ON BRANCHWISE IMPLICATIVE BCI-ALGEBRAS

MUHAMMAD ANWAR CHAUDHRY

Received 19 April 2000

We introduce a new class of BCI-algebras, namely the class of branchwise implicative BCIalgebras. This class contains the class of implicative BCK-algebras, the class of weakly implicative BCI-algebras (Chaudhry, 1990), and the class of medial BCI-algebras. We investigate necessary and sufficient conditions for two types of BCI-algebras to be branchwise implicative BCI-algebras.

2000 Mathematics Subject Classification: 06F35, 03G25.

1. Introduction. Iséki and Tanaka [10] defined implicative BCK-algebras and studied their properties. Further, Iséki [7, 8] gave the notion of a BCI-algebra which is a generalization of the concept of a BCK-algebra. Iséki [8] and Iséki and Thaheem [11] have shown that no proper class of implicative BCI-algebras exists, that is, such BCIalgebras are implicative BCK-algebras.

Thus, a natural question arises whether it is possible to generalize the notion of implicativeness in such a way that this generalization not only gives us a proper class of BCI-algebras but also contains the class of implicative BCK-algebras. In this paper, we answer this question in yes by introducing the concept of a branchwise implicative BCI-algebra. This proper class of BCI-algebras contains the class of implicative BCKalgebras, the class of weakly implicative BCI-algebras [1] and the class of medial BCIalgebras [4, 6].
2. Preliminaries. A BCI-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:

$$
\begin{gather*}
(x * y) *(x * z) \leq z * y, \quad \text { where } x \leq y \text { if and only if } x * y=0 \tag{2.1}\\
x *(x * y) \leq y \tag{2.2}\\
x \leq x \tag{2.3}\\
x \leq y \text { and } y \leq x \text { imply } x=y \tag{2.4}\\
x \leq 0 \text { implies } x=0 \tag{2.5}
\end{gather*}
$$

If (2.5) is replaced by $0 \leq x$, then the algebra is called a BCK-algebra. It is well known that every BCK-algebra is a BCI-algebra.

In a BCI-algebra X, the following hold:

$$
\begin{gather*}
(x * y) * z=(x * z) * y \tag{2.6}\\
x * 0=x \tag{2.7}\\
x \leq y \text { implies } x * z \leq y * z \text { and } z * y \leq z * x \tag{2.8}
\end{gather*}
$$

$$
\begin{gather*}
(x * z) *(y * z) \leq x * y \tag{2.9}\\
x *(x *(x * y))=x * y \quad(\text { see }[8]) . \tag{2.10}
\end{gather*}
$$

Definition 2.1 (see [9]). A subset I of a BCI-algebra X is called an ideal of X if it satisfies

$$
\begin{equation*}
0 \in I, \quad x * y \in I, \quad y \in I \text { imply } x \in I \tag{2.11}
\end{equation*}
$$

Definition 2.2 (see [10]). If in a BCK-algebra X

$$
\begin{equation*}
(x * y) * z=(x * z) *(y * z) \tag{2.12}
\end{equation*}
$$

holds for all $x, y, z \in X$, then it is called positive implicative.
Definition 2.3 (see [10]). If in a BCK-algebra X

$$
\begin{equation*}
x *(x * y)=y *(y * x) \tag{2.13}
\end{equation*}
$$

holds for all $x, y \in X$, then it is called commutative.
Theorem 2.4 (see [10]). A BCK-algebra X is positive implicative if and only if it satisfies

$$
\begin{equation*}
(x * y)=(x * y) * y \quad \forall x, y \in X \tag{2.14}
\end{equation*}
$$

It has been shown in $[8,11]$ that no proper classes of positive implicative BCIalgebras and commutative BCI-algebras exist and such BCI-algebras are BCK-algebras of the corresponding type. That is why we generalized these notions and defined weakly positive implicative BCI-algebras [1] and branchwise commutative BCI-algebras [3] and studied some of their properties. Each class of these proper BCI-algebras contains the class of BCK-algebras of the corresponding type.

Definition 2.5 (see [1]). A BCI-algebra X satisfying

$$
\begin{equation*}
(x * y) * z=((x * z) * z) *(y * z) \quad \forall x, y, z \in X \tag{2.15}
\end{equation*}
$$

is called a weakly positive implicative BCI-algebra.
TheOrem 2.6 (see [1]). A BCI-algebra X is weakly positive implicative if and only if

$$
\begin{equation*}
x * y=((x * y) * y) *(0 * y) \quad \forall x, y \in X \tag{2.16}
\end{equation*}
$$

A BCI-algebra satisfying $(x * y) *(z * u)=(x * z) *(y * u)$ is called a medial BCI-algebra.

