�≡ 0 in C[[w]], (4.1)

then the formal power series ĝ(w)∈ C{w} is in fact already convergent.

Remark 4.3. This theorem is a direct corollary of Artin’s theorem (Theorem 4.1).

The reader can find an elementary proof of it, for instance, in [9, Section 12].

4.3. Formal implies convergent: second recipe. The third statement will be ap-

plied to the canonical map of the second Segre chain, namely, to the map (w,ζ) �
(w,iΘ̄(ζ,w,0)), which is of generic rank n by Lemma 3.1(5).

Theorem 4.4 (see [8]). Let a(y) ∈ C[[y]], y ∈ Cµ , a(0) = 0, be a formal power

series and assume that there exists a local holomorphic map ϕ : (Cν
x,0)→ (Cµ

y ,0), of

maximal generic rank µ, that is, satisfying

∃j1, . . . ,jµ, 1≤ j1 < ···< jµ ≤ ν, s.t. det

(
∂ϕk

∂xjl
(x)

)
1≤k,l≤µ

�≡ 0, (4.2)

and such that a(ϕ(x))∈ C{x} is convergent. Then a(y)∈ C{y} is convergent.

4.4. Applications. We can now give an important application of Theorem 4.1,

namely, the Cauchy estimates for the convergence of the reflection function come

for free after one knows that all the formal power series Θ′β(h(w,z)) ∈ C[[w,z]] are
convergent.

Lemma 4.5. Assume that h : (M,0)→� (M′,0) is a formal invertible CR mapping and

thatM′ is holomorphically nondegenerate. Then the following properties are equivalent:

(1) h(w,z)∈ C{w,z}n.

(2) �′
h(w,z,λ̄, µ̄)∈ C{w,z,λ̄, µ̄}.

(3) Θ′β(h(w,z))∈ C{w,z}, ∀β∈Nn−1 and ∃ε > 0 ∃C > 0 such that |Θ′β(h(w,z))| ≤
C |β|+1, for all (w,z) with |(w,z)|< ε and all β∈Nn−1.
(4) Θ′β(h(w,z))∈ C{w,z}, ∀β∈Nn−1.

Proof. The implications (1)⇒(2)⇒(3)⇒(4) are straightforward. On the other hand,

consider the implication (4)⇒(1). By assumption, there exist convergent power series

ϕ′
β(w,z) ∈ C{w,z} such that Θ′β(h(w,z)) ≡ ϕ′

β(w,z) in C[[w,z]]. It then follows
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that h(t) is convergent by an application of Theorem 4.2 with Rn(t,t′) := z′ −ϕ0(t)
and Ri(t,t′) :=Θ′βi(t′)−ϕ′

βi(t), 1≤ i≤n−1 and where the multi-indices β1, . . . ,βn−1

are chosen as in Lemma 3.2 (use the property det((∂hj/∂tk)(0))1≤j,k≤n ≠ 0 and the

composition formula for Jacobian matrices to check that (4.1) holds).

Proof of Proposition 1.2. Let ϕ′ : (t′,u′) � exp(u′L′)(t′) = ϕ′(t′,u′) be the

local flow of the holomorphic vector field L′ = ∑n
k=1a

′
k(t′)∂/∂t

′
k tangent to M′. Of

course, this flow is holomorphic with respect to t′ ∈ Cn and u′ ∈ C, for |t′|,|u′| ≤ ε,
ε > 0. This flow satisfies ϕ′(t′,0) ≡ t′ and ∂u′ϕ′

k(t′,u′) ≡ a′k(ϕ′(t′,u′)). As L′ ≠ 0,

we have ∂u′ϕ′(t′,u′) �≡ 0. We can assume that ∂u′ϕ′
1(t′,u′) �≡ 0. Let �′(t′) ∈

C[[t′]]\C{t′}, �′(0)= 0, be a nonconvergent formal power series which satisfies fur-

ther ∂u′ϕ′
1(t′,�′(t′)) �≡ 0 in C[[t′]] (there exist many of such). If the formal power

series h7 : t′ �� ϕ′(t′,�′(t′)) would be convergent, then t′ �� �′(t′) would also be

convergent, because of Theorem 4.2, contrarily to the choice of �′. Finally, L′ being
tangent to (M′,0), it is clear that h7(M′,0)⊂� (M′,0).

5. Classical reflection identities

5.1. The fundamental identities. In this paragraph, we start the proof of our main

theorem (Theorem 1.1) by deriving the classical reflection identities. Thus let β ∈
Nn−1∗ . By γ ≤ β, we mean γ1 ≤ β1, . . . ,γn−1 ≤ βn−1. Denote |β| := β1+···+βn−1 and

�β := �
β1
1 ···�

βn−1
n−1 . Then applying all these derivations of any order (i.e., for each

β∈Nn−1) to the identity r̄ ′(h̄(τ),h(t)), that is, to

f̄ (ζ,ξ)≡ f(w,z)−i
∑

γ∈Nn−1∗

ḡ(ζ,ξ)γ Θ′γ
(
g(w,z),f (w,z)

)
, (5.1)

as (w,z,ζ,ξ)∈�, it is well known that we obtain an infinite family of formal identities

that we recollect here in an independent technical statement (for the proof, see [3, 9]).

Lemma 5.1. Let h : (M,0) →� (M′,0) be a formal invertible CR mapping between

�ω hypersurfaces in Cn. Then for every β∈Nn−1∗ , there exists a collection of universal

polynomial uβ,γ , |γ| ≤ |β| in (n−1)Nn−1,|β| variables, where Nk,l := (k+l)!/k!l! and

there exist holomorphic C-valued functions Ωβ in (2n− 1+nNn,|β|) variables near

0×0×0×(∂α1ξ ∂γ
1

ζ h̄(0))|α1|+|γ1|≤|β| in Cn−1×Cn−1×C×CnNn,|β| such that the identities

1
β!
∂βζ′Θ

′(ḡ(ζ,ξ),g(w,z),f (w,z)
)

=Θ′β
(
g(w,z),f (w,z)

)+ ∑
γ∈Nn−1∗

(β+γ)!
β!γ!

