THE MONAD INDUCED BY THE HOM-FUNCTOR IN THE CATEGORY OF TOPOLOGICAL SPACES AND ITS ASSOCIATED EILENBERG-MOORE ALGEBRAS

KOENA R. NAILANA

Received 15 September 2001

Abstract

We discuss the monad associated with the topology of pointwise convergence. We also study examples of the Eilenberg-Moore algebras for this monad.

2000 Mathematics Subject Classification: 18C15, 54B30, 54F05.

1. Introduction. Let Top denote the category of topological spaces and continuous functions. Let \mathbb{R} denote the real line with the usual topology, and for each topological space X, let $C(X, \mathbb{R})$ be the set of continuous real-valued functions from X to \mathbb{R}. Consider the contravariant hom-functor C_{p} : Top \rightarrow Top ${ }^{\text {op }}$ defined by assigning to each space X the space of continuous real-valued functions with the topology of pointwise convergence. We denote this space by $C_{p} X$. The space $C_{p} X$ has been extensively studied. A fundamental reference on $C_{p} X$ is Arkhangel'skiĭ [2]. We recall that the subbasic open sets of $C_{p} X$ are sets of the form $[f, V]$, where $[x, V]=\left\{f \in C_{p} X: f(x) \in\right.$ V, V open in $\mathbb{R}\}$.
2. The monad induced by the hom-functor in Top and the associated M-algebras. We now consider the composite functor $C_{p}^{\mathrm{op}} C_{p}$: Top \rightarrow Top $^{\mathrm{op}} \rightarrow$ Top where C_{p}^{op} is the dual functor. Let $M=C_{p}^{\mathrm{op}} C_{p}$. If $x \in X$, then the function $\hat{x}: C_{p} X \rightarrow \mathbb{R}$ defined by $\hat{x}(f)=$ $f(x)$ is called the evaluation map at x. The following propositions are important since they ensure that our morphisms are continuous. The proofs are straightforward and will be omitted.

PROPOSITION 2.1. (i) For all $x \in X, \hat{x}: C_{p} X \rightarrow \mathbb{R}$ is continuous.
(ii) For all $g \in C_{p} X, \hat{g}: M C_{p} X \rightarrow \mathbb{R}$ is continuous.

Proposition 2.2. Let X be any topological space. Then
(i) $\eta_{X}: X \rightarrow M X$, where $\eta_{X}(x)=\hat{x}$ is continuous.
(ii) $\mu_{X}: M M X \rightarrow M X$, where $\mu_{X}(\gamma)[g]=\gamma(\hat{g})$ is continuous.

We recall from [1] that a monad on a category \mathbb{A} is a triplet $\mathbb{M}=(M, \eta, \mu)$ consisting of a functor $M: \mathbb{A} \rightarrow \mathbb{A}$ and natural transformations $\eta: \mathrm{id}_{\mathbb{A}} \rightarrow M$ and $\mu: M M \rightarrow M$ such that $\mu \circ M \mu=\mu \circ \mu M, \mu \circ M \eta=\mathrm{id}$, and $\mu \circ \eta M=\mathrm{id}$.

PROPOSITION 2.3. The triplet (M, η, μ), where $\eta: \mathrm{id}_{\text {Top }} \rightarrow M$ and $\mu: M M \rightarrow M$ are defined by $\eta_{X}(x)=\hat{x}$ and $\mu_{X}(\gamma)[g]=\gamma(\hat{g})$, respectively, where $x \in X, g \in C_{p} X$, is a monad.

