SUFFICIENT CONDITIONS FOR UNIVALENCE IN \mathbb{C}^{n}

DORINA RÃDUCANU

Received 1 October 2001 and in revised form 8 April 2002

The method of subordination chains is used to establish new univalence criteria for holomorphic mappings in the unit ball of \mathbb{C}^{n}. Various criteria involving the first and the second derivative of a holomorphic mapping in the unit ball of \mathbb{C}^{n} are developed.

2000 Mathematics Subject Classification: 32Hxx.

1. Introduction. Let \mathbb{C}^{n} be the space of n-complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the usual inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and Euclidean norm $\|z\|=\langle z, z\rangle^{1 / 2}$.

Let $H\left(B^{n}\right)$ denote the class of mappings $f(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right), z=\left(z_{1}, \ldots, z_{n}\right)$, that are holomorphic in the unit ball $B^{n}=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$ with values in \mathbb{C}^{n}. A mapping $f \in H\left(B^{n}\right)$ is said to be locally biholomorphic in B^{n} if f has a local inverse at each point in B^{n} or, equivalently, if the derivative

$$
\begin{equation*}
D f(z)=\left(\frac{\partial f_{k}(z)}{\partial z_{j}}\right)_{1 \leq j, k \leq n} \tag{1.1}
\end{equation*}
$$

is nonsingular at each point $z \in B^{n}$.
The second derivative of a mapping $f \in H\left(B^{n}\right)$ is a symmetric bilinear operator $D^{2} f(z)(\cdot, \cdot)$ on $\mathbb{C}^{n} \times \mathbb{C}^{n}$, and $D^{2} f(z)(z, \cdot)$ is the linear operator obtained by restricting $D^{2} f(z)$ to $\{z\} \times \mathbb{C}^{n}$. The matrix representation for $D^{2} f(z)(z, \cdot)$ is

$$
\begin{equation*}
D^{2} f(z)(z, \cdot)=\left(\sum_{m=1}^{n} \frac{\partial^{2} f_{k}(z)}{\partial z_{j} \partial z_{m}} z_{m}\right)_{1 \leq j, k \leq n} \tag{1.2}
\end{equation*}
$$

We denote by $\mathscr{L}\left(\mathbb{C}^{n}\right)$ the space of continuous linear operators from \mathbb{C}^{n} into \mathbb{C}^{n}, that is, the $n \times n$ complex matrices $A=\left(A_{j k}\right)$ with the usual operator norm

$$
\begin{equation*}
\|A\|=\sup \{\|A z\|:\|z\| \leq 1\}, \quad A \in \mathscr{L}\left(\mathbb{C}^{n}\right) \tag{1.3}
\end{equation*}
$$

Let $f, g \in H\left(B^{n}\right)$. We say that f is subordinate to $g(f \prec g)$ in B^{n} if there exists a mapping $v \in H\left(B^{n}\right)$ with $\|v(z)\| \leq\|z\|$, for all $z \in B^{n}$ such that $f(z)=g(v(z))$, $z \in B^{n}$.

A function $L: B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ is a univalent subordination chain if for each $t \in$ $[0, \infty)$ and $L(\cdot, t) \in H\left(B^{n}\right), L(\cdot, t)$ is univalent in B^{n} and $L(\cdot, s) \prec L(\cdot, t)$ whenever $0 \leq s \leq t<\infty$.

We will use the following theorem to prove our results.
THEOREM 1.1 [1]. Let $L(z, t)=a_{1}(t) z+\cdots, a_{1}(t) \neq 0$, be a function from $B^{n} \times[0, \infty)$ into \mathbb{C}^{n} such that
(i) for each $t \geq 0, L(\cdot, t) \in H\left(B^{n}\right)$;
(ii) $L(z, t)$ is a locally absolutely continuous function of $t \in[0, \infty)$, locally uniformly with respect to $z \in B^{n}$;
(iii) $a_{1}(t) \in C_{[0, \infty)}^{1}$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$.