Let X be a BCI-algebra and $M=\{x: x \in X$ and $0 * x=0\}$. Then M is called its BCK-part. If $M=\{0\}$, then X is called p-semisimple.

It has been shown in $[4,5,6,13]$ that in a BCI-algebra X the following are equivalent:

$$
\begin{gather*}
X \text { is medial, } \quad x *(x * y)=y \quad \forall x, y \in X, \\
0 *(0 * x)=x \quad \forall x \in X, \quad X \text { is } p \text {-semisimple. } \tag{2.17}
\end{gather*}
$$

We now describe the notions of branches of a BCI-algebra and branchwise commutative BCI -algebras defined and investigated in [2, 3].

Definition 2.7 (see [3]). Let X be a BCI-algebra, then the set $\operatorname{Med}(X)=\{x: x \in X$ and $0 *(0 * x)=x\}$ is called medial part of X.

Obviously, $0 \in \operatorname{Med}(X)$ and thus $\operatorname{Med}(X)$ is nonempty. In what follows the elements of $\operatorname{Med}(X)$ will be denoted by x_{0}, y_{0}, \ldots. It is known that $\operatorname{Med}(X)$ is a medial subalgebra of X and for each $x \in X$, there is a unique $x_{0}=0 *(0 * x) \in \operatorname{Med}(X)$ such that $x_{0} \leq x$ (see [3]). Further, $\operatorname{Med}(X)$, in general, is not an ideal of X. Obviously, for a BCK-algebra $X, \operatorname{Med}(X)=\{0\}$ and hence is an ideal of X.

Definition 2.8 (see [3]). Let X be a BCI-algebra and $x_{0} \in \operatorname{Med}(X)$, then the set $B\left(x_{0}\right)=\left\{x: x \in X\right.$ and $\left.x_{0} * x=0\right\}$ is called a branch of X determined by the element x_{0}.

The following theorem (proved in $[2,3]$) shows that the branches of a BCI-algebra X are pairwise disjoint and form its partition. So the study of branches of a BCI-algebra X plays an important role in investigation of the properties of X. Obviously, a BCKalgebra X is a one-branch BCI-algebra and in this case $X=B(0)$.

Theorem 2.9 (see $[2,3])$. Let X be a BCI-algebra with medial part $\operatorname{Med}(X)$, then
(i) $X=\cup\left\{B\left(x_{0}\right): x_{0} \in \operatorname{Med}(X)\right\}$.
(ii) $B\left(x_{0}\right) \cap B\left(y_{0}\right)=\phi, x_{0}, y_{0} \in \operatorname{Med}(X)$, and $x_{0} \neq y_{0}$.
(iii) If $x, y \in B\left(x_{0}\right)$, then $0 * x=0 * y=0 * x_{0}=0 * y_{0}$ and $x * y, y * x \in M$.

Definition 2.10 (see [3]). A BCI-algebra X is said to be branchwise commutative if and only if for $x_{0} \in \operatorname{Med}(X), x, y \in B\left(x_{0}\right)$, the following equality holds:

$$
\begin{equation*}
x *(x * y)=y *(y * x) \tag{2.18}
\end{equation*}
$$

Since a BCK-algebra is a one-branch BCI-algebra, therefore, it is commutative if and only if it is branchwise commutative.

Theorem 2.11 (see [3]). A BCI-algebra X is branchwise commutative if and only if

$$
\begin{equation*}
x *(x * y)=y *(y *(x *(x * y))) \quad \forall x, y \in X \tag{2.19}
\end{equation*}
$$

3. Branchwise implicative BCI-algebras. In this section, we define branchwise implicative BCI-algebras. We show that this proper class of BCI-algebras contains the class of implicative BCK-algebras [10], the class of weakly implicative BCI-algebras [1] and the class of medial BCI-algebras. We also find necessary and sufficient conditions for two types of BCI-algebras to be branchwise implicative.

Definition 3.1 (see [10]). A BCK-algebra X is said to be implicative if and only if

$$
\begin{equation*}
x *(y * x)=x \quad \forall x, y \in X \tag{3.1}
\end{equation*}
$$

It has been shown in $[8,11]$ that no proper class of implicative BCI-algebras exists. Due to this reason we generalized the notion of implicativeness to weak implicativeness [1] mentioned below.

