ON SOME CLASSES OF BCH-ALGEBRAS

MUHAMMAD ANWAR CHAUDHRY and HAFIZ FAKHAR-UD-DIN

(Received 22 September 1999)

ABSTRACT. The concept of a BCH-algebra is a generalization of the concept of a BCI-algebra. It is shown that weakly commutative BCH-algebras are weakly commutative BCI-algebras. Moreover, the concepts of weakly positive implicative and weakly implicative BCH-algebras are defined and it is shown that every weakly implicative BCH-algebra is a weakly positive implicative BCH-algebra. The weakly positive implicative BCH-algebras are characterized with the help of their self maps. Two open problems are posed.

2000 Mathematics Subject Classification. Primary 06F35, 03G25.

1. Introduction. In 1966, Imai and Iséki introduced two classes of abstract algebras, BCK-algebras and BCI-algebras [6, 7]. BCI-algebras are a generalization of BCK-algebras. These algebras have been extensively studied since their introduction. In 1983, Hu and Li [4, 5] introduced the notion of a BCH-algebra, which is a generalization of the notions of BCK- and BCI-algebras. They have studied a few properties of these algebras. Certain other properties have been studied by Chaudhry [2] and Dudek and Thomys [3]. It has been shown [3, 4, 5] that there are no proper associative and medial BCH-algebras, that is, associative and medial BCH-algebras are associative and medial BCI-algebras, respectively.

The purpose of this paper is to investigate the existence of certain classes of proper BCH-algebras and study their properties. It is shown that proper weakly commutative BCH-algebras do not exist. However, proper weakly positive implicative and proper weakly implicative BCH-algebras exist and every weakly implicative BCH-algebra is a weakly positive implicative BCH-algebra but not conversely. Weakly positive implicative BCH-algebras have been characterized in terms of their self maps. The results proved in this paper are general in the sense that corresponding results for BCK-algebras and BCI-algebras become special cases.

2. Preliminaries. In this section, we describe certain definitions, known results, and examples that will be used in the sequel.

DEFINITION 2.1 (see [9]). A BCI-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

- (1) $(x * y) * (x * z) \le z * y$,
- $(2) \quad x * (x * y) \le y,$
- (3) $x \leq x$,
- (4) $x \le y$ and $y \le x$ imply x = y,
- (5) $x \le 0$ implies x = 0, where $x \le y$ is defined by x * y = 0.

If (5) is replaced by $0 \le x$, then the algebra is called a BCK-algebra. It is known that every BCK-algebra is a BCI-algebra but not conversely. Further, in a BCI-algebra the identity (x * y) * z = (x * z) * y holds [9].

DEFINITION 2.2 (see [4]). A BCH-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

- (3) $x \leq x$,
- (4) $x \le y$, $y \le x$ imply x = y,
- (6) (x * y) * z = (x * z) * y, where $x \le y$ if and only if x * y = 0.

In any BCH-algebra, the following hold:

- (2) $x * (x * y) \le y$ [4],
- (5) x * 0 = 0 implies x = 0 [4],
- (7) 0*(x*y) = (0*x)*(0*y) [3],
- (8) x * 0 = x [3],
- (9) (x * y) * x = 0 * y [4],
- (10) $x \le y$ implies 0 * x = 0 * y [2].

It is known that every BCI-algebra is a BCH-algebra but the following example shows that the converse is not true.

EXAMPLE 2.3 (see [4]). Let $X = \{0, 1, 2, 3\}$ in which * is defined by:

*	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	2	0	0	2
3	3	0	0	0

Then (X, *, 0) is a BCH-algebra but it is not a BCI-algebra because

$$(2*3)*(2*1) = 2*0 = 2 \le 1*3 = 3.$$
 (2.1)

EXAMPLE 2.4 (see [2]). Let $X = \{0, 1, 2, 3, 4\}$ in which * is defined by:

*	0	1	2	3	4
* 0	0	0	0	0	4
1	1	0	0	1	4
2	2	2	0	0	4
3	3	3	3	0	4
4	4	4	4	4	0

Routine calculations give that (X, *, 0) is a BCH-algebra but it is not a BCI-algebra because

$$(1*3)*(1*2) = 1*0 = 1 \nleq 2*3 = 0.$$
 (2.2)

In the sequel a BCH-algebra will be simply denoted by X.