ḡ(ζ,ξ)γΘ′β+γ
(
g(w,z),f (w,z)

)

≡
∑

|γ|≤|β|

�γf̄ (ζ,ξ)uβ,γ

((
�δḡ(ζ,ξ)

)
|δ|≤|β|

)
∆(w,ζ,ξ)2|β|−1

=:Ωβ

(
w,ζ,ξ,

(
∂α

1

ξ ∂γ
1

ζ h̄(ζ,ξ)
)
|α1|+|γ1|≤|β|

)

=:ωβ(w,ζ,ξ)

(5.2)
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hold as formal power series in C[[w,ζ,ξ]], where

∆(w,ζ,ξ)=∆(w,z,ζ,ξ)|z=ξ+iΘ̄(w,ζ,ξ) := det
(
� ḡ

)
= det

(
∂ḡ
∂ζ

(ζ,ξ)−iΘζ(ζ,w,z)
∂ḡ
∂ξ

(ζ,ξ)
)∣∣∣

z=ξ+iΘ̄(w,ζ,ξ)
.

(5.3)

Remark 5.2. The terms Ωβ, holomorphic in their variables, arise after writing

�δh̄(ζ,ξ) as χδ(w,z,ζ,ξ,(∂α
1

ξ ∂γ
1

ζ h̄(ζ,ξ))|α1|+|γ1|≤|δ|) (by noticing that the coefficients

of � are analytic in (w,z,ζ,ξ) and by replacing again z by ξ+iΘ̄(w,ζ,ξ)).

5.2. Convergence over a uniform domain. From Lemma 5.1 which we have written

down in the most explicit way, we deduce the following useful observations. First, as

we have by the formal stabilization of Segre varieties h({w = 0}) ⊂� {w′ = 0} and
as h is invertible, then it also holds that det(�ḡ(0))= det(∂gj/∂wk(0))1≤j,k≤n−1 ≠ 0,

whence the rational term 1/∆2|β|−1 ∈ C[[w,ζ,ξ]] defines a true formal power series

at the origin. Putting now (ζ,ξ)= (0,0) in (5.3) and shrinking r if necessary, we then

readily observe that∆1−2|β|(w,0,0)∈ �((r∆)n−1,C), sinceΘζ(0,w,0)∈ �((r∆)n−1,C)

and since the terms ∂γ
1

ζ ḡ(0,0) for |γ1| = 1 and ∂1ξ ḡ(0,0) are constants. Clearly, the

numerator in the middle identity (5.2) is also convergent in (r∆)n−1 after putting

(ζ,ξ)= (0,0), and we deduce finally the following important property

Ωβ

(
w,0,0,

(
∂α

1

ξ ∂γ
1

ζ h̄(0,0)
)
|α1|+|γ1|≤|β|

)
∈ �

(
(r∆)n−1,C

)
, (5.4)

for all β ∈ Nn−1∗ . In other words, the domains of convergence of the ωβ(w,0,0) are
independent of β.

5.3. Conjugate reflection identities. On the other hand, applying the same deriva-

tions �β’s to the conjugate identity r ′(h(t),h̄(τ)) = 0, we would get another family

of what we call conjugate reflection identities

0≡�βf̄ (ζ,ξ)+i
∑

γ∈Nn−1∗

g(w,z)γ�β(Θ̄′γ(ḡ(ζ,ξ), f̄ (ζ,ξ))). (5.5)

The following lemma is the reason why these equations furnish essentially no more

information for the reflection principle.

Lemma 5.3. If (t,τ)∈�, then

〈
�β(r ′(h(t),h̄(τ)))=0, ∀β∈Nn−1〉⇐⇒ 〈

�β(r̄ ′(h̄(τ),h(t)))=0, ∀β∈Nn−1〉. (5.6)
Proof. As the two equations for�′ are equivalent, there exists an invertible formal

series α(t,τ) such that r ′(h(t),h̄(τ))≡α(t,τ)r̄ ′(h̄(τ),h(t)). Thus

�β(r ′(h(t),h̄(τ)))≡α(t,τ)�β(r̄ ′(h̄(τ),h(t)))
+

∑
γ≤β,γ≠β

αβ
γ(t,τ)�γ(r̄ ′(h̄(τ),h(t))), (5.7)

for some formal series αβ
γ(t,τ) depending on the derivatives of α(t,τ). The implica-

tion “⇐” follows at once and the reverse implication is totally similar.
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5.4. Heuristics. Nevertheless, in the last step of the proof of Theorem 1.1, equa-

tions (5.5) will be of crucial use, in place of (5.2) which will happen to be unusable. The

explanation is the following. Whereas the jets (∂α
1

ξ ∂γ
1

ζ h̄(ζ,ξ))|α1|+|γ1|≤|β| of the map-

ping h̄ cannot be seen directly to be convergent on the first Segre chain �1
0 := {(w,0)},

a convergence which would be a necessary fact to be able to use formula (5.2) again

in order to pass from the first to the second Segre chain �0
2 := {(w,iΘ̄(w,ζ,0))}

it will be possible—fortunately!—to show in Section 7 that the jets of the reflection

function �′
h itself converge on the first Segre chain, namely, that all the derivatives

�β(Θ̄′γ(ḡ(ζ,ξ), f̄ (ζ,ξ))), restricted to the conjugate first Segre chain �1
0 = {(ζ,0)},

converge. In summary, we will only be able a priori to show that the jets of �′
h con-

verge on the first Segre chain, and thus only (5.5) will be usable in the next step, but

not the classical reflection identities (5.2). This shows immediately why the conjugate

reflection identities (5.5) should be undertaken naturally in this context.

5.5. The Segre-nondegenerate case. Nonetheless, in the Segre-nondegenerate case,

which is less general than the holomorphically nondegenerate case, we have been able

to show directly that the jets of h converge on the first Segre chain (see [9]), and so on

by induction, without using conjugate reflection identities. The explanation is simple,

in the Segre nondegenerate case, we have first the following characterization, which

shows that we can separate the w′ variables from the z′ variable.