Let $h(z, t)$ be a function from $B^{n} \times[0, \infty)$ into \mathbb{C}^{n} which satisfies the following conditions:
(iv) for each $t \geq 0, h(\cdot, t) \in H\left(B^{n}\right)$;
(v) for each $z \in B^{n}, h(z, \cdot)$ is a measurable function on $[0, \infty)$;
(vi) $h(0, t)=0$ and $\operatorname{Re}\langle h(z, t), z\rangle \geq 0$, for each $t \geq 0$ and for all $z \in B^{n}$;
(vii) for each $T>0$ and $r \in(0,1)$, there exists a number $K=K(r, T)$ such that $\|h(z, t)\| \leq K(r, T)$, when $\|z\| \leq r$ and $t \in[0, T]$.
Suppose that $L(z, t)$ satisfies

$$
\begin{equation*}
\frac{\partial L(z, t)}{\partial t}=D L(z, t) h(z, t), \quad \text { a.e. } t \geq 0, \forall z \in B^{n} . \tag{1.4}
\end{equation*}
$$

Further, suppose that there is a sequence $\left(t_{m}\right)_{m \geq 0}, t_{m}>0$, with $\lim _{m \rightarrow \infty} t_{m}=\infty$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{L\left(z, t_{m}\right)}{a_{1}\left(t_{m}\right)}=F(z), \tag{1.5}
\end{equation*}
$$

locally uniformly in B^{n}. Then for each $t \in[0, \infty), L(\cdot, t)$ is univalent in B^{n}.
2. Univalence criteria. We obtain various univalence criteria involving the first and the second derivative of a holomorphic mapping in the unit ball B^{n}. Some of them represent the n-dimensional versions of univalence criteria for holomorphic functions in the unit disk $U=\{z \in \mathbb{C}:|z|<1\}$.

Theorem 2.1. Let $f \in H\left(B^{n}\right), f(0)=0$, and $D f(0)=I$. Let α, c be complex numbers such that $c \neq-1$ and $(\alpha-1) /(c+1) \notin[0, \infty)$. If

$$
\begin{align*}
& \left\|[D f(z)-\alpha I]^{-1}[c D f(z)+\alpha I]\right\| \leq 1 \tag{2.1}\\
& \left\|\|z\|^{2}[D f(z)-\alpha I]^{-1}[c D f(z)+\alpha I]\right. \\
& \quad+\left(1-\|z\|^{2}\right)[D f(z)-\alpha I]^{-1} D^{2} f(z)(z, \cdot) \| \leq 1 \tag{2.2}
\end{align*}
$$

for all $z \in B^{n}$, then f is a univalent mapping in B^{n}.
Proof. We define

$$
\begin{equation*}
L(z, t)=f\left(e^{-t} z\right)+\frac{1}{1+c}\left(e^{t}-e^{-t}\right)\left[D f\left(e^{-t} z\right)-\alpha I\right](z), \quad(z, t) \in B^{n} \times[0, \infty) . \tag{2.3}
\end{equation*}
$$

We will prove that $L(z, t)$ satisfies the conditions of Theorem 1.1. We have

$$
\begin{equation*}
a_{1}(t)=e^{-t}+\frac{1-\alpha}{1+c}\left(e^{t}-e^{-t}\right), \quad t \in[0, \infty) \tag{2.4}
\end{equation*}
$$

and hence $a_{1}(t) \neq 0$, for all $t \geq 0, \lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ and $a_{1}(t) \in C^{1}[0, \infty)$.

It is easy to check that $L(z, t)=a_{1}(t) z+O(1)$ as $t \rightarrow \infty$ locally uniformly in B^{n}. Hence (1.5) holds with $F(z)=z$.

The function $L(z, t)$ satisfies the absolute continuity requirements of Theorem 1.1. Using (2.3), we obtain

$$
\begin{equation*}
D L(z, t)=\frac{e^{t}}{1+c}\left[D f\left(e^{-t} z\right)-\alpha I\right][I-E(z, t)], \quad(z, t) \in B^{n} \times[0, \infty) \tag{2.5}
\end{equation*}
$$

where $E(z, t)$ is the linear operator defined by

$$
\begin{align*}
E(z, t)= & -e^{-2 t}\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1}\left[c D f\left(e^{-t} z\right)+\alpha I\right] \\
& -\left(1-e^{-2 t}\right)\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right) \tag{2.6}
\end{align*}
$$

We define

$$
\begin{align*}
A(z, t) & =\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1}\left[c D f\left(e^{-t} z\right)+\alpha I\right], \\
B(z, t) & =\left[D f\left(e^{-t} z\right)-\alpha I\right]^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right), \tag{2.7}\\
W(z, t, \lambda) & =\lambda A(z, t)+(1-\lambda) B(z, t), \quad \lambda \in[0,1] .
\end{align*}
$$