DEFINITION 2.5 (see [5]). A BCH-algebra *X* is called proper if it is not a BCI-algebra.

We note that BCH-algebras of Examples 2.3 and 2.4 are proper BCH-algebras.

DEFINITION 2.6 (see [4]). A BCH/BCI-algebra *X* is called associative if (x * y) * z = x * (y * z).

DEFINITION 2.7 (see [3]). A BCH/BCI-algebra *X* is called medial if $(x * y) * (z * \mu) = (x * z) * (y * \mu)$.

In the sequel, we shall need the following result.

- (11) A BCH-algebra *X* is proper if and only if it does not satisfy (1) (see [4]).
- **3. Classification of BCH-algebras.** It is known that associative BCH-algebras are associative BCI-algebras and medial BCH-algebras are medial BCI-algebras [3, 4]. Thus a natural question arises whether there exist some interesting classes of proper BCH-algebras or not? We show that there exist proper weakly positive implicative BCH-algebras as well as weakly implicative BCH-algebras. Moreover, the class of weakly implicative BCH-algebras is a proper subclass of the class of weakly positive implicative BCH-algebras. However, weakly commutative BCH-algebras are weakly commutative BCI-algebras.

DEFINITION 3.1 (see [8]). A BCK-algebra X is called positive implicative if (x * y) * z = (x * z) * (y * z). It is called implicative if x * (y * x) = x. It is commutative if x * (x * y) = y * (y * x).

It is well known that positive implicative BCI-algebras, implicative BCI-algebras and commutative BCI-algebras are positive implicative BCK-algebras, implicative BCK-algebras and commutative BCK-algebras, respectively [9].

In [1], Chaudhry defined three classes of proper BCI-algebras, namely, weakly positive implicative BCI-algebras, weakly implicative BCI-algebras, and weakly commutative BCI-algebras. He also investigated a few properties of these algebras. We recall these definitions and the following result.

DEFINITION 3.2 (see [1]). A BCI-algebra *X* is called weakly positive implicative if (12) (x * y) * z = ((x * z) * z) * (y * z).

It is called weakly implicative if

(13) (x*(y*x))*(0*(y*x)) = x.

It is called weakly commutative if

(14) (x*(x*y))*(0*(x*y)) = y*(y*x).

THEOREM 3.3 (see [1]). A BCI-algebra X is weakly positive implicative if and only if (15) x * y = ((x * y) * y) * (0 * y).

We note that Theorem 3.3 tells us that (12) and (15) are equivalent in a BCI-algebra. However, they are not equivalent in a BCH-algebra. We consider the BCH-algebra X of Example 2.4. Then easy calculations give that (15) is satisfied but (12) is not satisfied because $(1*2)*3=0 \neq 1=((1*3)*3)*(2*3)$. Further the following theorem tells us that BCH-algebras satisfying (12) are BCI-algebras.

THEOREM 3.4. A BCH-algebra satisfying (x * y) * z = ((x * z) * z) * (y * z) is a BCI-algebra.

PROOF. In view of (11) it is sufficient to prove that (1) holds. Consider

$$((x*y)*(x*z))*(z*y) = ((x*(x*z))*y)*(z*y)$$

$$= (((x*y)*y)*((x*z)*y))*(z*y) \text{ (by (12))}$$

$$= (((x*y)*y)*(z*y))*((x*z)*y)$$

$$= ((x*z)*y)*((x*z)*y) \text{ (by (12))}$$

$$= 0.$$
(3.1)

This completes the proof.

In view of Theorems 3.3 and 3.4 and the comments made between them, we adopt the following definitions for BCH-algebras.

DEFINITION 3.5. A BCH-algebra *X* is weakly positive implicative if

$$x * y = ((x * y) * y) * (0 * y) \quad \forall x, y \in X.$$
 (3.2)

We note that the BCH-algebra of Example 2.4 satisfies (3.2). Thus there exist proper weakly positive implicative BCH-algebras.

DEFINITION 3.6. A BCH-algebra *X* is weakly implicative if

$$(x * (y * x)) * (0 * (y * x)) = x \quad \forall x, y \in X.$$
 (3.3)

DEFINITION 3.7. A BCH-algebra *X* is weakly commutative if

$$(x * (x * v)) * (0 * (x * v)) = v * (v * x).$$
(3.4)

THEOREM 3.8. Every weakly implicative BCH-algebra X is a weakly positive implicative BCH-algebra.

