POWER SUBGROUPS OF HECKE GROUPS $H(\sqrt{n})$

NiHAL YILMAZ and i. NACI CANGÜL

(Received 6 April 2000 and in revised form 17 October 2000)

Abstract

Results in discrete group theory are applied to some Hecke groups to determine the group theoretical structure of power subgroups.

2000 Mathematics Subject Classification. Primary 11F06, 20H05, 20 H 10.

1. Introduction. Hecke groups $H(\lambda)$ have been introduced by E. Hecke (see [2]). They are subgroups of $\operatorname{PSL}(2, \mathbb{R})$ generated by $R(z)=-1 / z$ and $T(z)=z+\lambda$. Hecke asked the question, "For what values of λ these groups are discrete?" In answering this question he proved that

$$
\begin{equation*}
F_{\lambda}=\left\{z \in U:|z|>1,|\operatorname{Re} z|<\frac{\lambda}{2}\right\} \tag{1.1}
\end{equation*}
$$

is a fundamental region for $H(\lambda)$ if and only if $\lambda \geq 2$ and real or $\lambda=\lambda_{q}=2 \cos (\pi / q)$, $q \in \mathbb{N}, q \geq 3$. Therefore, $H(\lambda)$ is discrete only for these values of λ. The most important and interesting Hecke group is the modular group $H\left(\lambda_{3}\right)=\operatorname{PSL}(2, \mathbb{Z})$. Next two interesting Hecke groups are obtained for $q=4$ and $q=6$. As $\lambda_{4}=\sqrt{2}$ and $\lambda_{6}=\sqrt{3}, H(\sqrt{2})$ and $H(\sqrt{3})$ denote the Hecke groups corresponding to λ_{4} and λ_{6}, respectively. One of the main reasons for $H(\sqrt{2})$ and $H(\sqrt{3})$ to be two of the most important Hecke groups is that apart from modular group, they are the only Hecke groups $H\left(\lambda_{q}\right)$ whose elements can be completely described. Here we deal with the cases $H(\sqrt{n}), n$ square-free integer. $H(\sqrt{n})$ consists of the set of all matrices of the following types:
(i) $\left(\begin{array}{cc}a & b \sqrt{n} \\ c \sqrt{n} & d\end{array}\right) ; a, b, c, d \in \mathbb{Z}, a d-n b c=1$,
(ii) $\left(\begin{array}{cc}a \sqrt{n} & b \\ c & d \sqrt{n}\end{array}\right) ; a, b, c, d \in \mathbb{Z}, \operatorname{nad}-b c=1$.

Those of type (i) are called even while those of type (ii) are called odd. Even elements form a subgroup of index 2 called the even subgroup [1].

Let $S=R T$ so that $S(z)=-1 /(z+\lambda)$. In the cases $H(\sqrt{n}), n=2,3, S$ is an element of order $q=2 n$. Thus $R^{2}=S^{q}=I$ and $R S=T$ is parabolic. It is known that $H(\sqrt{n})$ is isomorphic to the free product $C_{2} * C_{q}$. Therefore $H(\sqrt{n})$ has the signature $(0 ; 2, q, \infty)$, [1]. In the case $n>3$ square-free integer, S is an element of infinite order and $H(\sqrt{n})$ is isomorphic to the free product $C_{2} * \mathbb{Z}$, [6]. The signature of $H(\sqrt{n})$ is $(0 ; 2, \infty ; 1)$. That is, all the groups $H(\sqrt{n}), n$ square-free integer, are triangle groups containing a parabolic element. It is well known that a triangle group $(2, m, n)$ acts on the sphere, Euclidean plane or hyperbolic plane according to $1 / m+1 / n>1 / 2,1 / m+1 / n=1 / 2$, and $1 / m+1 / n<1 / 2$, respectively, [3].

The purpose of this paper is to determine the structure of the groups $H^{m}(\sqrt{n})$ of the Hecke groups $H(\sqrt{n}), n$ is a square-free integer. The groups $H^{m}(\sqrt{n})$ are defined to be the subgroups generated by the m th powers of all the elements of $H(\sqrt{n})$, for some positive integer m. $H^{m}(\sqrt{n})$ is called the m th power subgroup of $H(\sqrt{n})$. As fully invariant subgroups, they are normal in $H(\sqrt{n})$.