Proof. We first check that $\eta: \mathrm{id}_{\text {Top }} \rightarrow M$ and $\mu: M M \rightarrow M$ are natural transformations. Let $f: X \rightarrow Y$ be a continuous function. We show that $M(f) \circ \eta_{X}=\eta_{Y} \circ f$. We define η_{X} and $M(f)$ by $\eta_{X}(x)=\hat{x}$ and $M(f)(\gamma)[g]=\gamma(g \circ f)$ where $g: Y \rightarrow \mathbb{R}$ is continuous, $\gamma \in M(X)$, and ${ }^{\wedge}$ denotes evaluation, for example, $\hat{x}(g)=g(x)$. Then $M(f) \circ \eta_{X}(x)=M(f)(\hat{x})$. Let $g \in C_{p} X$. Then $M(f)(\hat{x})[g]=\hat{x}(g \circ f)=g \circ f(x)=$ $g(f(x))=\widehat{f(x)}[g]$. Hence $M(f)(\hat{x})=\widehat{f(x)}$. Now $\eta_{Y} \circ f(x)=\eta_{Y}(f(x))=\widehat{f(x)}$. Let $g \in C_{p} X$. Then $\widehat{f(x)}[g]=g(f(x))$. Hence $M(f) \circ \eta_{X}=\eta_{Y} \circ f$. We define μ_{X} by $\mu_{X}(\gamma)[g]=\gamma(\hat{g})$ where $\gamma \in M M(X), g \in C_{p} X$, and \hat{g} denotes the evaluation function at g, that is, $\hat{g}: M(X) \rightarrow \mathbb{R}$. We now show that $\mu: M M \rightarrow M$ is a natural transformation, that is, $M(f) \circ \mu_{X}=\mu_{Y} \circ M^{2}(f)$. Let $h \in C_{p} Y$. Then

$$
\begin{equation*}
\left(M(f) \circ \mu_{X}\right)(\gamma)[h]=M(f)\left(\mu_{X}(\gamma)\right)[h]=\mu_{X}(\gamma)(h \circ f)=\gamma(\widehat{h \circ f}) . \tag{2.1}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\mu_{Y} \circ M^{2}(f)(\gamma)[h] & =\mu_{Y}\left(M^{2}(f)(\gamma)\right)[h] \\
& =M^{2}(f)(\gamma)(\hat{h}) \\
& =M(M(f))(\gamma)(\hat{h}) \tag{2.2}\\
& =\gamma(\hat{h} \circ M(f)) .
\end{align*}
$$

Let $\lambda: C_{p} X \rightarrow \mathbb{R}$. Then $(\hat{h} \circ M(f))(\lambda)=\hat{h}(M(f)(\lambda))=M(f)(\lambda)[h]=\lambda(h \circ f)=$ $\widehat{h \circ f}(\lambda)$. Therefore, $\hat{h} \circ M(f)=\widehat{h \circ f}$. From the equations

$$
\begin{align*}
M(f) \circ \mu_{X}(\gamma)[h] & =\gamma(\widehat{h \circ f}), \\
\mu_{Y} \circ M^{2}(f)(\gamma)[h] & =\gamma(\hat{h} \circ M(f)), \tag{2.3}\\
(\hat{h} \circ M(f))(\lambda) & =\widehat{h \circ f}(\lambda),
\end{align*}
$$

we get $M(f) \circ \mu_{X}=\mu_{Y} \circ M^{2}(f)$. Therefore $\mu: M M \rightarrow M$ is a natural transformation. We now show that the other monad conditions are satisfied. First, we show that $\mu_{X} \circ M \eta=i d$. We prove that $\mu_{X} \circ M \eta=i d$ and $\mu_{X} \circ \eta_{M}=i d$. Let $\gamma \in M(X)$ and $f \in C_{p} X$. Then $\hat{f}: M(X) \rightarrow \mathbb{R}$ and $\left(\mu_{X} \circ M \eta\right)(\gamma) \in M(X)$. Then $\left(\mu_{X} \circ M \eta\right)(\gamma)[f]=$ $\mu_{X}(M \eta(\gamma))[f]=M \eta(\gamma)(\hat{f})=\gamma(\hat{f} \circ \eta)=\gamma[f]$. Therefore $\mu_{X} \circ M \eta=$ id. On the other hand $\left(\mu_{X} \circ \eta_{M}\right)(\gamma)[f]=\mu_{X}\left(\eta_{M}\right)(\gamma)[f]=\eta_{M}(\gamma)[\hat{f}]=\hat{\gamma}(\hat{f})=\hat{f}(\gamma)=\gamma(f)$. Therefore $\mu_{X} \circ \eta_{M}=$ id. Second, we show that $\mu_{X} \circ \mu_{M}=\mu_{X} \circ M \mu_{X}$. We prove that $\mu_{X} \circ \mu_{M}=$ $\mu_{X} \circ M \mu_{X}$. Let $\gamma \in \operatorname{MMM}(X)$. Then $\mu_{X} \circ M \mu_{X}(\gamma) \in M(X)$. Let $f \in C_{p} X$. Then $\left(\mu_{X} \circ\right.$ $\left.M \mu_{X}\right)(\gamma)[f]=\mu_{X}\left(M \mu_{X}(\gamma)\right)[f]=M \mu_{X}(\gamma)[\hat{f}]=\gamma\left(\hat{f} \circ \mu_{X}\right)=\gamma(\hat{\hat{f}})$. On the other hand, $\left(\mu_{X} \circ \mu_{M}\right)(\gamma)[f]=\mu_{X}\left(\mu_{M}(\gamma)\right)[f]=\mu_{M}(\gamma)(\hat{f})=\gamma(\hat{f})$. Therefore $\mu_{X} \circ \mu_{M}=\mu_{X} \circ M \mu_{X}$. Therefore (M, η, μ) is a monad.

