CERTAIN INTEGRAL OPERATOR AND STRONGLY STARLIKE FUNCTIONS

JIN-LIN LIU

Received 15 June 2001

Let $S^*(\rho, \gamma)$ denote the class of strongly starlike functions of order ρ and type γ and let $C(\rho, \gamma)$ be the class of strongly convex functions of order ρ and type γ . By making use of an integral operator defined by Jung et al. (1993), we introduce two novel families of strongly starlike functions $S^{\alpha}_{\beta}(\rho, \gamma)$ and $C^{\alpha}_{\beta}(\rho, \gamma)$. Some properties of these classes are discussed.

2000 Mathematics Subject Classification: 30C45, 30C75.

1. Introduction. Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the unit disc $E = \{z : |z| < 1\}$. A function f(z) belonging to A is said to be starlike of order γ if it satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma \quad (z \in E)$$
(1.2)

for some γ ($0 \le \gamma < 1$). We denote by $S^*(\gamma)$ the subclass of A consisting of functions which are starlike of order γ in E. Also, a function f(z) in A is said to be convex of order γ if it satisfies $zf'(z) \in S^*(\gamma)$, or

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \gamma \quad (z \in E)$$
(1.3)

for some γ ($0 \le \gamma < 1$). We denote by $C(\gamma)$ the subclass of A consisting of all functions which are convex of order γ in E.

If $f(z) \in A$ satisfies

$$\left| \arg\left(\frac{zf'(z)}{f(z)} - \gamma\right) \right| < \frac{\pi}{2}\rho \quad (z \in E)$$
(1.4)

for some γ ($0 \le \gamma < 1$) and ρ ($0 < \rho \le 1$), then f(z) is said to be strongly starlike of order ρ and type γ in *E*, and denoted by $f(z) \in S^*(\rho, \gamma)$. If $f(z) \in A$ satisfies

$$\left| \arg\left(1 + \frac{zf^{\prime\prime}(z)}{f^{\prime}(z)} - \gamma \right) \right| < \frac{\pi}{2}\rho \quad (z \in E)$$
(1.5)

JIN-LIN LIU

for some γ ($0 \le \gamma < 1$) and ρ ($0 < \rho \le 1$), then we say that f(z) is strongly convex of order ρ and type γ in *E*, and we denote by $C(\rho, \gamma)$ the class of such functions. It is clear that $f(z) \in A$ belongs to $C(\rho, \gamma)$ if and only if $zf'(z) \in S^*(\rho, \gamma)$. Also, we note that $S^*(1, \gamma) = S^*(\gamma)$ and $C(1, \gamma) = C(\gamma)$.

For c > -1 and $f(z) \in A$, we recall the generalized Bernardi-Libera-Livingston integral operator $L_c(f)$ as

$$L_{c}(f) = \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt.$$
(1.6)

The operator $L_c(f)$ when $c \in N = \{1, 2, 3, ...\}$ was studied by Bernardi [1]. For c = 1, $L_1(f)$ was investigated by Libera [4].

Recently, Jung et al. [2] introduced the following one-parameter family of integral operators:

$$Q^{\alpha}_{\beta}f(z) = \binom{\alpha+\beta}{\beta} \frac{\alpha}{z^{\beta}} \int_{0}^{z} \left(1 - \frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) dt \quad (\alpha > 0, \ \beta > -1, \ f \in A).$$
(1.7)

They showed that

$$Q_{\beta}^{\alpha}f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\beta+n)\Gamma(\alpha+\beta+1)}{\Gamma(\beta+\alpha+n)\Gamma(\beta+1)} a_n z^n,$$
(1.8)

where $\Gamma(x)$ is the familiar Gamma function. Some properties of this operator have been studied (see [2, 3]). From (1.7) and (1.8), one can see that

$$z(Q_{\beta}^{\alpha+1}f(z))' = (\alpha+\beta+1)Q_{\beta}^{\alpha}f(z) - (\alpha+\beta)Q_{\beta}^{\alpha+1}f(z).$$

$$(1.9)$$

It should be remarked in passing that the operator Q^{α}_{β} is related rather closely to the Beta or Euler transformation.

