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Let B be a Galois algebra over a commutative ring R with Galois group G, C the center
of B,K={geG|g(c)=cforallceC}, J;g=1{b e B|bx =g(x)bforall x € B} for
each g € K, and Bk = (& X jck Jg)- Then Bk is a central weakly Galois algebra with Galois
group induced by K. Moreover, an Azumaya Galois extension B with Galois group K is
characterized by using Bx.
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1. Introduction. Let B be a Galois algebra over a commutative ring R with Galois
group G and C the center of B. The class of Galois algebras has been investigated
by DeMeyer [2], Kanzaki [6], Harada [4, 5], and the authors [7]. In [2], it was shown
that if R contains no idempotents but O and 1, then B is a central Galois algebra
with Galois group K and C is a commutative Galois algebra with Galois group G/K
where K = {g € G | g(c) = cforall c € C} [2, Theorem 1]. This fact was extended
to the Galois algebra B over R containing more than two idempotents [6, Proposition
3], and generalized to any Galois algebra B [7, Theorem 3.8] by using the Boolean
algebra B, generated by {0,e4 | g € G for a central idempotent ey} where BJ,; = Bey
and Jg = {b € B| bx = g(x)b for all x € B} for each g € G [6]. The purpose of this
paper is to show that there exists a subalgebra Bx of B such that Bg is a central
weakly Galois algebra with Galois group K|g, induced by K where a weakly Galois
algebra was defined in [8] and that BxBX is an Azumaya weakly Galois extension with
Galois group K|p, zx where an Azumaya Galois extension was studied in [1]. Thus
some characterizations of an Azumaya Galois extension B of BX with Galois group K
are obtained, and the results as given in [2, 6] are generalized.

2. Definitions and notations. Throughout, let B be a Galois algebra over a com-
mutative ring R with Galois group G, C the center of B, and K = {g € G | g(c) =
c for all ¢ € C}. We keep the definitions of a Galois extension, a Galois algebra, a cen-
tral Galois algebra, a separable extension, and an Azumaya algebra as defined in [7].
An Azumaya Galois extension A with Galois group G is a Galois extension A of A¢
which is a C¢-Azumaya algebra where C the center of A [1]. A weakly Galois exten-
sion A with Galois group G is a finitely generated projective left module A over A¢
such that A;G = Homye (A, A) where A; = {a;, a left multiplication map by a € A} [8].
We call that A is a weakly Galois algebra with Galois group G if A is a weakly Galois
extension with Galois group G such that AC is contained in the center of A and that
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A is a central weakly Galois algebra with Galois group G if A is a weakly Galois ex-
tension with Galois group G such that A¢ is the center of A. An Azumaya weakly
Galois extension A with Galois group G is a weakly Galois extension A of A¢ which is
a C“-Azumaya algebra where C the center of A.

3. A weakly Galois algebra. In this section, let B be a Galois algebra over R with
Galois group G, C the center of BB ={bcB|g(b)=bforallge G},andK = {g €
Gl g(c)=cforalc e C}. Then, B =3 c6Jg = (82 ek Jy) ® (82 541 Jy) Where
Jg=1b € B | bx = g(x)b for all x € B} [6, Theorem 1] . We denote @deKJg by Bk
and the center of Bx by Z. Clearly, K is a normal subgroup of G. We show that Bk is an
Azumaya algebra over Z and a central weakly Galois algebra with Galois group K|g.

THEOREM 3.1. The algebra Bk is an Azumaya algebra over Z.

PROOF. By the definition of Bk, Bx = @ 3. jck Jg, 50 C(= J1) C B. Since B is a Galois
algebra with Galois group G and K = {g € G | g(c) = ¢ for all ¢ € C}, the order of K is
a unit in C by [6, Proposition 5]. Moreover, K is an C-automorphism group of B, so Bx
is a C-separable algebra by [5, Proposition 5]. Thus Bk is an Azumaya algebra over Z.

O

In order to show that Bk is a central weakly Galois algebra with Galois group K|z,
we need two lemmas.

LEMMA 3.2. LetL={geK|g(a)=a forall a € Bx}. Then, L is a normal subgroup
of K such that K (= K/L) is an automorphism group of Bk induced by K (i.e., K|p, = K).