Definition 3.2 (see [1]). A BCI-algebra X is said to be weakly implicative if and only if

$$
\begin{equation*}
x=(x *(y * x)) *(0 *(y * x)) \quad \forall x, y \in X . \tag{3.2}
\end{equation*}
$$

We further generalize this concept and find a generalization of the following wellknown result of Iséki [10].

THEOREM 3.3. An implicative BCK-algebra is a positive implicative and commutative BCK-algebra.

DEFINITION 3.4. A BCI-algebra X is said to be a branchwise implicative BCI-algebra if and only if

$$
\begin{equation*}
x *(y * x)=x \quad \forall x, y \in B\left(x_{0}\right) \text { and } x_{0} \in \operatorname{Med}(X) . \tag{3.3}
\end{equation*}
$$

Example 3.5. Let $X=\{0,1,2$,$\} in which *$ is defined by

$*$	0	1	2		
0	0	0	2		
1	1	0	2		
2	2	2	0	\quad	0
:---:					

Then X is a branchwise implicative BCI-algebra. This shows that proper branchwise implicative BCI-algebras exist.

Remark 3.6. (i) Since a BCK-algebra is a one-branch BCI-algebra, therefore, it is implicative if and only if it is branchwise implicative.
(ii) Let X be weakly implicative and let $x, y \in B\left(x_{0}\right), x_{0} \in \operatorname{Med}(X)$, then using Theorem 2.9(iii), we get $y * x \in M$. Thus $0 *(y * x)=0$. So $x=(x *(y * x)) *$ $(0 *(y * x))$ reduces to $x=x *(y * x)$. Hence every weakly implicative BCI-algebra is branchwise implicative BCI-algebra. But the branchwise implicative BCI-algebra X of Example 3.5 is not weakly implicative because $(1 *(2 * 1)) *(0 *(2 * 1))=(1 * 2) *$ $(0 * 2)=2 * 2=0 \neq 1$.
(iii) It is known that each branch of a medial BCI-algebra X is a singleton. Let X be a medial BCI-algebra and $x_{0} \in \operatorname{Med}(X)$. Then $B\left(x_{0}\right)=\left\{x_{0}\right\}$. Hence $x_{0} *\left(x_{0} * x_{0}\right)=$ $x_{0} * 0=x_{0}$, which implies that X is branchwise implicative.

Thus the class of branchwise implicative BCI-algebras contains the class of implicative BCK-algebras, the class of weakly implicative BCI-algebras, and the class of medial BCI -algebras. We now prove the following results.

Lemma 3.7. Let X be a BCI-algebra. If $x, y \in X$ and $x \leq y$, then $x, y \in B\left(x_{0}\right)$ for $x_{0} \in \operatorname{Med}(X)$.

Proof. Let $x \in X$, then there is a unique $x_{0}=0 *(0 * x) \in \operatorname{Med}(X)$ such that $x \in B\left(x_{0}\right)$. Now $x_{0} * y=(0 *(0 * x)) * y=(0 * y) *(0 * x) \leq x * y=0$. Hence $x_{0} * y=0$, which implies $y \in B\left(x_{0}\right)$.

Theorem 3.8. If X is a branchwise implicative BCI-algebra, then it is branchwise commutative.

Proof. Let $x, y \in X$, then $x *(x * y) \leq y$ and Lemma 3.7 imply that $x *(x * y)$ and $y \in B\left(y_{0}\right)$ for some $y_{0} \in \operatorname{Med}(X)$. Since X is branchwise implicative, therefore
using (3.3), we get

$$
\begin{equation*}
(x *(x * y)) *(y *(x *(x * y)))=x *(x * y) . \tag{3.4}
\end{equation*}
$$

Using (2.2) and (2.8), we get

$$
\begin{align*}
x *(x * y) & =(x *(x * y)) *(y *(x *(x * y))) \\
& \leq y *(y *(x *(x * y))) \leq x *(x * y) . \tag{3.5}
\end{align*}
$$

Thus

$$
\begin{equation*}
x *(x * y)=y *(y *(x *(x * y))) \tag{3.6}
\end{equation*}
$$

which along with Theorem 2.11 implies that X is branchwise commutative.
Theorem 3.9. If X is a branchwise implicative BCI-algebra, then it satisfies

$$
\begin{equation*}
(x * y) *(0 * y)=(((x * y) * y) *(0 * y)) *(0 * y) . \tag{3.7}
\end{equation*}
$$