PROOF. Let *X* be weakly implicative. Then

$$(x*(z*x))*(0*(z*x)) = x. (3.5)$$

Putting x = z * x in (3.5), we get

$$((z*x)*(z*(z*x)))*(0*(z*(z*x))) = z*x.$$
(3.6)

Since $z * (z * x) \le x$, therefore (10) gives 0 * (z * (z * x)) = 0 * x. Thus

$$z * x = ((z * x) * (z * (z * x))) * (0 * x) = ((z * (z * (z * x))) * x) * (0 * x).$$
(3.7)

Now

$$(z*x)*(z*(z*(z*x)))$$

$$= ((z*(z*(z*x))*x)*(0*x))*(z*(z*(z*x)))$$

$$= ((z*(z*(z*x))*x)*(z*(z*(z*x))))*(0*x)$$

$$= (0*x)*(0*x) = 0.$$
(3.8)

Hence $z * x \le z * (z * (z * x)) \le z * x$. Thus

$$z * (z * (z * x)) = z * x \tag{3.9}$$

holds in a weakly implicative BCH-algebra. Putting (3.9) in (3.7) we get z * x = ((z * x) * x) * (0 * x). Hence, X is weakly positive implicative. This completes the proof.

REMARK 3.9. It is known that 0 * x = 0 * (0 * (0 * x)) holds in a BCH-algebra [3], but it is still not known that in a BCH-algebra the identity x * y = x * (x * (x * y)) holds or not, although it holds in BCI-algebras and weakly implicative BCH-algebras (as shown in (3.9)).

REMARK 3.10. Since every BCI-algebra is a BCH-algebra and weak positive implicativeness and weak implicativeness coincide with positive implicativeness and implicativeness, respectively, in BCK-algebras [1], therefore the following results of Chaudhry and Iséki follow as corollaries of Theorem 3.4.

COROLLARY 3.11 (see [1]). Every weakly implicative BCI-algebra is a weakly positive implicative BCI-algebra.

COROLLARY 3.12 (see [8]). Every implicative BCK-algebra is a positive implicative BCK-algebra.

THEOREM 3.13. A BCH-algebra X satisfying (x*(x*y))*(0*(x*y)) = y*(y*x) is a BCI-algebra.

PROOF. It is sufficient to show that (1) holds. We consider

$$((x*y)*(x*z))*(z*y)$$
= $((x*(x*z))*y)*(z*y)$
= $(((z*(z*x))*(0*(z*x)))*y)*(z*y)$ (by given condition)
= $(((z*(z*x))*y)*(0*(z*x)))*(z*y)$
= $(((z*y)*(z*x))*(0*(z*x)))*(z*y)$
= $(((z*y)*(z*x))*(0*(z*x)))*(z*y)$
= $(((z*y)*(z*y))*(z*x))*(0*(z*x))$
= $(0*(z*x))*(0*(z*x))=0$.

This completes the proof.

We now pose the following open problem.

OPEN PROBLEM 1. Do there exist classes of proper BCH-algebras other than the classes of weakly positive implicative and weakly implicative BCH-algebras, which are generalizations of the known classes of BCI- as well as BCK-algebras.

4. Characterization of weakly positive implicative BCH-algebras. In this section, we characterize weakly positive implicative BCH-algebras by their self maps.

DEFINITION 4.1. Let *X* be a BCH-algebra. For a fixed *x* in *X*, the map $R_x : X \to X$ given by $R_x(t) = t * x$ for all $t \in X$ is called a right self map.

DEFINITION 4.2. Let *X* be a BCH-algebra. For a fixed *x* in *X*, the map $R'_x: X \to X$ given by $R'_x(t) = (t * x) * (0 * x)$ for all $t \in X$ is called a weak right self map.

The following theorem gives us a characterization of a weakly positive implicative BCH-algebra with the help of its right and weak right self maps.

THEOREM 4.3. A BCH-algebra X is weakly positive implicative if and only if $R_z = R'_z \circ R_z$ for all $z \in X$, where " \circ " is composition of functions.