Lemma 5.4. The �ω hypersurface M′, given in normal coordinates (w′,z′), is Segre-

nondegenerate at 0 if and only if there exist β1, . . . ,βn−1 ∈Nn−1∗ such that

det

(∂Θ′βi
∂w′

j

(
w′,0

))
1≤i,j≤n−1

�≡ 0 in C
{
w′}. (5.8)

Also, M′ is holomorphically nondegenerate at 0 if it is Segre nondegenerate at 0.

Proof. In our normal coordinates, it follows that �p′ = �′0 = {(w′,0,0,0)} and
ϕ′

k|�′0 �w′ � ({Θ′β(w′,0)}|β|≤k), whence the rephrasing (5.8) of definition (IV). As we

can take βn = 0 in (3.1), we see that the determinant of (3.1) does not vanish if (5.8)

holds. This proves the promised implication (IV)⇒(V).
Thanks to this characterization, we can delineate an analog to Lemma 4.5, whose

proof goes exactly the same way.

Lemma 5.5. Assume that h is invertible, that M is given in normal coordinates (2.1)

and that M′ is Segre nondegenerate. Then the following properties are equivalent:

(1) h(w,0)∈ C{w}.
(2) �′

h(w,0, λ̄, µ̄)∈ C{w,λ̄, µ̄}.
(3) Θ′β(h(w,0)) ∈ C{w}, ∀β ∈ Nn−1 and ∃ε > 0 ∃C > 0 such that |Θ′β(h(w,0))| ≤

C |β|+1, ∀|w|< ε ∀β∈Nn−1.
(4) Θ′β(h(w,0))∈ C{w}, ∀β∈Nn−1.

5.6. Comment. In conclusion, in the Segre nondegenerate case (only) the conver-

gence of all the components Θ′β(h) of the reflection mapping after restriction to the

Segre variety �0={(w,0)} is equivalent to the convergence of all the components of h.
The same property holds for jets. Thus, in the Segre nondegenerate case, one can use
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the classical reflection identities (5.2) (in which appear the jets of h̄, see Ωβ) by in-

duction on the Segre chains [9]. This is not so in the general holomorphically nonde-

generate case, because it can happen that (3.1) holds whereas (5.8) does not hold, as

example (1.3) shows. In substance, one has therefore to use the conjugate reflection

identities. Now, the proof of Theorem 1.1 will be subdivided into three steps, which

will be achieved in Sections 6, 7, and 8.

6. Convergence of the reflection function on �1
0

6.1. Examination of the reflection identities. The purpose of this paragraph is to

prove as a first step that the reflection function �′
h converges on the first Segre chain

�0 = {(w,0)}.
Lemma 6.1. After perhaps shrinking the radius r > 0 of (5.4), the formal power series

�′
h(w,0, λ̄′, µ̄′) is holomorphic in (r∆)n−1×{0}×(r∆)n.

Proof. We specify the infinite family of identities (5.1) (for β = 0) and (5.2) (for

β∈Nn−1∗ ) on �0, to obtain first that f(w,0)≡ 0∈ C{w} and that for all β∈Nn−1∗

Θ′β
(
g(w,0),f (w,0)

)≡Ωβ

(
w,0,0,

(
∂α

1

ξ ∂γ
1

ζ h̄(0,0)
)
|α1|+|γ1|≤|β|

)
∈ C{w}. (6.1)

Furthermore, since by (5.4) the Ωβ’s converge for |w| < r and ζ = ξ = 0, we have

got Θ′β(g(w,0),f (w,0)) ∈ �((r∆)n−1,C), for all β ∈ Nn−1. It remains to establish a

Cauchy estimate like in Lemma 5.5(3). To this aim, we introduce some notation. We

setϕ′
0(w,z) := f(w,z) andϕ′

β(w,z) :=Θ′β(g(w,z),f (w,z)) for all β∈Nn−1∗ . By (6.1),

we already know that all the series ϕ′
β(w,0) are holomorphic in {|w| < r}. Thus, in

order to prove that the reflection function restricted to the first Segre chain, namely

that the series =�′
h|�0 = µ̄′ + i

∑
β∈Nn−1∗ λ̄′

β
ϕ′

β(w,0) is convergent with respect to all

its variables, we must establish a crucial assertion.

Lemma 6.2. After perhaps shrinking r > 0, there exists a constant C > 0 with
∣∣ϕ′

β(w,0)
∣∣≤ C |β|+1, ∀|w|< r, ∀β∈Nn−1. (6.2)

Proof. Actually, this Cauchy estimate will follow, by construction, from (6.1) and

from the property |Θ′β(w′,z′)| ≤ C′|β|+1 when (w′,z′) satisfy |(w′,z′)| < r ′ (the nat-
ural Cauchy estimate for Θ′), once we have proved the following independent and

important proposition, which is a rather direct application of Artin’s approximation

Theorem 4.1.

Lemma 6.3. Let w ∈ Cµ , µ ∈N∗, λ(w)∈ C[[w]]ν , λ(0)=0, ν∈N∗, and let Ξβ(w,λ)∈
C{w,λ}, Ξβ(0,0) = 0, β ∈ Nm, m ∈ N∗, be a collection of holomorphic functions

satisfying

∃r > 0 ∃ C > 0 s.t.
∣∣Ξβ(w,λ)

∣∣≤ C |β|+1, ∀β∈Nm, ∀∣∣(w,λ)
∣∣< r. (6.3)

Assume that Ξβ(w,λ(w))∈ �((r∆)µ,C), for all β∈Nm and putΦβ(w) := Ξβ(w,λ(w)).
Then the following Cauchy inequalities are satisfied by the Φβ’s

∃0< r1 ≤ r , ∃C1 > 0 s.t.
∣∣Φβ(w)

∣∣≤ C |β|+11 , ∀β∈Nm, ∀|w|< r1. (6.4)
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Proof. We set Rβ(w,λ) := Ξβ(w,λ)−Φβ(w). Then Rβ ∈ �({|(w,λ)| < r},C). By
noetherianity, we can assume that a finite subfamily (Rβ)|β|≤κ0 generates the ideal