Proof. Since X is branchwise implicative, therefore Theorem 3.8 implies that X is branchwise commutative. Let $x, y \in X$. Since $(x * y) *(0 * y) \leq x$, therefore Lemma 3.7 implies that $(x * y) *(0 * y), x \in B\left(x_{0}\right)$. Now branchwise implicativeness of X implies

$$
\begin{equation*}
((x * y) *(0 * y)) *(x *((x * y) *(0 * y)))=(x * y) *(0 * y), \tag{3.8}
\end{equation*}
$$

which, using (2.6) twice, gives

$$
\begin{equation*}
((x *(x *((x * y) *(0 * y)))) * y) *(0 * y)=(x * y) *(0 * y) . \tag{3.9}
\end{equation*}
$$

Using branchwise commutativeness of X, from (3.9) we get

$$
\begin{equation*}
((((x * y) *(0 * y)) *(((x * y) *(0 * y)) * x)) * y) *(0 * y)=(x * y) *(0 * y) \tag{3.10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
(((x * y) *(0 * y)) * y) *(0 * y)=(x * y) *(0 * y), \tag{3.11}
\end{equation*}
$$

so

$$
\begin{equation*}
(((x * y) * y) *(0 * y)) *(0 * y)=(x * y) *(0 * y) . \tag{3.12}
\end{equation*}
$$

REmARK 3.10. Since a BCK-algebra is a one-branch BCI-algebra, therefore an implicative BCK-algebra is commutative. Further, for a BCK-algebra $0 * y=0$ and thus (3.7) reduces to $x * y=(x * y) * y$, which implies X is positive implicative. So we get Theorem 3.3, a well-known result of Iséki [10], as a corollary from Theorems 3.8 and 3.9.

We now investigate necessary and sufficient conditions for two types of BCI-algebras to be branchwise implicative.

Theorem 3.11. A BCI-algebra X, with $\operatorname{Med}(X)$ as an ideal of X, is a branchwise implicative BCI-algebra if and only if it is branchwise commutative and satisfies

$$
\begin{equation*}
(x * y) *(0 * y)=(((x * y) * y)(0 * y)) *(0 * y) \quad \forall x, y \in X \tag{3.13}
\end{equation*}
$$

Proof. (\Rightarrow) Sufficiency follows from Theorems 3.8 and 3.9.
(\Leftrightarrow) For necessity we consider $x, y \in X$ such that $x, y \in B\left(x_{0}\right)$ for some $x_{0} \in$ $\operatorname{Med}(X)$. Now from Theorem 2.9(iii), we get $x * y$ and $y * x \in M$. So $0 *(x * y)=$ $0 *(y * x)=0$. Further, $(x *(y * x)) * x=(x * x) *(y * x)=0 *(y * x)=0$, so

$$
\begin{equation*}
x *(y * x) \leq x . \tag{3.14}
\end{equation*}
$$

Now (3.14) along with Lemma 3.7 implies $x *(y * x)$ and x belong to the branch determined by x, that is, $B\left(x_{0}\right)$. Hence x, y and $x *(y * x) \in B\left(x_{0}\right)$. Since X is branchwise commutative, therefore,

$$
\begin{align*}
& (x *(x *(y * x))) *(0 * x) \\
& \quad=[(y * x) *((y * x) *(x *(x *(y * x))))] *(0 * x) \\
& \quad=[(y * x) *(0 * x)] *[(y * x) *(x *(x *(y * x)))] \quad(u \operatorname{sing}(2.6)) \\
& \quad=[(((y * x) * x) *(0 * x)) *(0 * x)] *[(y * x) *(x *(x *(y * x)))] \quad(u s i n g(3.13)) . \tag{3.15}
\end{align*}
$$

Now by using (2.6) three times, we get

$$
\begin{align*}
& (x *(x *(y * x))) *(0 * x) \\
& \quad=[[[(y * x) *((y * x)(x *(x *(y * x))))] * x] *(0 * x)] *(0 * x) . \tag{3.16}
\end{align*}
$$