PROOF. Let X be a BCH-algebra and $R_z = R_z' \circ R_z$. Then $R_z(y) = R_z' \circ R_z(y)$ for all $y \in X$. Thus $y * z = R_z'(y * z) = ((y * z) * z) * (0 * z)$ for all $y, z \in X$. Hence X is a weakly positive implicative BCH-algebra. Conversely, if X is a weakly positive implicative BCH-algebra, then y * z = ((y * z) * z) * (0 * z). Thus $R_z(y) = (R_z(y) * z) * (0 * z) = R_z'(R_z(y)) = R_z' \circ R_z(y)$ for all $y, z \in X$. Hence $R_z = R_z' \circ R_z$. This completes the proof.

THEOREM 4.4. Let X be a weakly positive implicative BCH-algebra. Then $R'_y = R'_y \circ R'_y = (R'_y)^2$.

PROOF. Since *X* is weakly positive implicative, therefore x * y = ((x * y) * y) * (0 * y). Thus

$$(x * y) * (0 * y) = (((x * y) * y) * (0 * y)) * (0 * y)$$

= (((x * y) * (0 * y)) * y) * (0 * y). (4.1)

Hence

$$R'_{y}(x) = R'_{y}((x * y) * (0 * y)) = R'_{y}(R'_{y}(x)) = R'_{y} \circ R'_{y}(x) = (R'_{y})^{2}(x)$$
(4.2)

for all $x, y \in X$. This completes the proof.

The following example shows that the converse of the above theorem is not true.

EXAMPLE 4.5. Let $X = \{0, a, b, c\}$ in which * is defined by:

*	0	a	b	C
0	0	0	b	b
a	a	0	b	b
b	b	b	0	0
С	С	b	a	0

Then X is a BCI-algebra. Further X is not weakly positive implicative because $a = c*b \neq ((c*b)*b)*(0*b) = (a*b)*(0*b) = b*b = 0$. Moreover, easy calculations give that

$$R'_0 = (R'_0)^2, \qquad R'_a = (R'_a)^2, \qquad R'_b = (R'_b)^2, \qquad R'_c = (R'_c)^2.$$
 (4.3)

This shows that the converse of Theorem 4.4 does not hold for the class of BCH-algebras, because it does not hold for BCI-algebras.

We now pose another open problem.

OPEN PROBLEM 2. What are the characterizations of weakly positive implicative BCH-algebras and weakly implicative BCH-algebras in terms of their ideals.

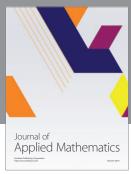
ACKNOWLEDGEMENT. The first author gratefully acknowledges the support provided by the King Fahd University of Petroleum and Minerals.

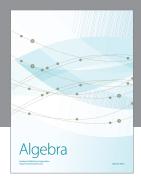
REFERENCES

- [1] M. A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japon. 35 (1990), no. 1, 141–151. MR 90k:06019. Zbl 702.06014.
- [2] ______, On BCH-algebras, Math. Japon. **36** (1991), no. 4, 665–676. MR 92e:06042. Zbl 733.06008.
- [3] W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35 (1990), no. 6, 1131-1138. MR 91j:06040. Zbl 723.06014.
- [4] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313–320. MR 86a:06016. Zbl 579.03047.
- [5] _____, On proper BCH-algebras, Math. Japon. 30 (1985), no. 4, 659-661. MR 87d:06042.Zbl 583.03050.
- [6] Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19–22. MR 33#3902. Zbl 156.24812.
- [7] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29. MR 34#2433. Zbl 207.29304.
- [8] K. Iséki and S. Tanaka, *An introduction to the theory of BCK-algebras*, Math. Japon. **23** (1978/79), no. 1, 1–26. MR 80a:03081. Zbl 385.03051.
- [9] K. Iséki and A. B. Thaheem, *Note on BCI-algebras*, Math. Japon. 29 (1984), no. 2, 255–258.
 MR 85i:06020a. Zbl 541.03038.

MUHAMMAD ANWAR CHAUDHRY: DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNI-VERSITY OF PETROLEUM AND MINERALS, DHAHRAN 31261, SAUDI ARABIA E-mail address: chaudhry@kfupm.edu.sa

HAFIZ FAKHAR-UD-DIN: DEPARTMENT OF MATHEMATICS, ISLAMIA UNIVERSITY, BAHAWALAPUR, PAKISTAN







Submit your manuscripts at http://www.hindawi.com