From the definition, one can easily deduce that

$$
\begin{equation*}
H^{m}(\sqrt{n})>H^{m k}(\sqrt{n}) \tag{1.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(H^{m}(\sqrt{n})\right)^{k}>H^{m k}(\sqrt{n}) \tag{1.3}
\end{equation*}
$$

Using (1.2), it is easy to deduce that

$$
\begin{equation*}
H^{m}(\sqrt{n}) \cdot H^{k}(\sqrt{n})=H^{(m, k)}(\sqrt{n}) \tag{1.4}
\end{equation*}
$$

Here (m, k) denotes the greatest common divisor of m and k.
2. Structure of power subgroups. We now discuss the group theoretical structure of these subgroups. First we have the following theorem.

Theorem 2.1. (i) Let $n=2$ or 3 . The normal subgroup $H^{2}(\sqrt{n})$ is isomorphic to the free product of infinite cyclic group \mathbb{Z} and two finite cyclic groups of order n. Also

$$
\begin{gather*}
H(\sqrt{n}) / H^{2}(\sqrt{n}) \cong C_{2} \times C_{2}, \\
H(\sqrt{n})=H^{2}(\sqrt{n}) \cup R H^{2}(\sqrt{n}) \cup S H^{2}(\sqrt{n}) \cup R S H^{2}(\sqrt{n}), \tag{2.1}\\
H^{2}(\sqrt{n})=\left\langle S^{2}\right\rangle *\left\langle R S^{2} R\right\rangle *\left\langle R S R S^{2 n-1}\right\rangle .
\end{gather*}
$$

The elements of $H^{2}(\sqrt{n})$ are characterized by the property that the sums of the exponents of R and S are both even.
(ii) Let $n>3$ square-free integer. The normal subgroup $H^{2}(\sqrt{n})$ is the free product of three infinite cyclic groups.

Also

$$
\begin{gather*}
H(\sqrt{n}) / H^{2}(\sqrt{n}) \cong C_{2} \times C_{2}, \\
H(\sqrt{n})=H^{2}(\sqrt{n}) \cup R H^{2}(\sqrt{n}) \cup S H^{2}(\sqrt{n}) \cup R S H^{2}(\sqrt{n}), \tag{2.2}\\
H^{2}(\sqrt{n})=\left\langle S^{2}\right\rangle *\left\langle R S^{2} R\right\rangle *\left\langle R S R S^{-1}\right\rangle .
\end{gather*}
$$

The elements of $H^{2}(\sqrt{n})$ can be characterized by the requirement that the sums of the exponents of R and S are both even.

Proof. We use the Reidemeister-Schreier process to find a presentation of $H^{2}(\sqrt{n})$, [5]. We add the relation $X^{2}=1$ to the presentation of $H(\sqrt{n})$. This gives a presentation of $H(\sqrt{n}) / H^{2}(\sqrt{n})$ the order of which is the index. We have

$$
\begin{equation*}
H(\sqrt{n}) / H^{2}(\sqrt{n})=\left\langle R, S ; R^{2}=S^{2}=(R S)^{2}=1\right\rangle=C_{2} \times C_{2} . \tag{2.3}
\end{equation*}
$$

Thus $\left|H(\sqrt{n}): H^{2}(\sqrt{n})\right|=4$. Now we choose $\{I, R, S, R S\}$ as a Schreier transversal for $H^{2}(\sqrt{n})$. Then we can form all possible products

$$
\begin{gather*}
S_{I R}=I R R^{-1}=I, \quad S_{I S}=I S S^{-1}=I, \quad S_{R^{2}}=R R I=I \\
S_{R S}=R S(R S)^{-1}=I, \quad S_{S R}=S R(R S)^{-1}=S R S^{-1} R \tag{2.4}\\
S_{S^{2}}=S S I=S^{2}, \quad S_{R S R}=R S R(S)^{-1}=R S R S^{-1}, \quad S_{R S^{2}}=R S^{2} R
\end{gather*}
$$