Since x, y and $x *(y * x) \in B\left(x_{0}\right)$, therefore $x * y, y * x, x *(x *(y * x)) \in M=B(0)$. Since X is branchwise commutative, therefore,

$$
\begin{align*}
(x & *(x *(y * x))) *(0 * x) \\
& =[[[(x *(x *(y * x))) *((x *(x *(y * x))) *(y * x))] * x] *(0 * x)] *(0 * x) \\
& =((((x *(x *(y * x))) * 0) * x) *(0 * x)) *(0 * x) \\
& =(((x *(x *(y * x))) * x) *(0 * x)) *(0 * x) \\
& =((0 *(x *(y * x))) *(0 * x)) *(0 * x) \\
& =(((0 * x) *(0 *(y * x))) *(0 * x)) *(0 * x) \\
& =(((0 * x) *(0 * x)) *(0 *(y * x))) *(0 * x) \\
& =(0 *(0 *(y * x))) *(0 * x) \\
& =(0 * 0) *(0 * x)=0 *(0 * x) . \tag{3.17}
\end{align*}
$$

Hence

$$
\begin{equation*}
(x *(x *(y * x))) *(0 * x)=0 *(0 * x) \in \operatorname{Med}(X) \tag{3.18}
\end{equation*}
$$

But (2.10) implies $0 *(0 *(0 * x))=0 * x$. So $0 * x \in \operatorname{Med}(X)$. Since $\operatorname{Med}(X)$ is an ideal of X, therefore, $x *(x *(y * x)) \in \operatorname{Med}(X)$. Hence

$$
\begin{equation*}
x *(x *(y * x))=0 *(0 *(x *(x *(y * x)))) \tag{3.19}
\end{equation*}
$$

Since $x *(x *(y * x)) \in M=B(0)$, therefore, $0 *(x *(x *(y * x)))=0$. Thus $x *(x *$ $(y * x))=0$, which gives

$$
\begin{equation*}
x \leq x *(y * x) \tag{3.20}
\end{equation*}
$$

Using (3.14) and (3.20), we get

$$
\begin{equation*}
x=x *(y * x) \quad \forall x, y \in B\left(x_{0}\right) . \tag{3.21}
\end{equation*}
$$

Hence X is branchwise implicative. This completes the proof.
Remark 3.12. Since in a BCK-algebra $X, \operatorname{Med}(X)=\{0\}$ is always an ideal of X, therefore the following well-known result regarding BCK-algebra follows as a corollary from Theorem 3.11.

Corollary 3.13. A BCK-algebra is implicative if and only if it is positive implicative and commutative.

Remark 3.14. The following example shows that there exist proper BCI-algebras in which $\operatorname{Med}(X)$ is an ideal. Thus the condition, $\operatorname{Med}(X)$ is an ideal of X, in Theorem 3.11 is not unnatural.

Example 3.15 (see [12, Example 2]). The set $X=\{0,1,2,3\}$ with the operation $*$ defined as

$*$	0	1	2	3
0	0	0	2	2
1	1	0	3	2
2	2	2	0	0
3	3	2	1	0
0				

is a proper BCI-algebra. Here $\operatorname{Med}(X)=\{0,2\}$ is an ideal of X. Further, X is branchwise implicative but is not medial.
Definition 3.16. Let X be a BCI-algebra. Two elements x, y of X are said to be comparable if and only if either $x * y=0$ or $y * x=0$, that is, either $x \leq y$ or $y \leq x$.

Definition 3.17. Let X be a BCI-algebra. If $x_{0} \in \operatorname{Med}(X)$ and $x_{0} \neq 0$, then $B\left(x_{0}\right)$, the branch of X determined by x_{0}, is called a proper BCI-branch of X.

Theorem 3.18. Let X be a BCI-algebra such that any two elements of a proper BCI-branch of X are comparable. Then X is branchwise implicative if and only if X is branchwise commutative and satisfies

$$
\begin{equation*}
(x * y) *(0 * y)=(((x * y) * y) *(0 * y)) *(0 * y) \quad \forall x, y \in X \tag{3.22}
\end{equation*}
$$

Proof. (\Rightarrow) Sufficiency follows from Theorems 3.8 and 3.9.
(ϵ) For necessity we consider the following two cases.
CASE 1. Let $x, y \in B(0)=M$. Then $0 * y=0 * x=0$ and hence (3.22) becomes $x * y=(x * y) * y$. Further, $(x *(y * x)) * x=(x * x) *(y * x)=0 *(y * x)=0$. Hence

$$
\begin{equation*}
x *(y * x) \leq x . \tag{3.23}
\end{equation*}
$$

Since $x * y \in M=B(0)$ and X is branchwise commutative, therefore,

$$
\begin{equation*}
x *(x *(y * x))=(y * x) *((y * x) * x)=(y * x) *(y * x)=0 \tag{3.24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
x * \leq x *(y * x) \tag{3.25}
\end{equation*}
$$