PROOF. Clearly, L is a normal subgroup of K, so for any h € K,

h(Bk)=o > h(Jg)=© > Jpgn1=® . Jg=0 > Jg=B5k. 3.1)

geK geK gehKh-1 geK

Thus K|, =K. O
LEMMA 3.3. The fixed ring of Bx under K, (Bg)X = Z.

PROOF. Let x be any element in (Bx)X and b any element in Bx. Then b = deK by
where by € J,; for each g € K. Hence bx = > jcxbyx = 3 ek g(X)by = 3 jex Xby =
X Y gex bg = xb. Therefore x € Z. Thus (Bk)X c Z. Conversely, for any z € Z and
g € K,we have that zx = xz = g(z)x forany x € J4,s0 (g(z) —z)x = 0 forany x € J,.
Hence (g(z) —z)J4; = {0}. Noting that BJ4 = J4B = B, we have that (g(z) —z)B = {0},
so g(z) =zforany z € Z and g € K. Thus Z c (Bg)X. Therefore (Bx)X = Z. O

THEOREM 3.4. The algebra Bi is a central weakly Galois algebra with Galois group
K ‘ Bx = f

PROOF. By Lemma 3.3, it suffices to show that (1) Bk is a finitely generated pro-
jective module over Z, and (2) (Bx);K = Homy (Bk,Bk). Part (1) is a consequence of
Theorem 3.1. For part (2), since Bx is an Azumaya algebra over Z by Theorem 3.1
again, Bx ®z BY = Homy (Bk,Bk) [3, Theorem 3.4, page 52] by extending the map
(a®b)(x) = axb linearly for a® b € Bx ®7 B} and each x € By where BY is the
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opposite algebra of Bk. By denoting the left multiplication map with a € Bg by a; and
the right multiplication map with b € Bk by b,, (a®b)(x) = (a;b,)(x) = axb. Since
By = @Y gex Jg, Bk ®7BY = Y gcx (Bk)i1(Jg)r. Observing that (Jg), = (Jg)1g ' where
g =9l €Klp =K, wehave that By ® 7B} = 3 gex (Bx)i1(Jg)r = Sgex (Bx)i1(Jghig ' =
deK(BKJg)ly‘l. Moreover, since BJ, = B for each g € K and B = @2 ccJn = Bk @
(® X hexJn), Bk ® (@ X pex Jn) = B=BJg = BxJg ® (& X ¢k JnJg) such that BxJy C Bk
and & X p¢x Jntg C @ X ek Jn. Hence BiJ, = By for each g € K. Therefore Bx ®7 B =
S ek BxJg)ig = X gex (Bx)ig ' = (Bx) K. Thus (Bx)K = Homy (B, Bx). This com-
pletes the proof of part (2). Thus Bk is a central weakly Galois algebra with Galois
group K|p, =K. O

Recall that an algebra A is called an Azumaya weakly Galois extension of AX with
Galois group K if A is a weakly Galois extension of AX which is a CX-Azumaya algebra
where C is the center of A. Next, we show that BxBX is an Azumaya weakly Galois
extension with Galois group Klp, gx = K. We begin with the following two lemmas
about Bg.

LEMMA 3.5. The fixed ring of B under K, BX = V(Bx).

PROOE. Foranyb € BX and x € J, for any g € K, we have that xb = g(b)x = bx, so
b € Vi(Jy) for any g € K. Thus b € Vi(Bk). Conversely, for any b € Vz(Bk) and g € K,
we have that bx = xb = g(b)x for any x € J4, so (g(b) —b)x = 0 for any x € J,.
Hence (g(b)-b)J,; = {0}. ButBJ,; = J4;B = Bforany g € K, so (g(b) —b)B = {0}. Thus
g(b) = b for any g € K; and so b € BX. Therefore BX = V(Bg). O

LEMMA 3.6. The algebra BX is an Azumaya algebra over Z where Z is the center of
Bg.

PROOF. Since B is a Galois algebra over R with Galois group G, B is an Azumaya
algebra over its center C. By the proof of Theorem 3.1, Bk is a C-separable subalgebra
of B, so Vg (Bg) is a C-separable subalgebra of B and V3 (Vg (Bgk)) = Bx by the commu-
tator theorem for Azumaya algebras [3, Theorem 4.3, page 57]. This implies that Bk
and Vg (Bg) have the same center Z. Thus V3 (Bg) is an Azumaya algebra over Z. But,
by Lemma 3.5, BX = Vz(Bk), so BX is an Azumaya algebra over Z. O

THEOREM 3.7. Let A = BxBX. Then A is an Azumaya weakly Galois extension with
Galois group K| 4 =K.