If $\mathbb{M}=(M, \eta, \mu)$ is a monad on \mathbb{A}, then $\left(A, h_{A}\right)$ is called an Eilenberg-Moore algebra or simply an M-algebra if the algebra map $h_{A}: M A \rightarrow A$ satisfies $h_{A} \circ \eta_{A}=\operatorname{id}_{A}$ and $h_{A} \circ M h_{A}=h_{A} \circ \mu_{A}$.

We now look at examples of the M-algebras of the monad (M, η, μ).

Proposition 2.4. The real line \mathbb{R} is an M-algebra.
Proof. We define $h_{\mathbb{R}}: M \mathbb{R} \rightarrow \mathbb{R}$ as $\hat{\mathbf{1}}_{\mathbb{R}}$, that is, the identity map with respect to \mathbb{R}, and show that the M-algebra conditions are satisfied. It is obvious that the map $h_{\mathbb{R}}$ is continuous. Let $x \in \mathbb{R}$. Then $h_{\mathbb{R}} \circ \eta_{\mathbb{R}}(x)=h_{\mathbb{R}}(\hat{x})=\hat{x}\left(\mathbf{1}_{\mathbb{R}}\right)=\mathbf{1}_{\mathbb{R}}(x)$. Therefore $h_{\mathbb{R}} \circ \eta_{\mathbb{R}}=\mathbf{1}_{\mathbb{R}}$. Now let $\gamma \in M M(\mathbb{R})$. Then $h_{\mathbb{R}} \circ \mu_{\mathbb{R}}(\gamma)=\hat{\mathbf{1}}_{\mathbb{R}}\left(\mu_{\mathbb{R}}(\gamma)\right)=\mu_{\mathbb{R}}(\gamma)\left(\mathbf{1}_{\mathbb{R}}\right)=\gamma\left(\hat{\mathbf{1}}_{\mathbb{R}}\right)$. On the other hand, $h_{\mathbb{R}} \circ M h_{\mathbb{R}}(\gamma)=\hat{\mathbf{1}}_{\mathbb{R}}\left(M \hat{\mathbf{1}}_{\mathbb{R}}(\gamma)\right)=\hat{\mathbf{1}}_{\mathbb{R}}\left(\gamma \circ C_{p}\left(\hat{\mathbf{1}}_{\mathbb{R}}\right)\right)=\gamma \circ C_{p}\left(\hat{\mathbf{1}}_{\mathbb{R}}\right)\left(\mathbf{1}_{\mathbb{R}}\right)=$ $\gamma\left(C_{p}\left(\hat{\mathbf{1}}_{\mathbb{R}}\right)\left(\mathbf{1}_{\mathbb{R}}\right)\right)=\gamma\left(\mathbf{1}_{\mathbb{R}} \circ \hat{\mathbf{1}}_{\mathbb{R}}\right)=\gamma\left(\hat{\mathbf{1}}_{\mathbb{R}}\right)$. Therefore $h_{\mathbb{R}} \circ \mu_{\mathbb{R}}=h_{\mathbb{R}} \circ M h_{\mathbb{R}}$.