(Rβ)β∈Nm , for some κ0 ∈ N∗ large enough. Applying now Theorem 4.1 to the collec-

tion of equations Rβ(w,λ) = 0, |β| ≤ κ0, of which a formal solution λ(w) exists by
assumption, we get that there exists a convergent solution λ1(w)∈ C{w}ν vanishing
at the origin, that is, some λ1(w)∈ �((r1∆)µ,Cν), for some 0< r1 ≤ r , with λ1(0)= 0,

which satisfies Rβ(w,λ1(w))≡ 0, for all |β| ≤ κ0. This implies that Rβ(w,λ1(w))≡ 0,

for all β∈Nm. Now, we have obtained

Ξβ
(
w,λ(w)

)≡ Φβ(w)≡ Ξβ
(
w,λ1(w)

)
, ∀β∈Nm. (6.5)

The composition formula for analytic function then yields at once |Ξβ(w,λ1(w))| ≤
C |β|+11 for |w|< r1, after perhaps shrinking oncemore this positive number r1 in order
that |λ1(w)| < r/2 if |w| < r1. Thanks to (6.5), this gives the desired inequality for

Φβ(w). The Proof of Lemmas 6.1 and 6.2 are thus now complete.

7. Convergence of the jets of the reflection function on �1
0

7.1. Transversal differentiation of the reflection identities. The next step in our

proof consists in showing that all the jets of the reflection function converge on the

first Segre chain �0.

Lemma 7.1. For all α∈N and all γ ∈Nn−1,

[
∂αz ∂

γ
w�′

h
(
w,z,λ̄, µ̄

)]|z=0 ∈ C{w,λ̄, µ̄
}
. (7.1)

Equivalently, for all α ∈ N, for all γ ∈ Nn−1, there exist r(α,γ) > 0 and C(α,γ) > 0

such that

∣∣[∂αz ∂γwϕ′
β(w,z)

]∣∣
z=0 |≤ C(α,γ)|β|+1 if |w|< r(α,γ), ∀β∈Nn−1

∗ . (7.2)

Remark 7.2. Fortunately, the fact that r(α,γ) depends on α and γ will cause no

particular obstruction for the achievement of the last third step in Section 8. We be-

lieve however that this dependence should be avoided, but we get no immediate con-

trol of r(α,γ) as α+|γ| →∞, in our proof—although it can be seen by induction that

[∂αz ∂
γ
wϕ′

β(w,z)]|z=0 ∈ �((r∆)n−1,C) (cf. the proof of Lemma 7.1).

Proof. If we denote by �α,γ the statement of the lemma, then it is clear that

�α,0 �⇒
(
�α,γ ∀γ ∈Nn−1). (7.3)

It suffices therefore to establish the truth of �α,0 for all α∈N. We first establish that

∂αz |z=0[ϕ′
β(w,z)] ∈ �((r∆)n−1,C), for all α ∈ N and all β ∈ Nn−1. To this aim, we

specify the variables (w,z,ζ,ξ) := (w,z,0,z)∈� (because Θ(0,w,z)≡ 0) in (5.1) and

(5.2) to firstly obtain

f̄ (0,z)≡ f(w,z)−i
∑

γ∈Nn−1∗

ḡ(0,z)γΘ′γ
(
g(w,z),f (w,z)

)
(7.4)
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and secondly the following infinite number of relations.

Ωβ

(
w,0,z,

(
∂α

1

ξ ∂γ
1

ζ h̄(0,z)
)
|α1|+|γ1|≤|β|

)

≡Θ′β
(
g(w,z),f (w,z)

)+ ∑
γ∈Nn−1∗

(β+γ)!
β!γ!

ḡ(0,z)γΘ′β+γ
(
g(w,z),f (w,z)

)
.

(7.5)

Essentially, the game will consist in differentiating the equalities (7.4) and (7.5) with

respect to z at 0 up to arbitrary order α, in the aim to obtain new identities which

will yield ∂αz |z=0[Θ′β(g(w,z),f (w,z))]∈ �((r∆)n−1,C), for all β∈Nn−1 and all α∈N,
by an induction process of “trigonal type.” We complete this informal description. To

begin with, for α = 1, after applying the derivation operator ∂1z |z=0 to (7.4) and (7.5),

we get immediately

∂1zf (w,0)≡ ∂1z f̄ (0,0)+i
n−1∑
j=1

[∂ḡj

∂z

]
(0,0)Θ′γ

(
g(w,0),f (w,0)

)∈ C{w}, (7.6)

since ḡ(0,0)= 0 (so ∂1z[ḡ(0,z)γ]z=0 = 0 for |γ| ≥ 2), and

∂1zΘ
′
β
(
g(w,0),f (w,0)

)= [∂1z
[
Ωβ

(
w,0,z,

(
∂α

1

ξ ∂γ
1

ζ h̄(0,z)
)
|α1|+|γ1|≤|β|

)]]∣∣∣∣
z=0

−
∑
|γ|=1

(β+γ)!
β!γ!

∂1zḡ(0,0)γΘ
′
β+γ

(
g(w,0),f (w,0)

)
,

(7.7)

making the slight abuse of notation ∂1zχ(w,0) instead of writing ∂1z |z=0[χ(w,z)] for
any formal power series χ(w,z) ∈ C[[w,z]]. For instance, ∂1zḡ(0,0)γ signifies

[∂1z(ḡ(0,z)γ)]|z=0=
∑n−1

k=1 γk∂1zḡk(0,0)[ḡ(0,0)γ1 ··· ḡk(0,0)γk−1 ··· ḡn−1(0,0)γn−1]. All
these expressions are convergent, because we already know (thanks to the first step)

that Θ′β(g(w,0),f (w,0)) ∈ C{w} for all β ∈ Nn−1∗ (and even Θ′β(g(w,0),f (w,0)) ∈
�((r∆)n−1,C)) and because the derivative ∂1z |z=0(Ωβ) can be expressed (thanks to the

chain rule) in terms of the derivatives ∂Ωβ/∂z, in terms of the derivatives ∂Ωβ/(∂α
1∂γ1)

