LOCAL COMPLETENESS OF $\ell_{p}(E), 1 \leq p<\infty$

C. BOSCH, T. GILSDORF, C. GÓMEZ, and R. VERA

Received 10 September 2001 and in revised form 26 February 2002

> We study the heredity of local completeness and the strict Mackey convergence property from the locally convex space E to the space of absolutely p-summable sequences on E, $\ell_{p}(E)$ for $1 \leq p<\infty$.

2000 Mathematics Subject Classification: 46A03, 46A17.

1. Introduction. In 1956, Grothendieck [5], introduced the Banach-valued sequence space $\ell_{p}(E)$, the space of absolutely p-summable sequences on a Banach space E, where he discussed tensor products of ℓ_{p} and E, with $1 \leq p \leq \infty$. Later, in 1969 Pietsch [8] used Banach-valued sequence spaces $\ell_{p}(E)$, to study p-summing operators between Banach spaces, also see Diestel et al. [2]. In this paper, we discuss how local completeness and the strict Mackey convergence condition of E imply local completeness and the strict Mackey convergence condition in $\ell_{p}(E)$ in the case $1 \leq p<\infty$. The case $p=\infty$ was studied in [1].
2. Definitions and notation. Throughout this paper, (E, t) denotes a Hausdorff locally convex space over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ and $\left\{\rho_{j}\right\}_{j \in J}$ denotes the family of continuous seminorms associated with the topology t on E.
Let $D \subset E$ be a bounded, closed, and absolutely convex set. Denote by $E_{D}=\cup_{k=1}^{\infty} k D$, and for each $x \in E_{D}, \rho_{D}(x)=\inf \{r>0: x \in r D\}$, the Minkowski seminorm associated with D. Now $E_{D} \subset E$ and the boundedness of D implies that $i:\left(E_{D}, \rho_{D}\right) \rightarrow(E, t)$ is continuous, and ρ_{D} is a norm so that, for every $j \in J$ there exists $r_{j} \in \mathbb{R}^{+}$such that $\left.\rho_{j}\right|_{E_{D}} \leq r_{j} \rho_{D}$.

Remark 2.1. For each $D \subset E$ bounded, closed, and absolutely convex, the family of seminorms $\left\{\rho_{j}\right\}_{j \in J}$ can be replaced by an equivalent family $\left\{\rho_{j}^{\prime}\right\}_{j \in J}$ such that $\rho_{j}^{\prime} \leq \rho_{D}$. To construct the family $\left\{\rho_{j}^{\prime}\right\}_{j \in J}$ we know that there exists $r_{j}>0$ such that $\rho_{j}(x) \leq$ $r_{j} \rho_{D}(x)$ for every $x \in E_{D}$ so it suffices to take $\rho_{j}^{\prime}=\left(1 / r_{j}\right) \rho_{j}$ if $r_{j}>1$, and we will have $\rho_{j}^{\prime} \leq \rho_{D}$, for every $j \in J$. For simplicity we will always work with an equivalent family of seminorms, also denoted by $\left\{\rho_{j}\right\}_{j \in J}$ such that $\rho_{j}(x) \leq \rho_{D}(x)$ holds for every $j \in J$ and $x \in E_{D}$.

A bounded, closed, and absolutely convex set $D \subset E$, called a disk, is a Banach disk if (E_{D}, ρ_{D}) is a Banach space. If every bounded set $A \subset E$ is contained in a Banach disk we say that E is locally complete. Let (E, t) satisfies the strict Mackey convergence condition if for every bounded set $A \subset E$, there exists a disk D that contains A such that the topologies of (E, t) and $\left(E_{D}, \rho_{D}\right)$ agree on A.

Every metrizable space satisfies the strict Mackey convergence condition, [7]. In addition, the strict Mackey convergence condition is preserved under the formation of closed subspaces, countable products, and countable direct sums, [6]. The strict Mackey convergence condition for webbed spaces is studied in [3, 4].
Remark 2.2. Using the family of seminorms $\left\{\rho_{j}\right\}_{j \in J}$ it is easy to see that the strict Mackey convergence condition is equivalent to: for each D there exists $j_{0} \in J$ such that $\rho_{j_{0} \mid D}=\rho_{D}$.
Let p be a real number such that $1 \leq p<\infty$. The space $\ell_{p}(E)$ of absolutely p summable sequences on E is

$$
\begin{equation*}
\ell_{p}(E)=\left\{\left(x_{n}\right) \subset E: \sum_{n=1}^{\infty} \rho_{j}^{p}\left(x_{n}\right)<\infty, \forall j \in J\right\} . \tag{2.1}
\end{equation*}
$$