Proposition 2.5. For each $X \in \mathrm{Top}, C_{p} X$ is an M-algebra with $h_{C_{p} X}=C_{p}\left(\eta_{X}\right)$.
Proof. We first define $h_{C_{p} X}: M C_{p} X \rightarrow C_{p} X$. Let $\varphi \in M C_{p} X$. We define $h_{C_{p} X}$ by $h_{C_{p} X}(\varphi)=\varphi \circ \eta_{X}=C_{p} \eta_{X}(\varphi)$. Then the map $h_{\mathcal{C}_{p} X}$ is continuous, since it is the composite of continuous functions φ and η_{X}. We now show that the conditions for an M-algebra are satisfied. Thus, we must show that $h_{C_{p} X} \circ \eta_{C_{p} X}=\operatorname{id}_{C_{p} X}$. Let $f \in C_{p} X$. Then $h_{C_{p} X} \circ \eta_{C_{p} X}(f)=h_{C_{p} X}\left(\eta_{C_{p} X}(f)\right)=C_{p} \eta_{X}(\hat{f})=\hat{f} \circ \eta_{X}=f=\operatorname{id}_{C_{p} X}(f)$, since $\hat{f} \circ \eta_{X}(x)=\hat{f}\left(\eta_{X}(x)\right)=\hat{x}(f)=f(x)$. Therefore $h_{C_{p} X} \circ \eta_{C_{p} X}=\operatorname{id}_{C_{p} X}$.

We must now show that $h_{C_{p} X} \circ \mu_{C_{p} X}=h_{C_{p} X} \circ M h_{C_{p} X}$. Let $\gamma \in M M C_{p} X$. Then $h_{C_{p} X} \circ$ $\mu_{C_{p} X}(\gamma)=h_{C_{p} X}\left(\mu_{C_{p} X}(\gamma)\right)=C_{p} \eta_{X}\left(\mu_{C_{p} X}(\gamma)\right)=\mu_{C_{p} X}(\gamma) \circ \eta_{X}$. Now let $x \in X$. Then $\mu_{C_{p} X}(\gamma) \circ \eta_{X}(x)=\mu_{C_{p} X}(\gamma)(\hat{x})=\gamma(\hat{\hat{x}})$. On the other hand, $h_{C_{p} X} \circ M h_{C_{p} X}(\gamma)=C_{p} \eta_{X} \circ$ $M C_{p} \eta_{X}(\gamma)=C_{p}\left(M \eta_{X} \circ \eta_{X}\right)(\gamma)=\gamma \circ M \eta_{X} \circ \eta_{X}$. Let $x \in X$. Then $M \eta_{X} \circ \eta_{X}(x)=M \eta_{X}(\hat{x})$ $=\hat{x} \circ C_{p} \eta_{X}=\hat{\hat{x}}$. Therefore $h_{C_{p} X} \circ \mu_{C_{p} X}=h_{C_{p} X} \circ M h_{C_{p} X}$. Hence $C_{p} X$ is an M-algebra.

Proposition 2.6. Retracts of $C_{p} X$ are M-algebras.
Proof. Let $g: C_{p} Y \rightarrow X$ be a retraction. Then there is a continuous function f : $X \rightarrow C_{p} Y$ such that $g \circ f=\mathrm{id}_{X}$. The following diagram will help us define the algebra map $h_{X}: M X \rightarrow X$:

Define

$$
\begin{equation*}
h_{X}=g \circ C_{p} \eta \circ M f=g \circ C_{p}\left(C_{p} f \circ \eta_{Y}\right) . \tag{2.5}
\end{equation*}
$$

Since h_{X} is the composite of continuous functions, then it is continuous.