Since $\left(R S R S^{-1}\right)=S R S^{-1} R$, we get $x_{1}=S^{2}, x_{2}=R S^{2} R$, and $x_{3}=R S R S^{-1}$ as the generators of $H^{2}(\sqrt{n})$. Clearly the elements of $H^{2}(\sqrt{n})$ satisfy the requirements of the theorem, that is, the sums of the exponents of R and S are both even for each element. Note that we have $S^{-1}=S^{3}, S^{-1}=S^{5}$ for $n=2, n=3$, respectively. Using the Reidemeister rewriting process, we get the relations

$$
\begin{gather*}
\tau(I R R I)=\tau(R R)=S_{I R} \cdot S_{R^{2}}=I, \\
\tau(R R R R)=S_{I R} \cdot S_{R^{2}} \cdot S_{I R} \cdot S_{R^{2}}=I, \\
\tau\left(S R R S^{-1}\right)=S_{I S} \cdot S_{S R} \cdot S_{R S R} \cdot S_{I S}^{-1}=I S R S^{-1} R R S R S^{-1}=I, \tag{2.5}\\
\tau\left(R S R R S^{-1} R\right)=S_{I R} \cdot S_{R S} \cdot S_{R S R} \cdot S_{S R} \cdot S_{R S}^{-1} \cdot S_{R^{2}}=I I R S R S^{-1} S R S^{-1} R I I=I .
\end{gather*}
$$

Therefore there are no nontrivial relations and $H^{2}(\sqrt{n})$ is the free product of three infinite cyclic groups generated by x_{1}, x_{2}, and x_{3}. As each of R, S, and T goes to elements of order 2 , they have the following permutation representations:

$$
\begin{equation*}
R \longrightarrow(12)(34), \quad S \longrightarrow(13)(24), \quad T \longrightarrow(14)(23) \tag{2.6}
\end{equation*}
$$

By the permutation method (see [4, 7]), the signature of $H^{2}(\sqrt{2})$ is $(g ; 2,2, \infty, \infty)=$ $\left(g ; 2^{(2)}, \infty^{(2)}\right)$ and the signature of $H^{2}(\sqrt{3})$ is $\left(g ; 3^{(2)}, \infty^{(2)}\right)$. Since the signature of all the Hecke groups $H(\sqrt{n}), n>3$ square-free integer, is $(0 ; 2, \infty ; 1)$, we find the signature of $H^{2}(\sqrt{n}), n>3$ square-free integer, as $\left(g ; \infty^{(2)} ; 2\right)$. Now by the Riemann-Hurwitz formula, we have $g=0$ in all cases. Hence $H^{2}(\sqrt{n}), n>3$ square-free integer, is isomorphic to the free product of three \mathbb{Z} 's and $H^{2}(\sqrt{2})$ is isomorphic to the free product of \mathbb{Z} and two finite cyclic groups of order 2 and $H^{2}(\sqrt{3})$ is isomorphic to the free product of \mathbb{Z} and two finite cyclic groups of order 3 .

THEOREM 2.2. Let m be a positive odd integer. Then $H^{m}(\sqrt{2})=H(\sqrt{2})$.
Proof. Teh proof is clear as the quotient is trivial.
THEOREM 2.3. Let m be a positive integer such that $m \equiv 2 \bmod 4$. Then $H^{m}(\sqrt{2})$ is the free product of the infinite cyclic group \mathbb{Z} and m finite cyclic groups of order two.

Proof. It is easy to show that the quotient group is isomorphic to the dihedral group D_{m} of order $2 m$. The permutation representations of R, S, and T are

$$
\begin{align*}
& R \rightarrow(12)(34) \cdots(2 m-12 m) \text {, } \\
& S \rightarrow(23)(45) \cdots(2 m 1), \tag{2.7}\\
& T \rightarrow(135 \cdots 2 m-1)(2 m 2 m-2 \cdots 42) \text {. }
\end{align*}
$$

Then $H^{m}(\sqrt{2})$ has signature $\left(0 ; 2^{(m)}, \infty, \infty\right)$, that is, $H^{m}(\sqrt{2})$ is the free product given in the statement of the theorem. If we denote the normal subgroup by $W_{m}(\sqrt{2})$, we have $W_{m}(\sqrt{2}) \cong \mathbb{Z} * \underbrace{C_{2} * \cdots * C_{2}}_{m \text { times }}$.