(considering ∂α1∂γ1 as independent variables), and in terms of the derivatives

∂1z |z=0(∂α
1

ξ ∂γ
1

ζ h̄(0,z)), all taken at z = 0, which are terms obviously converging and

even which belong to the space �((r∆)n−1,C). Thus, we have got that ∂1zϕ
′
β(w,0) ∈

�((r∆)n−1,C), for all β ∈ Nn−1 (including β = 0). More generally, for arbitrary α ∈ N
and β ∈ Nn−1∗ , we observe readily that ∂αz |z=0[f̄ (0,z)] is constant and, for the same

reasons as explained above, that

∂αz |z=0
[
Ωβ

(
w,0,z,

(
∂α

1

ξ ∂ζγ1 h̄(0,z)
)
|α1|+|γ1|≤|β|

)]
∈ �

(
(r∆)n−1,C

)
. (7.8)

We can use this observation to perform a “trigonal” induction as follows. Let α0 ∈N∗
and suppose by induction that ∂αz ϕ

′
β(w,0) ∈ �((r∆)n−1,C) for all α ≤ α0 and all

β ∈ Nn−1∗ . Then applying the derivation ∂α0+1z |z=0 to (7.4), developing the expression

according to Leibniz’ formula and using the fact that ∂α0+1z |z=0[ḡ(0,z)γ] = 0 for all

|γ| ≥α0+2, we get the expression
∂α0+1z f (w,0)≡ ∂α0+1z f̄ (0,0)

+i
∑

0<|γ|≤α0+1

α0+1∑
κ=1

(
α0+1

)
!

κ!
(
α0+1−κ

)
!
∂κz ḡ(0,0)γ∂

α0+1−κ
z ϕ′

γ(w,0).
(7.9)
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Now, thanks to the induction assumption and because the order of derivation in the

expression ∂α0+1−κz ϕ′
γ(w,0) for 1 ≤ κ ≤ κ0+1 is less than or equal to α0, we obtain

that this expression (7.9) belongs to �((r∆)n−1,C). Concerning the differentiation of

(7.7) with respect to z, we also get that the term

∂α0+1z ϕ′
β(w,0)≡ ∂α0+1z ωβ(w,0,0)

−
∑

0<|γ|≤α0+1

(β+γ)!
β!γ!


α0+1∑

κ=1

(
α0+1

)
!

κ!
(
α0+1−κ

)
!
∂κz ḡ(0,0)γ∂

α0+1−κ
z ϕ′

β+γ(w,0)




(7.10)

belongs to �((r∆)n−1,C). Again, the important fact is that in the sum
∑α0+1

κ=1 , only

the derivations ∂αz ϕ
′
β(w,0) for 0 ≤ α ≤ α0 occur. In summary, we have shown that

∂zϕβ(w,0) is convergent for all α∈N.
Intermezzo. The induction process can be said to be of “trigonal type” because

we are dealing with the infinite collection of identities (5.2) which can be interpreted

as a linear system Y = AX, where X denotes the unknown (Θ′β)β∈Nn−1 and A is an

infinite trigonal matrix, as shows an examination of (5.2). Further, when we consider

the jets, we still get a trigonal system. The main point is that after restriction to the

first Segre chain {ζ = ξ = 0}, this trigonal system becomes diagonal (or with only

finitely many nonzero elements after applying ∂αz ), but this crucial simplifying property

fails to be satisfied after passing to the next Segre chains. To be honest, we should

recognize that the proof we are conducting here unfortunately fails (for this reason)

to be generalizable to higher codimensions. However, an important natural idea will

appear during the course of the proof, namely, the appearance of the natural (and new)

conjugate reflection identities (5.5) which we will heavily use in Section 8. For reasons

of symmetry, we have naturally wondered whether they can be exploited more deeply.

A complete investigation is contained in our subsequent work on the subject (quoted

in Section 1.7).

End of proof of Lemma 7.1. It remains to show that there exist constants

r(α) > 0,C(α) > 0 such that the estimate (7.2) holds for (α,γ)=(α,0) : |∂αz ϕ′
β(w,0)| ≤

C(α)|β|+1 if |w| < r(α), ∀β ∈ Nn−1∗ . To this aim, we apply Lemma 6.3 with the suit-

able functions and variables. First, it is clear that there exist universal polynomials (the

explicit formula in dimension one for the derivative of a composition (dn/dxn)(ψ◦
φ(x))= (ψ◦φ)(n)(x) is known as Faa di Bruno’s formula, (one of the favorite students

of Cauchy): (1/n!)(ψ ◦ φ)(n)(x) = ∑
α1+2α2+···+nαn=n(1/α1!α2!···αn!(1!)α1(2!)α2

···(n!)αn)×(φ′(x))α1(φ′′(x))α2 ···(φ(n)(x))αnψ(α1+α2+···+αn)(φ(x))) such that the

following composite derivatives can be written

∂αz
[
Θ′β
(
h(w,z)

)]= Pα
(∇∗αz h(w,z)

)
,
(∇∗αt′ Θ′β)(h(w,z)

)
, (7.11)

where the nα-tuple ∇∗αh(w,z) := ((∂kzh1(w,z), . . . ,∂kzhn(w,z))1≤k≤α) and the

((α+n)!/α!n!−1)-tuple∇∗αt′ Θ′β(t′) := (∂βt′Θ
′
β(t′))1≤|β|≤α. We now consider these poly-

nomials as holomorphic functions Gα
β = Gα

β(∇α
zh) of the n(α+1) variables ∇α

zh =
((∂kzh1, . . . ,∂kzhn)0≤k≤α) which satisfy, using (7.11),

∂αzΘ
′
β
(
h(w,z)

)=Gα
β
(∇α

zh(w,z)
)=Gα

β
(∇α

zh
)|∇α

z h:=∇α
z h(w,z), (7.12)
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where thenα-tuple∇α
zh(w,z)=(∂kzhj(w,z))1≤j≤n0≤k≤α and∇α

zh :=(∂kzhj)
1≤j≤n
0≤k≤α aren(α+1)

independent variables as we have just said above. Obviously, these functionsGα
β(∇α

zh)
satisfy an estimate of the form |Gα

β(∇α
zh)| ≤ C(α)|β|+1 if |∇α

zh|< r , because the func-
tions ∇∗αt′ Θ′β(t′) satisfy an estimate of the form |∇∗αt′ Θ′β(t′)| ≤ C′(α)|β|+1 if |t′| < r ′,
for some constants C′(α) > 0, r ′ > 0, and because we have Pα(∇α

zh,0) ≡ 0. We al-

ready know that there exist holomorphic functions χα
β (w)= ∂αz ϕ

′
β(w,0) in {|w|< r}

indexed by β∈Nn−1∗ such that the following formal identity holds.