Using (2.1) and (2.2), we obtain $\|A(z, t)\| \leq 1$ and $\left\|W\left(z, t, \lambda_{z}\right)\right\| \leq 1, z \in B^{n}, t \geq 0$, where $\lambda_{z}=e^{-2 t}\|z\|^{2}$. Since $\lambda_{z}<e^{-2 t} \leq 1, z \in B^{n}, t \geq 0$, there exists $u \in(0,1]$ such that $e^{-2 t}=u+(1-u) \lambda_{z}$. Then

$$
\begin{equation*}
\|E(z, t)\|=\left\|u A(z, t)+(1-u) W\left(z, t, \lambda_{z}\right)\right\| \leq u\|A(z, t)\|+(1-u)\left\|W\left(z, t, \lambda_{z}\right)\right\| \leq 1 \tag{2.8}
\end{equation*}
$$

for all $z \in B^{n}$ and $t \geq 0$. Using the principle of the maximum [2], we obtain $\|E(z, t)\|<1$.
Since $\|E(z, t)\|<1$, for all $(z, t) \in B^{n} \times[0, \infty)$, it results that $I-E(z, t)$ is an invertible operator.

Using (2.3), we obtain

$$
\begin{align*}
\frac{\partial L(z, t)}{\partial t} & =\frac{e^{t}}{1+c}\left[D f\left(e^{-t} z\right)-\alpha I\right][I+E(z, t)](z) \tag{2.9}\\
& =D L(z, t)[I-E(z, t)]^{-1}[I+E(z, t)](z)
\end{align*}
$$

Hence $L(z, t)$ satisfies the differential equation (1.4) for all $t \geq 0$ and $z \in B^{n}$, where

$$
\begin{equation*}
h(z, t)=[I-E(z, t)]^{-1} \cdot[I+E(z, t)](z) \tag{2.10}
\end{equation*}
$$

It remains to prove that $h(z, t)$ satisfies conditions (iv), (v), (vi), and (vii) of Theorem 1.1. Obviously, $h(z, t)$ satisfies the holomorphy and measurability requirements and $h(0, t)=0$. Using the inequality

$$
\begin{align*}
\|h(z, t)-z\| & \leq\|E(z, t)(h(z, t)+z)\| \\
& \leq\|E(z, t)\| \cdot\|h(z, t)+z\| \tag{2.11}\\
& <\|h(z, t)+z\|
\end{align*}
$$

we obtain $\operatorname{Re}\langle h(z, t), z\rangle \geq 0$, for all $z \in B^{n}$ and $t \geq 0$.

The inequality $\left\|[I-E(z, t)]^{-1}\right\| \leq[I-\|E(z, t)\|]^{-1}$ implies that

$$
\begin{equation*}
\|h(z, t)\| \leq \frac{1+\|E(z, t)\|}{1-\|E(z, t)\|}\|z\| . \tag{2.12}
\end{equation*}
$$

Since all the conditions of Theorem 1.1 are satisfied, it results that the functions $L(z, t), t \geq 0$, are univalent in B^{n}. Obviously, $f(z)=L(z, 0)$ is also a univalent mapping on B^{n}.

Corollary 2.2. Let $f \in H\left(B^{n}\right)$ be locally univalent in $B^{n}, f(0)=0$, and $D f(0)=I$. Let c be a complex number such that $c \neq-1$ and $|c| \leq 1$. If

$$
\begin{equation*}
\|c\| z\left\|^{2} I+\left(1-\|z\|^{2}\right)[D f(z)]^{-1} D^{2} f(z)(z, \cdot)\right\| \leq 1, \quad z \in B^{n} \tag{2.13}
\end{equation*}
$$

then the mapping f is univalent on B^{n}.
Proof. For $\alpha=0$ and $c \in \mathbb{C} \backslash\{-1\},|c| \leq 1$ the conditions of Theorem 2.1 are satisfied and hence the mapping f is univalent in B^{n}.

Remark 2.3. Corollary 2.2 represents the n-dimensional version of Ahlfors and Becker's univalence criterion [1]. If $c=0$, we have the n-dimensional version of Becker's univalence result [3].

Corollary 2.4. Let $f \in H\left(B^{n}\right), f(0)=0$, and $D f(0)=I$, and let α be a complex number with $\alpha \notin[1, \infty)$. If

$$
\begin{gather*}
\|[D f(z)-\alpha I](z)\| \geq|\alpha|\|z\|, \tag{2.14}\\
\|\alpha\| z\left\|^{2}[D f(z)-\alpha I]^{-1}+\left(1-\|z\|^{2}\right)[D f(z)-\alpha I]^{-1} D^{2} f(z)(z, \cdot)\right\| \leq 1, \tag{2.15}
\end{gather*}
$$

for all $z \in B^{n}$, then f is a univalent mapping on B^{n}.
Proof. Using (2.14), we have that $D f(z)-\alpha I$ is an invertible operator and

$$
\begin{equation*}
\left\|[D f(z)-\alpha I]^{-1}\right\| \leq \frac{1}{|\alpha|}, \quad z \in B^{n} . \tag{2.16}
\end{equation*}
$$