PROOF. Since By is a central weakly Galois algebra with Galois group K|, = K
by Theorem 3.4, By is a finitely generated projective module over Z and (Bg),K =
Homy (Bk,Bk). By Lemma 3.6, BX is an Azumaya algebra over Z, so A(= Bx ® ; BX) is a
finitely generated projective module over BX (= AK). Moreover, since BX = Vg(By) by
Lemma 3.5 and (Bx);K = Hom (Bx, Bx),

AK = (BxBX),K = (Bx),K(BX), = BxkK ® 7 B = Hom; (Bk, Bx) ® 7 BX
=~ Homyk (Bx ®z BX, Bx ® 7 BX) = Homyk (BxBX, BxBX) (3.2)
=Hom x (A, A).
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Thus A is a weakly Galois extension of AX with Galois group K|4 = K. Next, we claim
that A has center Z and AK is an Azumaya algebra over 7K In fact, Bx and BX are
Azumaya algebras over Z by Theorem 3.1 and Lemma 3.6, respectively, so A(= BgBX)
has center Z and AKX = (BxBX)K = BK. Noting that BX is an Azumaya algebra over Z,
we conclude that AX is an Azumaya algebra over ZK. Thus A is an Azumaya weakly
Galois extension with Galois group K|, = K. O

4. An Azumaya Galois extension. In this section, we give several characterizations
of an Azumaya Galois extension B by using Bk. This generalizes the results in [2, 6].
The Z-module {b € Bx | bx = g(x)b for all x € Bx} is denoted by JgBK) forgeK
where K (= K/L) is defined in Lemma 3.2.

LEMMA 4.1. The algebra By is a central Galois algebra with Galois group K |p, =K
if and only if]éB") =@ cr g foreachg € K.

PROOF. Let Bk be a central Galois algebra with Galois group K|g, = K. Then By =

@ZyefJ;ﬁBK) [6, Theorem 1]. Next it is easy to check that @ ,c; Jg1 C J;—BK). But

(Bx) (Bx) (Bk)
Bk = @3 gexJgr 80 @D gexJg = ®DgegJs . where @3, Ju C J5© . Thus J3*

®>crJgi for each g € K. Conversely, since JgBK) = @Y1 Jg for each g € K,

By = 3 cxJg = @Zyegjggk). Moreover, by Lemma 3.3, (Bx)X = Z, so K is a

Z-automorphism group of Bx. Hence J5 e |
tral Galois algebra with Galois group K|p, = K because By is an Azumaya Z-algebra
by Theorem 3.1 (see [4, Theorem 1]). O

(Bx) 1 BX) _ 7 for each g € K. Thus By is a cen-

Next, we characterize an Azumaya Galois extension B with Galois group K.

THEOREM 4.2. The following statements are equivalent:

(1) B is an Azumaya Galois extension with Galois group K;

(2) Z=C;

(3) B =BkBX;

(4) Bk is a central Galois algebra over C with Galois group K|p, =K.

PROOF. (1)=(2). Since B is an Azumaya Galois extension with Galois group K, BX
is a CK-Azumaya algebra. But, by Lemma 3.6, BX is an Azumaya algebra over Z, so
Z=CX Hence CcZ=C¥cC.Thus Z=C.

(2)=(3). Suppose that Z = C. Then, by Theorem 3.1, Bx is an Azumaya algebra over
C. Hence by the commutator theorem for Azumaya algebras, B = Bx Vg (Bk) [3, Theo-
rem 4.3, page 57]. But, by Lemma 3.6, BX = V3(Bk), so B = BxBX.