Now,

$$
\begin{align*}
h_{X} \circ \eta_{X}(x) & =h_{X}(\hat{x})=g\left(C\left(C f \circ \eta_{Y}\right)(\hat{x})\right)=g\left(\hat{x} \circ C f \circ \eta_{Y}\right) \\
& =g\left(\widehat{f(x)} \circ \eta_{Y}\right)=g(f(x))=\operatorname{id}_{X}(x), \tag{2.6}
\end{align*}
$$

since g is a retraction.
We now show that $h_{X} \circ \mu_{X}=h_{X} \circ M h_{X}$. Let $\gamma \in M M X$. Then

$$
\begin{align*}
h_{X} \circ \mu_{X}(\gamma) & =h_{X}\left(\mu_{X}(\gamma)\right)=g \circ C_{p}\left(C_{p} f \circ \eta_{Y}\right)\left(\mu_{X}(\gamma)\right) \\
& =g\left(C_{p}\left(C_{p} f \circ \eta_{Y}\right)\left(\mu_{X}(\gamma)\right)\right)=g\left(\mu_{X}(\gamma) \circ C_{p} f \circ \eta_{Y}\right) . \tag{2.7}
\end{align*}
$$

If $k \in C_{p} X$, then

$$
\begin{equation*}
\mu_{X}(\gamma)(k)=\gamma(\hat{k}) . \tag{2.8}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
h_{X} \circ M h_{X} & =g \circ C_{p}\left(C_{p} f \circ \eta_{Y}\right) \circ M\left(g \circ C_{p}\left(C_{p} f \circ \eta_{Y}\right)\right) \\
& =g \circ C_{p} \eta_{Y} \circ M f \circ M g \circ M C_{p}\left(C_{p} f \circ \eta_{Y}\right) \\
& =g \circ C_{p} \eta_{Y} \circ M(f \circ g) \circ M C_{p}\left(C_{p} f \circ \eta_{Y}\right) \\
& =g \circ C_{p} \eta_{Y} \circ M\left(\mathrm{id}_{X}\right) \circ M C_{p}\left(C_{p} f \circ \eta_{Y}\right) \tag{2.9}\\
& =g \circ C_{p} \eta_{Y} \circ M C_{p}\left(C_{p} f \circ \eta_{Y}\right) \\
& =g \circ C_{p}\left(M\left(C_{p} f \circ \eta_{Y}\right) \circ \eta_{Y}\right) \\
& =g \circ C_{p}\left(\eta_{C_{p} X} \circ C_{p} f \circ \eta_{Y}\right) .
\end{align*}
$$

Now,

$$
\begin{align*}
h_{X} \circ M h_{X}(\gamma) & =g\left(C_{p}\left(\eta_{C_{p} X} \circ C_{p} f \circ \eta_{Y}\right)(\gamma)\right) \\
& =g\left(\gamma \circ \eta_{C_{p} X} \circ C_{p} f \circ \eta_{Y}\right) . \tag{2.10}
\end{align*}
$$

We only need to show that $\gamma \circ \eta_{C_{p} X}=\mu_{X}$. Let $k \in C_{p} X$. Then $\gamma \circ \eta_{C_{p} X}(k)=\gamma\left(\eta_{C_{p} X}(k)\right)$ $=\gamma(\hat{k})$. From (2.8), we have $\gamma \circ \eta_{C_{p} X}=\mu_{X}$ and therefore $h_{X} \circ \mu_{X}=h_{X} \circ M h_{X}$. Hence retracts of $C_{p} X$ are M-algebras.
3. The algebra morphisms and the transfer of ring structure from $M X$ to X for an M-algebra $\left(X, h_{X}\right)$. For an M-algebra (X, h_{X}) the ring structure on $M X$ can be transferred to X, via h_{X}, in such a way that X becomes a ring with respect to the induced operations.

Definition 3.1. On an M-algebra (X, h_{X}) define
(i) $x_{1}+x_{2}$ to be $h_{X}\left(\eta_{X}\left(x_{1}\right)+\eta_{X}\left(x_{2}\right)\right)$,
(ii) $x_{1} \cdot x_{2}$ to be $h_{X}\left(\eta_{X}\left(x_{1}\right) \cdot \eta_{X}\left(x_{2}\right)\right)$.