Using the operator Q^{α}_{β} , we now introduce the following classes:

$$S^{\alpha}_{\beta}(\rho, \gamma) = \left\{ f(z) \in A : Q^{\alpha}_{\beta}f(z) \in S^{*}(\rho, \gamma), \frac{z(Q^{\alpha}_{\beta}f(z))'}{Q^{\alpha}_{\beta}f(z)} \neq \gamma \ \forall z \in E \right\},$$

$$C^{\alpha}_{\beta}(\rho, \gamma) = \left\{ f(z) \in A : Q^{\alpha}_{\beta}f(z) \in C(\rho, \gamma), \frac{(z(Q^{\alpha}_{\beta}f(z))')'}{(Q^{\alpha}_{\beta}f(z))'} \neq \gamma \ \forall z \in E \right\}.$$
(1.10)

It is obvious that $f(z) \in C^{\alpha}_{\beta}(\rho, \gamma)$ if and only if $zf'(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$.

In this note, we investigate some properties of the classes $S^{\alpha}_{\beta}(\rho, \gamma)$ and $C^{\alpha}_{\beta}(\rho, \gamma)$. The basic tool for our investigation is the following lemma which is due to Nunokawa [5].

LEMMA 1.1. Let a function $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ be analytic in *E* and $p(z) \neq 0$ $(z \in E)$. If there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < \frac{\pi}{2}\rho \quad (|z| < |z_0|), \qquad |\arg p(z_0)| = \frac{\pi}{2}\rho \quad (0 < \rho \le 1),$$
 (1.11)

570

then

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik\rho, \tag{1.12}$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \quad \left(\text{when } \arg p\left(z_0 \right) = \frac{\pi}{2} \rho \right),$$

$$k \le -\frac{1}{2} \left(a + \frac{1}{a} \right) \quad \left(\text{when } \arg p\left(z_0 \right) = -\frac{\pi}{2} \rho \right),$$
(1.13)

and $p(z_0)^{1/\rho} = \pm ia \ (a > 0)$.

2. Main results. Our first inclusion theorem is stated as follows.

THEOREM 2.1. The class $S^{\alpha}_{\beta}(\rho, \gamma) \subset S^{\alpha+1}_{\beta}(\rho, \gamma)$ for $\alpha > 0$, $\beta > -1$, $0 \le \gamma < 1$ and $\alpha + \beta \ge -\gamma$.

PROOF. Let $f(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$. Then we set

$$\frac{z(Q_{\beta}^{\alpha+1}f(z))'}{Q_{\beta}^{\alpha+1}f(z)} = (1-\gamma)p(z) + \gamma,$$
(2.1)

where $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is analytic in *E* and $p(z) \neq 0$ for all $z \in E$. Using (1.9) and (2.1), we have

$$(\alpha+\beta+1)\frac{Q_{\beta}^{\alpha}f(z)}{Q_{\beta}^{\alpha+1}f(z)} = (\alpha+\beta+\gamma) + (1-\gamma)p(z).$$
(2.2)

Differentiating both sides of (2.2) logarithmically, it follows from (2.1) that

$$\frac{z(Q_{\beta}^{\alpha}f(z))'}{Q_{\beta}^{\alpha}f(z)} - \gamma = (1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{(\alpha+\beta+\gamma) + (1-\gamma)p(z)}.$$
(2.3)

Suppose that there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < \frac{\pi}{2}\rho \quad (|z| < |z_0|), \qquad |\arg p(z_0)| = \frac{\pi}{2}\rho.$$
 (2.4)

Then, by applying Lemma 1.1, we can write that $z_0 p'(z_0)/p(z_0) = ik\rho$ and that $(p(z_0))^{1/\rho} = \pm ia$ (a > 0).

Therefore, if $\arg p(z_0) = -(\pi/2)\rho$, then

$$\frac{z_0(Q_{\beta}^{\alpha}f(z_0))'}{Q_{\beta}^{\alpha}f(z_0)} - \gamma = (1-\gamma)p(z_0) \left[1 + \frac{z_0p'(z_0)/p(z_0)}{(\alpha+\beta+\gamma)+(1-\gamma)p(z_0)} \right]$$

$$= (1-\gamma)a^{\rho}e^{-i\pi\rho/2} \left[1 + \frac{ik\rho}{(\alpha+\beta+\gamma)+(1-\gamma)a^{\rho}e^{-i\pi\rho/2}} \right].$$
(2.5)

From (2.5) we have

$$\arg\left\{\frac{z_{0}(Q_{\beta}^{\alpha}f(z_{0}))'}{Q_{\beta}^{\alpha}f(z_{0})} - \gamma\right\}$$

$$= -\frac{\pi}{2}\rho + \arg\left\{1 + \frac{ik\rho}{(\alpha+\beta+\gamma) + (1-\gamma)a^{\rho}e^{-i\pi\rho/2}}\right\}$$

$$= -\frac{\pi}{2}\rho + \tan^{-1}\left\{\left(k\rho\left[(\alpha+\beta+\gamma) + (1-\gamma)a^{\rho}\cos\frac{\pi\rho}{2}\right]\right) \times \left((\alpha+\beta+\gamma)^{2} + 2(\alpha+\beta+\gamma)(1-\gamma)a^{\rho}\cos\frac{\pi\rho}{2} + (1-\gamma)^{2}a^{2\rho} - k\rho(1-\gamma)a^{\rho}\sin\frac{\pi\rho}{2}\right)^{-1}\right\}$$

$$\pi$$
(2.6)

 $\leq -\frac{\pi}{2}\rho$,

where $k \leq -(1/2)(a+1/a) \leq -1$, $\alpha + \beta \geq -\gamma$, which contradicts the condition $f(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$.