Gα
β
(∇α

zh(w,0)
)= ∂αz ϕ

′
β(w,0)= χα

β (w) in C[[w]]. (7.13)

Now, a direct application of Lemma 6.3 yields the desired estimate

∣∣∂αz ϕ′
β(w,0)

∣∣≤ C(α)|β|+1 if |w|< r(α). (7.14)

Thus, we have completed the proof of Lemma 7.1.

Important remark. When α→∞, the number (n+1)α of variables in ∇α
zh also

becomes infinite. Thus, at each step we apply Artin’s theorem in Lemma 6.3, the r(α)
may shrink and go to zero as α→∞.

8. Convergence of the mapping

8.1. Jump to the second Segre chain. We now complete the final third step by

establishing that the power series h(t) is convergent in a neighborhood of 0. Let �2
0 =

{expw�(expζ�(0)) : |w| < r, |ζ| < r} be the second conjugate Segre chain [10], or

equivalently in our normal coordinates �2
0 = {(w,iΘ̄(w,ζ,0),ζ,0) : |w|< r, |ζ|< r}.

We prove that the map hc is convergent on �2
0. More precisely,

Lemma 8.1. The formal power series h(w,iΘ̄(ζ,w,0))∈ C{w,ζ}n is convergent.

From this lemma, we see now how to achieve the proof of our Theorem 1.1.

Corollary 8.2. Then the formal power series h(w,z)∈ C{w,z}n is convergent.

Proof. We just apply Theorem 4.4, taking into account Lemma 3.1(5).

Proof of Lemma 8.1. Thus, we have to show that h(w,iΘ̄(ζ,w,0)) ∈ C{w,ζ}.
To this aim, we consider the conjugate reflection identities (5.1) and (5.5) for various

β ∈ Nn−1∗ after specifying them over �2
0, that is, after setting (w,z,ζ,ξ) :=

(w,iΘ̄(ζ,w,0),ζ,0)∈�, which we may write explicitly as follows

f̄ (ζ,0)≡ f
(
w,iΘ̄(w,ζ,0)

)−i ∑
γ∈Nn−1∗

ḡ(ζ,0)γΘ′γh
(
w,iΘ̄(w,ζ,0)

)
,

0≡ [�βf̄ (ζ,ξ)
]
ξ=0+i

∑
γ∈Nn−1∗

g
(
w,iΘ̄(w,ζ,0)

)γ[
�β(Θ̄′γ(h̄(ζ,ξ)))]ξ=0, (8.1)

for all β ∈ Nn−1∗ . Let now κ0 ∈ N∗ be an integer larger than the supremum of the

lengths of some multi-indices βi’s, 1≤ i≤ n−1, satisfying the determinant property

stated in (3.1) of Lemma 3.2, that is, κ0 ≥ sup1≤i≤n−1 |βi|. According to Lemma 7.1, if

we consider (8.1) only for a finite number of β’s, say for |β| ≤ κ0, there will exist a
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positive number r1 > 0 with r1 ≤ r and a constant C1 > 0 such that each power series

[�β(Θ̄′γ(h̄(ζ,ξ)))]ξ=0 =: χβ
γ(w,ζ) is holomorphic in the polydisc {|w|,|ζ| < r1} and

satisfies the Cauchy estimate |χβ
γ(w,ζ)| ≤ C |γ|+11 when |(w,ζ)| < r1. We can now

represent (8.1) under the brief form

sβ
(
w,ζ,h

(
w,iΘ̄(w,ζ,0)

))≡ 0, |β| ≤ κ0, (8.2)

where the holomorphic functions sβ = sβ(w,ζ,t′) are simply defined by replacing the

terms [�β(Θ̄′γ(h̄(ζ,ξ)))]ξ=0 by χ
β
γ(w,ζ) in (8.1), so that the power series sβ converges

in the set {|w|,|ζ|,|t′| < r1}. The goal is now to apply Theorem 4.2 to the collection

of (8.2) in order to deduce that h(w,iΘ̄(w,ζ,0))∈ C{w,ζ}.
Remark 8.3. As noted in the introduction, another (more powerful) idea would

be to apply the Artin approximation theorem (Theorem 4.1) to (8.2) to deduce the

existence of a converging solution H(w,ζ) and then to deduce that the reflection

function itself converges on the second Segre chain (which is in fact quite easy using

Lemma 5.3). This will be achieved in Section 9.