From (3.23) and (3.25), we get $x=x *(y * x)$ for all $x, y \in B(0)$.
CASE 2. Let $x, y \in B\left(x_{0}\right)$, where $x_{0} \in \operatorname{Med}(X)$ and $x_{0} \neq 0$. Thus $x * y \in M$ and $y * x \in M$. So $0 *(x * y)=0$ and $0 *(y * x)=0$. Further, taking $y=x * y$ in (3.22), we get

$$
\begin{equation*}
x *(x * y)=(x *(x * y)) *(x * y) \quad \forall x, y \in B\left(x_{0}\right) . \tag{3.26}
\end{equation*}
$$

Interchanging x and y in (3.26), we get

$$
\begin{equation*}
y *(y * x)=(y *(y * x)) *(y * x) \quad \forall x, y \in B\left(x_{0}\right) . \tag{3.27}
\end{equation*}
$$

Since x, y are comparable, therefore, either $y * x=0$ or $x * y=0$. If $y * x=0$, then

$$
\begin{equation*}
x *(y * x)=x * 0=x \tag{3.28}
\end{equation*}
$$

If $x * y=0$, then branchwise commutativeness of X gives

$$
\begin{equation*}
y *(y * x)=x *(x * y)=x * 0=x . \tag{3.29}
\end{equation*}
$$

Using (3.27) and (3.29), we get

$$
\begin{equation*}
x=x *(y * x) . \tag{3.30}
\end{equation*}
$$

Thus X is branchwise implicative.
Remark 3.19. The following example shows that the conditions $\operatorname{Med}(X)$ is an ideal of X and any two elements of a proper BCI-branch of X are comparable cannot be removed from Theorems 3.11 and 3.18, respectively.

Example 3.20. Let $X=\{0,1,2,3,4,5\}$ in which $*$ is defined by

$*$	0	1	2	3	4	5
0	0	0	3	2	3	3
1	1	0	3	2	3	3
2	2	2	0	3	0	0
3	3	3	2	0	2	2
4	4	2	1	3	0	1
5	5	2	1	3	1	0

Routine calculations give that X is a BCI-algebra, which is branchwise commutative and satisfies (3.22). But we note that
(1) $\operatorname{Med}(X)=\{0,2,3\}$ is not an ideal of X because $4 * 3=3 \in \operatorname{Med}(X), 3 \in \operatorname{Med}(X)$ but $4 \notin \operatorname{Med}(X)$. Further, X is not branchwise implicative because $4,5 \in B(2)$ and $4 *(5 * 4)=4 * 1=2 \neq 4$;
(2) the elements 4 and 5 of $B(2)$ are not comparable and also X is not branchwise implicative.

Combining Theorems 3.11 and 3.18, we get the following theorem.
THEOREM 3.21. Let X be a BCI-algebra such that either $\operatorname{Med}(X)$ is an ideal of X or every pair of elements of a proper BCI-branch of X are comparable, then X is branchwise implicative if and only if X is branchwise commutative and satisfies (3.22).

ACKNOWLEDGEMENT. The author gratefully acknowledges the support provided by King Fahd University of Petroleum and Minerals during this research.

REFERENCES

[1] M. A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japon. 35 (1990), no. 1, 141-151.
[2] , On BCH-algebras, Math. Japon. 36 (1991), no. 4, 665-676.
[3] _ Branchwise commutative BCI-algebras, Math. Japon. 37 (1992), no. 1, 163-170.
[4] W. A. Dudek, On some BCI-algebras with the condition (S), Math. Japon. 31 (1986), no. 1, 25-29.
[5] C. S. Hoo, BCI-algebras with condition (S), Math. Japon. 32 (1987), no. 5, 749-756.
[6] C. S. Hoo and P. V. Ramana Murty, Quasicommutative p-semisimple BCI algebras, Math. Japon. 32 (1987), no. 6, 889-894.
[7] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[8] , On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
[9] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), no. 4, 351366.
[10] , An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), no. 1, 1-26.
[11] K. Iséki and A. B. Thaheem, Note on BCI-algebras, Math. Japon. 29 (1984), no. 2, 255-258.
[12] E. H. Roh and Y. Huang, J-semisimple BCI-algebras, Math. Japon. 49 (1999), no. 2, 213216.
[13] L. Tiande and X. Changchang, p-radical in BCI-algebras, Math. Japon. 30 (1985), no. 4, 511-517.

Muhammad Anwar Chaudhry: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

E-mail address: chaudhry@kfupm.edu.sa

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