(3)=(4). By hypothesis, B = BkBX, so L = {1} where L is given in Lemma 3.2. By the
proofs of Theorem 3.1 and Lemma 3.6, Bx and BX are C-separable subalgebras of the
Azumaya C-algebra B such that B = BxBX, so By and BX are Azumaya algebras over C

[3, Theorem 4.4, page 58]. Thus C is the center of Bx. Next, we claim that J,; = ;B") for

each g € K. In fact, it is clear that J,; C ]},BK). Conversely, for each a € J;BK) and x € B
such that x = yz for some v € Bx and z € BX, noting that BX = V3 (Bg), we have that
ax=ayz=g(ylaz=g(y)za=g(yz)a =g(x)a. Thus J;BK) C Jg4. This proves that
Jg = ;B") (= ]éB") since L = {1}) for each g € K. Hence, Bx is a central Galois algebra

over C with Galois group K|p, = K by Lemma 4.1.
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(4)=(1). Since B is a Galois algebra with Galois group G, B is a Galois extension with
Galois group K. By hypothesis, Bk is a central Galois algebra over C with Galois group
K|p; =K, so the center of Bk is C, thatis, Z = C. Hence BX is an Azumaya algebra over
C(= CX) by Lemma 3.6. Thus B is an Azumaya Galois extension with Galois group K.

O

Theorem 4.2 generalizes the following result of Kanzaki [6, Proposition 3].

COROLLARY 4.3. If J; = {0} for each g ¢ K, then B is a central Galois algebra with
Galois group K and C is a Galois algebra with Galois group G /K.

PROOF. This is the case in Theorem 4.2 that B = BxBX = Bx where BX = C. O

We conclude the present paper with two examples, one to illustrate the result in
Theorem 4.2, and another to show that Z + C.

EXAMPLE 4.4. Let A = R[i,j,k], the real quaternion algebra over the field of real
numbers R, B = (A®rA)®AdA® A A, and G the group generated by the elements in
{g1,ki, kj ki, hi,hj, hi} where g, is the identity of G and for all (a®b,a,a»,as,a4) €
B,

ki(a®b,a,az,a3,a4) = (iai ' ®b,ia1i ' iaxi ™t iazi~!,iasi™"),

jajteb,jaij " jarj "t jasjt, jasjt),

(
kj(a®b,ai,az,a3,a4) = (
(kak '®b,ka k™ ka>k=" kask™' kask™),
(
(
(

4.1)

)

kx(a®b,a,a,as,a4)
)= (a®ibi!,as,a,,a4,a3),
)

asjbj !, az,as,a1,az),

(

(

hi(a®b,a,,a:,as3,a4

hij(a®b,ai,az,a3,as4
(

hi(a®b,ai,a;,as,a4) = (a®kbk™,as,as3,az,a,1).

Then,

(1) we can check that B is a Galois algebra over B¢ with Galois group G where
BC = {(n®v,r,v,v,v) | r,rn, reR}cC,and C= (ReR)®oReoRadRaR, the
center of B;

(2) K=1{geGlg(c)=cftorall c e C}={g1,ki,kj ki};

B) Ji =C, Jy, = (Rivol)sRioRioRie R, Ji; = (Rjel)oRjeRjeRiseRj,
J, = (Rkel) oRk® Rk Ri® Rk, so By = (AerR) ® A® A® A® A. Hence By
has center C, thatis Z = C, and By is a central Galois algebra over C with Galois
group Klp, = K;

4) BK=(ReA)eReoRae®R®R and B = BxBX, that is, B is an Azumaya Galois
extension with Galois group K.

EXAMPLE 4.5. Let A = R[i,j,k], the real quaternion algebra over the field of real
numbers R, B=A®A® A, G=1{1,9i,9;,9x}, and for all (a1,a,,a3) € B,

gi(ai,az,az) = (iai™ ' iaxi™!, iasi™'),
gilar,az,a3) = (jarj ', jasj ', jazj), (4.2)
gx(ai,az,a3) = (kark ', kask ! kak ™).
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Then,

(1) B is a Galois algebra over B¢ where B¢ = {(r1,7,v) | 11, ¥ € R} c C, and C =
Re R @R, the center of B. The G-Galois system is {a;;b; | i=1,2,...,8} where

a1=(1,0,0), a2=(i,0,0), a3=(j,0,0), a4=(k,0,0),
as =(0,1,0), ag = (0,74,0), a7; =(0,0,1), ag = (0,0,k);

_1 _ 1 _ ! _ ! (4.3)
b1—4a1, b, = 7% b3 = 293 by = 7%

1 1 1 1
bs = 5as, b¢ = ~5 a6, b; = 547, bg = ~5as,

(2) K={geGlg(c)=cforallc € C} = {1,g;} where J;, = Ri® Ri®Ri, so Bx =
Rli]®R[i]® R[i] which is a commutative ring not equal to C, that is, Z = C.
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