First, we make a precise choice of the βi ∈Nn−1∗ arising in Lemma 3.2. We set βn = 0

and, for 1≤ i≤n−1, let βi be the infimum of all the multi-indices β∈Nn−1∗ satisfying

β > βi+1 > ··· > βn for the natural lexicographic order on Nn−1, and such that an

(n−i+1)×(n−i+1) minor of the n×(n−i+1) matrix

�	
β,βi+1,...,βn(t
′) :=

(
∂Θ′β
∂t′j

(
t′
)∂Θ′βi+1

∂t′j

(
t′
)··· ∂Θ

′
βn

∂t′j

(
t′
))

1≤j≤n
(8.3)

does not vanish identically as a holomorphic function of t′ ∈ Cn. We thus have

det((∂Θ′
βi
/∂t′j)(t′))1≤i,j≤n �≡ 0 in C{t′}. Concerning the choice of κ0, we also require

that

κ0 ≥ inf


k∈N : det


∂Θ′

βi

∂t′j

(
h
(
w,iΘ̄(w,ζ,0)

))
1≤i,j≤n

�∈m(ζ)kC[[w,ζ]]


, (8.4)

where m(ζ) is the maximal ideal of C[[ζ]]. We can choose such a finite κ0, because we
know already that the determinant in (8.4) does not vanish identically (this fact can

be easily checked, after looking at the composition formula for Jacobians, because, in

view of Lemma 3.2, the determinant (8.3) for (β1, . . . ,βn) does not vanish identically

and because the determinant det((∂hj/∂tk)(w,iΘ̄(w,ζ,0)))1≤j,k≤n does not vanish

identically in view of the invertibility assumption on h and in view of the minimality

criterion Lemma 3.1(5)). Thus, after these choices aremade, in order to finish the proof

by an application of Theorem 4.2, it will suffice to show the following lemma.

Lemma 8.4. There exist β1, . . . ,βn−1, βn(= 0)∈Nn−1 with |βi| ≤ 2κ0 such that

det

(
∂sβi
∂t′j

(
w,ζ,h

(
w,iΘ̄(w,ζ,0)

)))
1≤i,j≤n

�≡ 0 in C[[w,ζ]]. (8.5)

Proof. To this aim, we introduce some new power series. We set

Rβ
(
w,z,ζ,t′

)
:=�βf̄ (ζ,ξ)+i

∑
γ∈Nn−1∗

�β(ḡ(ζ,ξ)γ)Θ′γ(t′), (8.6)
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for all β∈Nn−1, after expanding with respect to (w,z,ζ,ξ) the power series appear-
ing in �β(ḡ(ζ,ξ)γ), �βf̄ (ζ,ξ) and after replacing ξ by z−iΘ(ζ,w,z), and similarly,

we set

Sβ
(
w,z,ζ,t′

)
:=�βf̄ (ζ,ξ)+i

∑
γ∈Nn−1∗

w′γ�β(Θ̄′γ(h̄(ζ,ξ))), (8.7)

in coherence with the notation in (8.2) and finally also, we set

Tβ
(
w,z,ζ,t′

)
:=−ωβ(w,ζ,ξ)+Θ′β

(
t′
)+ ∑

γ∈Nn−1∗

(β+γ)!
β!γ!

ḡ(ζ,ξ)γΘ′β+γ
(
t′
)
. (8.8)

We first remark that, by the very definition of sβ and of Sβ, we have

∂sβ
∂t′j

(
w,ζ,h

(
w,iΘ̄(w,ζ,0)

))≡ ∂Sβ
∂t′j

(
w,iΘ̄(w,ζ,0),ζ,h

(
w,iΘ̄(w,ζ,0)

))
(8.9)

as formal power series, for all β ∈Nn−1, 1 ≤ j ≤ n. Next, we establish a useful corre-

spondence between the vanishing of the generic ranks of (Rβ)|β|≤2κ0 , (Sβ)|β|≤2κ0 and
(Tβ)|β|≤2κ0 .

Lemma 8.5. The following properties are equivalent.

(1) det((∂Rβi/∂t
′
j)(w,z,ζ,h(w,z)))1≤i,j≤n ≡ 0, ∀β1, . . . ,βn, |β1|, . . . ,|βn| ≤ 2κ0.

(2) det((∂Sβi/∂t
′
j)(w,z,ζ,h(w,z)))1≤i,j≤n ≡ 0, ∀β1, . . . ,βn, |β1|, . . . ,|βn| ≤ 2κ0.

(3) det((∂Tβi/∂t
′
j)(w,z,ζ,h(w,z)))1≤i,j≤n ≡ 0, ∀β1, . . . ,βn, |β1|, . . . ,|βn| ≤ 2κ0.

The proof of Lemma 8.5 will be given just below.

End of proof of Lemma 8.4. To finish the proof of Lemma 8.4, we assume by

contradiction that (8.5) is untrue, that is, Lemma 8.5(2) holds with z = iΘ̄(w,ζ,0).
According to Lemma 8.5(3), we also have that the generic rank of then×(2κ0+n−1)!/
(2κ0)!(n−1)! matrix

�2κ0(w,ζ) :=
(
∂Θ′β
∂t′j

(
h
(
w,iΘ̄(w,ζ,0)

))

+
∑

γ∈Nn−1∗

(β+γ)!
β!γ!

ḡ(ζ,0)γ
∂Θ′β+γ
∂t′j

(
h
(
w,iΘ̄(w,ζ,0)

)))|β|≤2κ0
1≤j≤n

(8.10)

is strictly less than n. After making some obvious linear combinations between the

columns of �2κ0 with coefficients being formal power series in ζ which are polynomial

with respect to the ḡj(ζ,0)∈m(ζ), 1≤ j ≤n−1, we can reduce �2κ0 to the matrix of

same formal generic rank

�0
2κ0(w,ζ) :=

(
∂Θ′β
∂t′j

(
h
(
w,iΘ̄(w,ζ,0)

))

+
∑

|γ|≥2κ0+1−|β|

(β+γ)!
β!γ!

ḡ(ζ,0)γ
∂Θ′β+γ
∂t′j

(
h
(
w,iΘ̄(w,ζ,0)

)))|β|≤2κ0
1≤j≤n

.

(8.11)
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Now, taking the submatrix �0
κ0 of �0

2κ0 for which |β| ≤ κ0, we see that we have reduced
�0
κ0 to the simpler form

�0
κ0(w,ζ)≡�1

κ0(w,ζ) mod
(
m(ζ)κ0+1�atn×(κ0+n−1)!/(κ0)!(n−1)!

(
C[[w,ζ]]

))
, (8.12)

where

�1
κ0(w,ζ) :=

(
∂Θ′β
∂t′j

h
(
w,iΘ̄(w,ζ,0)

))|β|≤κ0
1≤j≤n

. (8.13)

But

det


∂Θ′

βi

∂t′j

(
h
(
w,iΘ̄(w,ζ,0)

))
1≤i,j≤n

�≡ 0 in C[[w,ζ]]
(
modm(ζ)κ0+1

)
, (8.14)

by the choice of the βi’s and of κ0, which is the desired contradiction.