The conclusion of the corollary follows from Theorem 2.1 with $c=0$.
Theorem 2.5. Let $f \in H\left(B^{n}\right)$ with $f(0)=0$ and $D f(0)=I$. Let α and c be complex numbers such that $c \neq-1$ and $(\alpha-1) /(c+1) \notin[0, \infty)$. If

$$
\begin{gather*}
\left\|[D f(z)-\alpha I]^{-1}[c D f(z)+\alpha I]\right\| \leq 1, \\
\left\|[D f(z)-\alpha I]^{-1} D^{2} f(z)(z, \cdot)\right\| \leq 1, \tag{2.17}
\end{gather*}
$$

for all $z \in B^{n}$, then the mapping f is univalent on B^{n}.

Proof. Using (2.17), we obtain

$$
\begin{align*}
&\left\|\|z\|^{2}[D f(z)-\alpha I]^{-1}[c D f(z)+\alpha I]+\left(1-\|z\|^{2}\right)[\right.D f(z)-\alpha I]^{-1} D^{2} f(z)(z, \cdot) \| \\
& \leq\|z\|^{2}+1-\|z\|^{2}=1, \quad \forall z \in B^{n} \tag{2.18}
\end{align*}
$$

Hence, the conditions of Theorem 2.1 are satisfied and then f is a univalent mapping on B^{n}.
Corollary 2.6. Let $f \in H\left(B^{n}\right), f(0)=0$, and $D f(0)=I$. Let α be a complex number such that $\alpha \notin[1, \infty)$. If

$$
\begin{align*}
\|[D f(z)-\alpha I](z)\| & \geq|\alpha|\|z\|, \tag{2.19}\\
\left\|D^{2} f(z)(z, \cdot)\right\| & \leq|\alpha|, \tag{2.20}
\end{align*}
$$

for all $z \in B^{n}$, then f is a univalent mapping on B^{n}.
Proof. Using (2.19) and (2.20), we have

$$
\begin{align*}
& \left\|[D f(z)-\alpha I]^{-1}\right\| \leq \frac{1}{|\alpha|}, \\
& \left\|[D f(z)-\alpha I]^{-1} D^{2} f(z)(z, \cdot)\right\| \\
& \leq\left\|[D f(z)-\alpha I]^{-1}\right\| \cdot\left\|D^{2} f(z)(z, \cdot)\right\| \tag{2.21}\\
& \leq \frac{1}{|\alpha|} \cdot|\alpha| \leq 1, \quad z \in B^{n} .
\end{align*}
$$

Using Theorem 2.5 with $c=0$, we obtain that f is univalent on B^{n}.
Corollary 2.7. Let $f \in H\left(B^{n}\right)$ such that $f(0)=0$ and $D f(0)=I$. If

$$
\begin{equation*}
\operatorname{Re}\langle D f(z)(z), z\rangle>0 \tag{2.22}
\end{equation*}
$$

for all $z \in B^{n}$, then the mapping f is univalent on B^{n}.
Proof. Let α be a real number such that $\alpha<0$. Since

$$
\begin{equation*}
\|[D f(z)-\alpha I](z)\|^{2}=\|D f(z)(z)\|^{2}+|\alpha|^{2}\|z\|^{2}-2 \alpha \operatorname{Re}\langle D f(z)(z), z\rangle \geq|\alpha|^{2}\|z\|^{2} \tag{2.23}
\end{equation*}
$$

it results that (2.19) holds true, for all $z \in B^{n}$ and $\alpha<0$.
If $\alpha \rightarrow-\infty$, then (2.20) also holds true. Using Corollary 2.6, we obtain that f is univalent on B^{n}.

Remark 2.8. When $n=1$, (2.22) becomes $\operatorname{Re} f^{\prime}(z)>0$ and hence Corollary 2.7 represents the n-dimensional version of Alexander-Noshiro's univalence criterion.

REFERENCES

[1] P. Curt, A generalization in n-dimensional complex space of Ahlfors' and Becker's criterion for univalence, Studia Univ. Babeş-Bolyai Math. 39 (1994), no. 1, 31-38.
[2] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Rhode Island, 1957.
[3] J. A. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings in C^{n}, Math. Ann. 210 (1974), 55-68.

Dorina Rãducanu: Department of Mathematics, Faculty of Sciences, "Transilvania" University of Braşov, 50 Iuliu Maniu Street, 2200 Braşov, Romania

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