Similarly, if $\arg p(z_0) = (\pi/2)\rho$, then we have

$$\arg\left\{\frac{z_0(Q^{\alpha}_{\beta}f(z_0))'}{Q^{\alpha}_{\beta}f(z_0)} - \gamma\right\} \ge \frac{\pi}{2}\rho, \qquad (2.7)$$

which also contradicts the hypothesis that $f(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$.

Thus the function p(z) has to satisfy $|\arg p(z)| < (\pi/2)\rho$ ($z \in E$), which leads us to the following:

$$\left|\arg\left\{\frac{z(Q_{\beta}^{\alpha+1}f(z))'}{Q_{\beta}^{\alpha+1}f(z)}-\gamma\right\}\right| < \frac{\pi}{2}\rho \quad (z \in E).$$

$$(2.8)$$

This evidently completes the proof of Theorem 2.1.

We next state the following theorem.

THEOREM 2.2. The class $C^{\alpha}_{\beta}(\rho, \gamma) \subset C^{\alpha+1}_{\beta}(\rho, \gamma)$ for $\alpha > 0$, $\beta > -1$, $0 \le \gamma < 1$, and $\alpha + \beta \ge -\gamma$.

PROOF. By definition (1.10), we have

$$f(z) \in C^{\alpha}_{\beta}(\rho, \gamma) \iff Q^{\alpha}_{\beta}f(z) \in C(\rho, \gamma) \iff z(Q^{\alpha}_{\beta}f(z))' \in S^{*}(\rho, \gamma)$$

$$\iff Q^{\alpha}_{\beta}(zf'(z)) \in S^{*}(\rho, \gamma) \iff zf'(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$$

$$\implies zf'(z) \in S^{\alpha+1}_{\beta}(\rho, \gamma) \iff Q^{\alpha+1}_{\beta}(zf'(z)) \in S^{*}(\rho, \gamma) \qquad (2.9)$$

$$\iff z(Q^{\alpha+1}_{\beta}f(z))' \in S^{*}(\rho, \gamma) \iff Q^{\alpha+1}_{\beta}f(z) \in C(\rho, \gamma)$$

$$\iff f(z) \in C^{\alpha+1}_{\beta}(\rho, \gamma).$$

The following theorem involves the generalized Bernardi-Libera-Livingston integral operator $L_c(f)$ given by (1.6).

THEOREM 2.3. Let $c > -\gamma$ and $0 \le \gamma < 1$. If $f(z) \in A$ and $z(Q^{\alpha}_{\beta}L_cf(z))'/Q^{\alpha}_{\beta}L_cf(z) \ne \gamma$ for all $z \in E$, then $f(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$ implies that $L_c(f) \in S^{\alpha}_{\beta}(\rho, \gamma)$.

PROOF. Let $f(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$. Put

$$\frac{z(Q_{\beta}^{\alpha}L_{c}f(z))'}{Q_{\beta}^{\alpha}L_{c}f(z)} = \gamma + (1-\gamma)p(z), \qquad (2.10)$$

where p(z) is analytic in *E*, p(0) = 1 and $p(z) \neq 0$ ($z \in E$). From (1.6) we have

$$z(Q^{\alpha}_{\beta}L_cf(z))' = (c+1)Q^{\alpha}_{\beta}f(z) - cQ^{\alpha}_{\beta}L_cf(z).$$

$$(2.11)$$

Using (2.10) and (2.11), we get

$$(c+1)\frac{Q_{\beta}^{\alpha}f(z)}{Q_{\beta}^{\alpha}L_{c}f(z)} = (c+\gamma) + (1-\gamma)p(z).$$
(2.12)

Differentiating both sides of (2.12) logarithmically, we obtain

$$\frac{z(Q_{\beta}^{\alpha}f(z))'}{Q_{\beta}^{\alpha}f(z)} - \gamma = (1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{(c+\gamma) + (1-\gamma)p(z)}.$$
(2.13)

Suppose that there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < \frac{\pi}{2}\rho \quad (|z| < |z_0|), \qquad |\arg p(z_0)| = \frac{\pi}{2}\rho.$$
 (2.14)

Then, applying Lemma 1.1, we can write that $z_0 p'(z_0)/p(z_0) = ik\rho$ and $(p(z_0))^{1/\rho} = \pm ia$ (a > 0).