Proof of Lemma 8.5. The equivalence (1)�(3) follows by an inspection of the

proof of Lemma 5.1; to pass from the system Rβ = 0, |β| ≤ 2κ0, to the system Tβ = 0,

|β| ≤ 2κ0, we have only use in the proof some linear combinations with coefficients in

C[[ζ,ξ]]. The equivalence (1)�(2) is related with the substance of Lemma 5.3. Indeed,

in the relation r ′(t′,τ′)≡α′(t′,τ′)r̄ ′(τ′, t′), with α′(0,0)=−1, insert first τ′ := h̄(τ)
to get r ′(t′, h̄(τ))≡α′(t′, h̄(τ))r̄ ′(h̄(τ),t′) and then differentiate by the operator �β

to obtain

�βr ′
(
t′, h̄(τ)

)≡α′(t′, h̄(τ))�βr̄ ′
(
h̄(τ),t′

)+ ∑
γ≤β,γ≠β

α′βγ
(
t′, t,τ

)
�γr̄ ′

(
h̄(τ),t′

)
. (8.15)

In our notations, Rβ(w,z,ζ,t′) = �βr ′(t′, h̄(τ)) and Sβ(w,z,ζ,t′) = �βr̄ ′(h̄(τ),t′),
after replacing ξ by z−iΘ(ζ,w,z). We deduce

∂Rβ

∂t′j

(
w,z,ζ,h(w,z)

)=α′
(
h(w,z),h̄(τ)

)∂Sβ
∂t′j

(
w,z,ζ,h(w,z)

)

+
∑

γ≤β,γ≠β
α′βγ

(
t,τ,h(w,z)

)∂Sγ
∂t′j

(
w,z,ζ,h(w,z)

)
.

(8.16)

Equation (8.16) shows that the terms (∂Rβ/∂t′j)(w,z,ζ,h(w,z)) are trigonal linear

combinations of the terms (∂Sγ/∂t′j)(w,z,ζ,h(w,z)), γ ≤ β, with nonzero diagonal

coefficients. This completes the proofs of Lemmas 8.5 and 8.1 and completes finally

our proof of Theorem 1.1.

Remark 8.6. Once we know that h(w,z) ∈ C{w,z}, we deduce that the reflection
function associated with the formal equivalence of Theorem 1.1 is convergent, that

is, �′
h(w,z,λ̄, µ̄)∈ C{w,z,λ̄, µ̄}.

9. Convergence of the reflection function. Using the conjugate reflection identi-

ties (5.5), we observe that we may prove the following more general statement (see

[13], where the first proof was provided differently). Notice also that a second proof

of Theorem 1.1 can be derived from Theorem 9.1 by applying afterward Lemma 3.2

and Theorem 4.2.
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Theorem 9.1. Let h : (M,p)→� (M′,p′) be a formal invertible CR mapping between

two real analytic hypersurfaces in Cn and assume that (M,p) is minimal. Then the

reflection mapping �′
h is convergent, that is,

�′
h
(
t, ν̄′

)∈ C{t, ν̄′}. (9.1)

Proof. We come back to the conjugate reflection identities (5.5) and we put for

the arguments (w,z,ζ,ξ) := (w,iΘ̄(w,ζ,0),ζ,0). By Lemma 7.1, we know that all the

terms �β(Θ̄′γ(h̄)) with these arguments are convergent power series in (w,ζ). The
same holds for the terms �β(f̄ ). We thus get (8.2) where the term h(w,iΘ̄(w,ζ,0))
is only formal. Since the equations sβ(w,ζ,t′) are analytic, we can apply Artin’s ap-

proximation theorem. Consequently, there exists a convergent power seriesH(w,ζ)∈
C{w,ζ}n satisfying

sβ
(
w,ζ,H(w,ζ)

)≡ 0, ∀β∈Nn−1. (9.2)

Here, we consider the complete list of equations sβ = 0 for all β. Then using calcula-

tions similar to (8.15), (8.16), namely, by applying the CR derivations �β to the identity

r ′(t′, h̄(τ))≡α′(t′, h̄(τ))r̄ ′(h̄(τ),t′), we deduce thatH satisfies the first family of re-

flection identities, namely,

�βf̄ ≡−i
∑

γ∈Nn−1∗

�β(ḡγ)Θ′γ(H). (9.3)

Here, the arguments of � and of h̄ are (w,iΘ̄(w,ζ,0),ζ,0) and the arguments of H
are (w,ζ). Applying the calculation of Lemma 5.1 to (9.3) and comparing to (5.2), we

deduce that for all β∈Nn−1, we have

ωβ ≡Θ′β(h)+
∑

γ∈Nn−1∗

(β+γ)!
β!γ!

ḡγΘ′β+γ(h)

≡Θ′β(H)+
∑

γ∈Nn−1∗

(β+γ)!
β!γ!

ḡγΘ′β+γ(H).
(9.4)

Here, the termsωβ are formal power series of (w,ζ)which depend on the jets of h̄, as
shown by Lemma 5.1. As the infinite system (9.4) is trigonal, it is formally invertible,

and here, for this precise system, the inverse is easy to compute and we get the simple

formula

Θ′β(h)≡ωβ+
∑

γ∈Nn−1∗

(−1)γ (β+γ)!
β!γ!

ḡγωβ+γ ≡Θ′β(H). (9.5)

We deduce that

Θ′β
(
h
(
w,iΘ̄(w,ζ,0)

))≡Θ′β(H(w,ζ)
)∈ C{w,ζ}, (9.6)

which shows that all the components of the reflection mapping are convergent on

the second Segre chain. It remains to apply the theorem of Gabrielov (Eakin-Harris) to

deduce that Θ′β(h(t)) is convergent for all β. The final Cauchy estimate follows as in

Lemma 6.2. The proof of Theorem 9.1 is now complete.
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