In addition to the ring structure defined above we also define the scalar multiplication in the following way: define $t x$ to be $h_{X}\left(t \eta_{X}(x)\right)$, where t is a scalar.
According to Definition 3.1, $C_{p} X$ (being an M-algebra, Proposition 2.5) has now two concepts of the operations " + " and "•", the natural one defined pointwise

$$
\begin{equation*}
\left(h_{X}(x+y)=h_{X}(x)+h_{X}(y), h_{X}(x y)=h_{x}(x) h_{X}(y)\right) \tag{3.1}
\end{equation*}
$$

and Definition 3.1. The same applies to $M X$. We omit the straightforward proof of the following proposition.

Proposition 3.2. The natural operations on $M X$ defined pointwise coincide with the corresponding ones defined above.

Lemma 3.3. The topology on X is initial with respect to η_{X}, that is, X has the weak topology induced by η_{X} into $C_{p} C_{p} X=M X$.

Proof. Basic neighborhoods of $\eta_{X}(x)$ have inverse images of η_{X} of the form $\cap_{i=1}^{n} f_{i}^{-1}\left[W_{i}\right]$.

LemmA 3.4 [2]. Let $\varphi \in C_{p} C_{p} X$ such that $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(\mathbb{R}, h_{\mathbb{R}}\right)$ is a linear functional. Then there are $x_{1}, \ldots, x_{n} \in X, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $\varphi=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}$.

Proposition 3.5. If $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(\mathbb{R}, h_{\mathbb{R}}\right)$ is a nontrivial continuous multiplicative linear functional, then there is $x \in X$ such that $\varphi=\hat{x}$, that is, φ is a point evaluation.

Proof. By Lemma 3.4, there are points $x_{1}, \ldots, x_{n} \in X$, and scalars $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $\varphi=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}$ where $\lambda_{i}=\varphi\left(g_{i}\right), g_{i} \in C_{p} X$ being such that $g_{i}\left(x_{i}\right)=1$, $g_{i}\left(x_{j}\right)=0$ for $i \neq j, 0 \leq g_{i} \leq 1$. Now $\varphi\left(g_{k}^{2}\right)=\varphi\left(g_{k}\right)^{2}=\lambda_{k}$. Also $\varphi\left(g_{k}^{2}\right)=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}\left(g_{k}^{2}\right)$ $=\sum_{i=1}^{n} \lambda_{i} g_{k}^{2}\left(x_{i}\right)=\lambda_{k}$.
Thus $\lambda_{k}=\lambda_{k}^{2}$, so that $\lambda_{k}=0$ or $\lambda_{k}=1$ for $k=1,2, \ldots, n$. Moreover, $\lambda_{k}=g_{k}\left(x_{k}\right) \geq 0$. Furthermore, $\varphi(\mathbf{1})=1$ gives $1=\varphi(\mathbf{1})=\sum_{i=1}^{n} \lambda_{i} \hat{x}_{i}(\mathbf{1})=\sum_{i=1}^{n} \lambda_{i}$. Consequently, all λ_{i} 's except one are zero, the exceptional one being one 1 . Let $x=x_{l}$, where $\lambda_{l}=1$. Then $\lambda_{i}=0$ for $i \neq l$, so that $\varphi=\lambda_{l} \hat{x}_{l}=\hat{x}_{l}$.

Proposition 3.6. Let $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(\mathbb{R}, h_{\mathbb{R}}\right)$ be an algebra map. Then φ is a continuous ring homomorphism.

Proof. Given $f, g \in C_{p} X$, consider $\eta_{C_{p} X}(f)+\eta_{C_{p} X}(g)$ in $M C_{p} X$. We have

$$
\begin{equation*}
h_{\mathbb{R}} \circ C^{2} \varphi\left(\eta_{C_{p} X}(f)+\eta_{C_{p} X}(g)\right)=h_{\mathbb{R}} \circ M \varphi\left(\eta_{C_{p} X}(f)\right)+h_{\mathbb{R}} \circ M \varphi\left(\eta_{C_{p} X}(g)\right) \tag{3.2}
\end{equation*}
$$