We have already proved that

$$
H^{m}(\sqrt{2})= \begin{cases}H(\sqrt{2}) & \text { if } m \text { is odd } \tag{2.8}\\ W_{m}(\sqrt{2}) & \text { if } m \equiv 2 \bmod 4 .\end{cases}
$$

Because of this we are only left to consider the case where m is a multiple of four. Now let $m=4 k, k \in \mathbb{N}$. Then in $H(\sqrt{2}) / H^{m}(\sqrt{2})$ we have the relations $r^{2}=s^{4}=1$, where r and s are the images of R and S, respectively, under the homomorphism of $H(\sqrt{2})$ to $H(\sqrt{2}) / H^{m}(\sqrt{2})$. These relations imply that $H^{m}(\sqrt{2})$ is a free group.
Theorem 2.4. The normal subgroup $H^{3}(\sqrt{3})$ is the free product of four cyclic groups of order 2. Also

$$
\begin{gather*}
H(\sqrt{3}) / H^{3}(\sqrt{3}) \cong C_{3}, \\
H(\sqrt{3})=H^{3}(\sqrt{3}) \cup S H^{3}(\sqrt{3}) \cup S^{2} H^{3}(\sqrt{3}), \tag{2.9}\\
H^{3}(\sqrt{3})=\langle R\rangle *\left\langle S^{3}\right\rangle *\left\langle S R S^{5}\right\rangle *\left\langle S^{2} R S^{4}\right\rangle .
\end{gather*}
$$

Proof. The proof is similar to that of Theorem 2.1.
The following results are easy to see.
Theorem 2.5. Let $m \equiv \pm 1 \bmod 6$. Then $H^{m}(\sqrt{3})=H(\sqrt{3})$.
Theorem 2.6. Let $m \equiv \pm 2 \bmod 6$. Then $H^{m}(\sqrt{3})=W_{m}(\sqrt{3})$.
Theorem 2.7. Let $m \equiv 3 \bmod 6$. Then $H^{m}(\sqrt{3})=H^{3}(\sqrt{3})$.
Therefore the only case left is that when m is divisible by 6 . A similar discussion will show that $H^{m}(\sqrt{3})$ is free in this case.

Theorem 2.8. The normal subgroup $H^{3}(\sqrt{n}), n>3$ square-free integer, is the free product of three cyclic groups of order 2 and an infinite cyclic group. Also

$$
\begin{gather*}
H(\sqrt{n}) / H^{3}(\sqrt{n}) \cong C_{3}, \\
H(\sqrt{n})=H^{3}(\sqrt{n}) \cup S H^{3}(\sqrt{n}) \cup S^{2} H^{3}(\sqrt{n}), \tag{2.10}\\
H^{3}(\sqrt{n})=\langle R\rangle *\left\langle S^{3}\right\rangle *\left\langle S R S^{-1}\right\rangle *\left\langle S^{2} R S^{-2}\right\rangle .
\end{gather*}
$$

Proof. If we add the relation $X^{3}=1$ to the presentation of $H(\sqrt{n})$ we have

$$
\begin{equation*}
H(\sqrt{n}) / H^{3}(\sqrt{n})=\left\langle R, S ; R^{2}=1, X^{3}=1\right\rangle=\left\langle S ; S^{3}=1\right\rangle \cong C_{3} . \tag{2.11}
\end{equation*}
$$

Thus $\left|H(\sqrt{n}): H^{3}(\sqrt{n})\right|=3$. Let $\left\{I, S, S^{2}\right\}$ be a Schreier transversal for $H^{3}(\sqrt{n})$. Then all the possible products are

$$
\begin{align*}
S_{I R}=I R I=R, & S_{I S}=I S S^{-1}=I, & S_{S R}=S R S^{-1}, \\
S_{S^{2}}=S S S^{-2}=I, & S_{S^{2} R}=S^{2} R S^{-2}, & S_{S^{3}}=S^{3} I=S^{3} . \tag{2.12}
\end{align*}
$$

Therefore, $H^{3}(\sqrt{n})$ is generated by $x_{1}=R, x_{2}=S^{3}, x_{3}=S R S^{-1}$, and $x_{4}=S^{2} R S^{-2}$. Using the Reidemeister rewriting process, we get the relations

$$
\begin{gather*}
\tau(I R R I)=\tau(R R)=S_{I R} \cdot S_{R^{2}}=R^{2}=I \\
\tau\left(S R R S^{-1}\right)=S_{I S} \cdot S_{S R} \cdot S_{S R} \cdot S_{I S}^{-1}=I S R S^{-1} S R S^{-1} I=I \tag{2.13}\\
\tau\left(S S R R S^{-1} S^{-1}\right)=S_{I S} \cdot S_{S^{2}} \cdot S_{S^{2} R} \cdot S_{S^{2} R} \cdot S_{S^{2}}^{-1} \cdot S_{I S}^{-1}=I I S^{2} R S^{-2} S^{2} R S^{-2} I I=I
\end{gather*}
$$

The permutation representations of R, S, and T are

$$
R \longrightarrow(1)(2)(3), \quad S \longrightarrow\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), \quad T \longrightarrow\left(\begin{array}{lll}
1 & 2 & 3 \tag{2.14}
\end{array}\right)
$$

Then $H^{3}(\sqrt{n})$ has the signature $\left(0 ; 2^{(3)}, \infty ; 1\right)$, that is, $H^{3}(\sqrt{n})$ is the free product given in the statement of the theorem.