If arg $p(z_0) = (\pi/2)\rho$, then

$$\frac{z_0(Q_{\beta}^{\alpha}f(z_0))'}{Q_{\beta}^{\alpha}f(z_0)} - \gamma = (1-\gamma)p(z_0) \left[1 + \frac{z_0p'(z_0)/p(z_0)}{(c+\gamma) + (1-\gamma)p(z_0)} \right]$$

$$= (1-\gamma)a^{\rho}e^{i\pi\rho/2} \left[1 + \frac{ik\rho}{(c+\gamma) + (1-\gamma)a^{\rho}e^{i\pi\rho/2}} \right].$$
(2.15)

This shows that

$$\arg \left\{ \frac{z_{0}(Q_{\beta}^{\alpha}f(z_{0}))'}{Q_{\beta}^{\alpha}f(z_{0})} - \gamma \right\}$$

$$= \frac{\pi}{2}\rho + \arg \left\{ 1 + \frac{ik\rho}{(c+\gamma) + (1-\gamma)a^{\rho}e^{i\pi\rho/2}} \right\}$$

$$= \frac{\pi}{2}\rho + \tan^{-1} \left\{ \left(k\rho \Big[(c+\gamma) + (1-\gamma)a^{\rho}\cos\frac{\pi\rho}{2} \Big] \right) \times \left((c+\gamma)^{2} + 2(c+\gamma)(1-\gamma)a^{\rho}\cos\frac{\pi\rho}{2} + (1-\gamma)^{2}a^{2\rho} + k\rho(1-\gamma)a^{\rho}\sin\frac{\pi\rho}{2} \right)^{-1} \right\}$$

$$\geq \frac{\pi}{2}\rho,$$
(2.16)

where $k \ge (1/2)(a+1/a) \ge 1$, which contradicts the condition $f(z) \in S^{\alpha}_{\beta}(\rho, \gamma)$.

Similarly, we can prove the case $\arg p(z_0) = -(\pi/2)\rho$. Thus we conclude that the function p(z) has to satisfy $|\arg p(z)| < (\pi/2)\rho$ for all $z \in E$. This shows that

$$\left|\arg\left\{\frac{z(Q^{\alpha}_{\beta}L_{c}f(z))'}{Q^{\alpha}_{\beta}L_{c}f(z)}-\gamma\right\}\right| < \frac{\pi}{2}\rho \quad (z \in E).$$

$$(2.17)$$

The proof is complete.

THEOREM 2.4. Let $c > -\gamma$ and $0 \le \gamma < 1$. If $f(z) \in A$ and $(z(Q_{\beta}^{\alpha}L_{c}f(z))')'/(Q_{\beta}^{\alpha}L_{c}f(z))' \neq \gamma$ for all $z \in E$, then $f(z) \in C_{\beta}^{\alpha}(\rho, \gamma)$ implies that $L_{c}(f) \in C_{\beta}^{\alpha}(\rho, \gamma)$.

PROOF. Using the same method as in Theorem 2.2 we have

$$f(z) \in C^{\alpha}_{\beta}(\rho, \gamma) \iff zf'(z) \in S^{\alpha}_{\beta}(\rho, \gamma) \Longrightarrow L_{c}(zf'(z)) \in S^{\alpha}_{\beta}(\rho, \gamma)$$
$$\iff z(L_{c}f(z))' \in S^{\alpha}_{\beta}(\rho, \gamma) \iff L_{c}f(z) \in C^{\alpha}_{\beta}(\rho, \gamma).$$

$$(2.18)$$

References

- [1] S. D. Bernardi, *Convex and starlike univalent functions*, Trans. Amer. Math. Soc. **135** (1969), 429-446.
- [2] I. B. Jung, Y. C. Kim, and H. M. Srivastava, *The Hardy space of analytic functions associated with certain one-parameter families of integral operators*, J. Math. Anal. Appl. **176** (1993), no. 1, 138-147.
- [3] J. L. Li, Some properties of two integral operators, Soochow J. Math. 25 (1999), no. 1, 91-96.
- [4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- [5] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 6, 152–153.

JIN-LIN LIU: DEPARTMENT OF MATHEMATICS, YANGZHOU UNIVERSITY, YANGZHOU 225002, JIANGSU, CHINA

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