by Lemma 3.4.
Hence $\varphi \circ h_{X}\left(\eta_{C_{p} X}(f)+\eta_{C_{p} X}(g)\right)=\varphi \circ h_{X}\left(\eta_{C_{p} X}(f)\right)+\varphi \circ h_{X}\left(\eta_{C_{p} X}(g)\right)$, so that $\varphi(f+g)=\varphi(f)+\varphi(g)$, since h_{X} preserves the ring structure. Similarly, $\varphi(f \cdot g)=$ $\varphi(f) \cdot \varphi(g)$. We also have $\varphi(t f)=t \varphi(f), t \in \mathbb{R}$. Moreover $\varphi(\mathbf{1})=1$, where $\mathbf{1}$ denotes the constant function with value equal to 1 .

Proposition 3.7. Every algebra map $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(\mathbb{R}, h_{\mathbb{R}}\right)$ is a point evaluation map.

Proof. By the above proposition, φ is a continuous ring homomorphism, that is, a continuous multiplicative linear functional. Thus, there is some $x \in X$ such that $\varphi(f)=f(x)$ for all f in $C_{p} X$, by the above proposition.

THEOREM 3.8. The algebra morphisms $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(\mathbb{R}, h_{\mathbb{R}}\right)$ are precisely the morphisms \hat{x}, where $x \in X$, that is, the point evaluation map.

Proof. Suppose $\varphi=\hat{x}$, for some $x \in X$. Let $\gamma \in M C_{p} X$. Take $h_{X}=C_{p} \eta_{C_{p} X}$ and $h_{\mathbb{R}}=\hat{1}_{\mathbb{R}}$. Then $\varphi \circ h_{X}(\gamma)=\hat{x} \circ C_{p} \eta_{C_{p} X}(\gamma)=\hat{x}\left(C_{p} \eta_{C_{p} X}(\gamma)\right)=\gamma \circ \eta_{X}(x)=\gamma(\hat{x})$. On the other hand, $h_{\mathbb{R}} \circ M(\varphi)(\gamma)=h_{\mathbb{R}}(M(\varphi)(\gamma))=\hat{1}_{\mathbb{R}}(M(\varphi)(\gamma))=M(\varphi)(\gamma)\left(\mathbf{1}_{\mathbb{R}}\right)=\gamma\left(\mathbf{1}_{\mathbb{R}} 。\right.$ $\varphi)=\gamma(\varphi)=\gamma(\hat{x})$. Therefore, $\varphi \circ h_{X}=h_{\mathbb{R}} \circ M(\varphi)$ and thus $\varphi=\hat{x}$ is an algebra morphism. The converse follows from Proposition 3.7.

Proposition 3.9. The algebra morphisms $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(C_{p} Y, h_{C_{p} Y}\right)$ are the maps $C_{p}(f)$, where $f: Y \rightarrow X$ is continuous.
Proof. Suppose that $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(C_{p} Y, h_{C_{p} Y}\right)$ is an algebra map. Given $y \in$ $Y, \hat{y} \circ \varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(\mathbb{R}, h_{\mathbb{R}}\right)$ is an algebra map, since the composition of two algebra maps is an algebra map. Thus the following diagram is commutative:

By Theorem 3.8, $\hat{y} \circ \varphi=\hat{x}$ for some $x \in X$. Put $x=f(y)$. Thus f maps Y into X. Since X has the initial topology induced by η_{X}, f will be continuous if $\eta_{X} \circ f$ is continuous. Now $\eta_{X} \circ f(y)=\hat{x}=\hat{y} \circ \varphi=C \varphi\left(\eta_{Y}(y)\right)$. Thus $\eta_{X} \circ f=C \varphi \circ \eta_{Y}$, so that $\eta_{X} \circ f$ is continuous, hence f is continuous, as required. It remains to prove that $\varphi=C f$. Since the functions \hat{y} distinguish the points of $C_{p} Y$, it suffices to prove that $\hat{y} \circ \varphi=\hat{y} \circ C f$ for every $y \in Y$. Now $\hat{y}(C f(g))=\hat{y}(g \circ f)=g \circ f(y)=g(f(y))=$ $g(x)$. Also $\hat{y}(\varphi(g))=\hat{y} \circ \varphi(g)=\hat{x}(g)=g(x)$. Hence $\hat{y} \circ \varphi=\hat{y} \circ C f$ for all $y \in Y$, so that $\varphi=C f$.