THEOREM 2.9. Let m be a positive odd integer and $n>3$ is a square-free integer. Then

$$
\begin{equation*}
H^{m}(\sqrt{n}) \cong \mathbb{Z} * \underbrace{C_{2} * \cdots * C_{2}}_{m \text { times }} \tag{2.15}
\end{equation*}
$$

Proof. Since $H(\sqrt{n}) / H^{m}(\sqrt{n})=\left\langle S ; S^{m}=I\right\rangle \cong C_{m}$, the permutation representations of R, S, and T are

$$
\begin{equation*}
R \longrightarrow(1)(2) \cdots(m), \quad S \longrightarrow(12 \cdots m), \quad T \longrightarrow(12 \cdots m) \tag{2.16}
\end{equation*}
$$

By the permutation method, we find the signature of $H^{m}(\sqrt{n})$ as $\left(0 ; 2^{(m)}, \infty ; 1\right)$. Therefore, $H^{m}(\sqrt{n})$ is isomorphic to the free product of m cyclic groups of order 2 and an infinite cyclic group.

Let m be a positive even integer and $n>3$ is a square-free integer. Then we have

$$
\begin{equation*}
H(\sqrt{n}) / H^{m}(\sqrt{n})=\left\langle R, S ; R^{2}=S^{m}=(R S)^{m}=I\right\rangle \tag{2.17}
\end{equation*}
$$

that is, the factor group is the group whose signature $(2, m, m)$. If $m=2$, we have already seen that $H^{2}(\sqrt{n}) \cong \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$ which is a normal subgroup of genus 0 , then $H(\sqrt{n}) / H^{2}(\sqrt{n})$ is a group of automorphisms of a sphere with two boundary components and two punctures. If $m=4$, we have a normal subgroup acting on the Euclidean plane. Because, in this case the factor group $(2,4,4)$ is a group of infinite order and $1 / 4+1 / 4=1 / 2$. If $m \geq 6$ and even, the factor group ($2, m, m$) is a group of infinite order and $1 / m+1 / m=2 / m<1 / 2$. Therefore, in this case we have a normal subgroup acting on the hyperbolic 2 -space (i.e., upper half plane).

Acknowledgement. We would like to thank the referee for valuable comments and suggestions.

REFERENCES

[1] İ. N. Cangül and D. Singerman, Normal subgroups of Hecke groups and regular maps, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 1, 59-74. MR 98j:20071. Zbl 893.20036.
[2] E. Hecke, Ueber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699 (German). Zbl 014.01601.
[3] G. A. Jones, Graph imbeddings, groups, and Riemann surfaces, Algebraic Methods in Graph Theory, Vol. I, Conf. Szeged 1978 (Amsterdam), Colloq. Math. Soc. Janos Bolyai, vol. 25, North-Holland, 1981, pp. 297-311. MR 83b:05061. Zbl 473.05028.
[4] C. Maclachlan, Maximal normal Fuchsian groups, Illinois J. Math. 15 (1971), 104-113. Zbl 203.39201.
[5] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, 2nd revised ed., Interscience Publishers [John Wiley \& Sons], New York, 1966, Presentations of groups in terms of generators and relations. MR 34\#7617. Zbl 138.25604.
[6] Yilmaz N. and İ. N. Cangül, On the group structure and parabolic points of Hecke group $H(\lambda)$, to appear.
[7] D. Singerman, Subgroups of Fuschian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319-323. MR 43\#7519. Zbl 206.30804.

Nìhal Yilmaz: Department of Mathematics, Faculty of Science, Uludağ University, 16059 Bursa, TURKEY

E-mail address: nyi1maz@u7udag.edu.tr
İ. NACİ CANGÜL: Department of Mathematics, Faculty of Science, Uludağ University, 16059 Bursa, TURKEY

E-mail address: cangu1@uludag. edu.tr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