Conversely suppose the morphism $\varphi:\left(C_{p} X, h_{C_{p} X}\right) \rightarrow\left(C_{p} Y, h_{C_{p} Y}\right)$ is such that $\varphi=$ $C f$. Then by Proposition 3.9, φ is an algebra morphism.

Proposition 3.10. The map $h_{C_{p} X}: M C_{p} X \rightarrow C_{p} X$ preserves the ring structure of the function spaces, operations being defined pointwise.

Proof. Let $\varphi, \psi \in M C_{p} X$, so that $\varphi, \psi: M X \rightarrow \mathbb{R}$. The maps $\varphi+\psi, \varphi \cdot \psi$, and $t \varphi$ (where $t \in \mathbb{R}$) are both defined pointwise, so that $(\varphi+\psi)(\lambda)=\varphi(\lambda)+\psi(\lambda), \varphi \cdot \psi(\lambda)=$ $\varphi(\lambda) \cdot \psi(\lambda)$, and $(t \varphi)(\lambda)=t \varphi(\lambda)$, for all $\lambda \in C_{p} X$. Now $h_{C_{p} X}(\varphi)=C \eta_{X}(\varphi)=\varphi \circ \eta_{X}$, hence $h_{C_{p} X}(\varphi+\psi)=(\varphi+\psi) \circ \eta_{X}$. Thus

$$
\begin{align*}
(\varphi+\psi) \circ \eta_{X}(x) & =(\varphi+\psi)\left(\eta_{X}(x)\right)=\varphi\left(\eta_{X}(x)\right)+\psi\left(\eta_{X}(x)\right) \\
& =h_{C_{p} X}(\varphi)(x)+h_{C_{p} X}(\psi)(x)=\left(h_{C_{p} X}(\varphi)+h_{C_{p} X}(\psi)\right)(x) . \tag{3.4}
\end{align*}
$$

Since this holds for every $x \in X$, we have $h_{C_{p} X}(\varphi+\psi)=h_{C_{p} X}(\varphi)+h_{C_{p} X}(\psi)$.
The proof that $h_{C_{p} X}(\varphi \cdot \psi)=h_{\mathcal{C}_{p} X}(\varphi) \cdot h_{C_{p} X}(\psi)$ is similar. We also have $h_{C_{p} X}(t \varphi)$ $=t h_{C_{p} X}(\varphi)$, where t is a scalar.

Proposition 3.11. For any $f: Y \rightarrow X$, the map $C_{p} f: C_{p} X \rightarrow C_{p} Y$ preserves the ring structure.

Proof. Since $C_{p} f$ acts by composition on the right, the result is clear. We will verify one case only: $C_{p} f(\varphi+\psi)=C_{p} f(\varphi)+C_{p} f(\psi)$. Then

$$
\begin{align*}
C_{p} f(\varphi+\psi)(y) & =(\varphi+\psi)(f(y))=\varphi(f(y))+\psi(f(y)) \\
& =C_{p} f(\varphi)(y)+C_{p} f(\psi)(y)=\left(C_{p} f(\varphi)+C_{p} f(\psi)\right)(y) . \tag{3.5}
\end{align*}
$$

Since the equality holds for every $y \in Y, C_{p} f(\varphi+\psi)=C_{p} f(\varphi)+C_{p} f(\psi)$.
Problem 3.12. Characterize fully the Eilenberg-Moore category of M-algebras.

References

[1] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, Pure and Applied Mathematics, John Wiley \& Sons, New York, 1990.
[2] A. V. Arkhangel'skiĭ, Topological Function Spaces, Mathematics and Its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers, Dordrecht, 1992.

Koena R. Nailana: Department of Mathematics, Applied Mathematics and Astronomy, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

E-mail address: nailakr@unisa.ac.za

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