The family of seminorms $\rho_{\rho_{j}}\left(\left(x_{n}\right)\right)=\left(\sum_{n=1}^{\infty} \rho_{j}^{p}\left(x_{n}\right)\right)^{1 / p}, j \in J$, induce a topology of locally convex space in $\ell_{p}(E)$; we will denote by τ this topology.
The space $\ell_{p}\left(E_{D}\right)$ is defined by $\ell_{p}\left(E_{D}\right)=\left\{\left(x_{n}\right) \subset E_{D}: \sum_{n=1}^{\infty} \rho_{D}^{p}\left(x_{n}\right)<\infty\right\}$ and endowed with the topology generated by the norm

$$
\begin{equation*}
\rho_{\rho_{D}}\left(\left(x_{n}\right)\right)=\left[\sum_{n=1}^{\infty} \rho_{D}^{p}\left(x_{n}\right)\right]^{1 / p} . \tag{2.2}
\end{equation*}
$$

We denote $A_{D}=\left\{\left(x_{n}\right) \in \ell_{p}(E):\left(x_{n}\right)_{n \in \mathbb{N}} \subset D\right\}$.
Note that $\rho_{\rho_{j}} \mid \ell_{p\left(E_{D}\right)} \leq \rho_{\rho_{D}}$ for every $j \in J$ since $\left.\rho_{j}\right|_{E_{D}} \leq \rho_{D}$.
3. Bounded sets. In this section, we characterize the bounded sets of $\ell_{p}(E)$ in terms of the bounded sets of E.

Lemma 3.1. Let D be a disk in (E, t); then
(i) $\ell_{p}\left(E_{D}\right) \subseteq\left\{\left(x_{n}\right) \in \ell_{p}(E):\left\{x_{n}\right\} \subset k D\right.$ for some $\left.k \in \mathbb{N}\right\}$;
(ii) if there exists $j_{0} \in J$, depending on D, such that $\rho_{j_{0} \mid D}=\rho_{D}$ (i.e., the strict Mackey convergence condition holds), then $\left\{\left(x_{n}\right) \in \ell_{p}(E):\left\{x_{n}\right\} \subset k D\right.$ for some $k \in$ $\mathbb{N}\} \subset \ell_{p}\left(E_{D}\right)$.

Proof. (i) Let $\left(x_{n}\right) \in \ell_{p}\left(E_{D}\right)$. Then $\sum_{n=1}^{\infty}\left[\rho_{D}\left(x_{n}\right)\right]^{p}<\infty$ so that given $\varepsilon=1$ there exists $n_{0} \in \mathbb{N}$, such that for each $n>n_{0}$, we have $\rho_{D}\left(x_{n}\right) \leq\left(\sum_{n_{0}}^{\infty} \rho_{D}^{p}\left(x_{n}\right)\right)^{1 / p} \leq 1$ which means that $x_{n} \in D$ for every $n>n_{0}$.
Now for $i=1,2, \ldots, n_{0}$ there exists $k_{i} \geq 0$ such that $x_{i} \in k_{i} D$. We take $k=$ $\max \left\{1, k_{1}, \ldots, k_{n_{0}}\right\}$. Then $\left\{x_{n}\right\} \subset k D$ and we have $\ell_{p}\left(E_{D}\right) \subset\left\{\left(x_{n}\right) \in \ell_{p}(E):\left\{x_{n}\right\} \subset\right.$ $k D$ for some $k \in \mathbb{N}\}$.
(ii) Let $\left(x_{n}\right) \in\left\{\left(y_{n}\right) \in \ell_{p}(E):\left\{y_{n}\right\} \subset k D\right.$ for some $\left.k \in \mathbb{N}\right\}$. Thus $x_{n} \in E_{D}$ for every $n \in \mathbb{N}$ since $\left\{x_{n}\right\} \subset k D$.
Now observe that $\sum_{n=1}^{\infty} \rho_{D}^{p}\left(x_{n}\right)=\sum_{n=1}^{\infty} \rho_{j_{0}}^{p}\left(x_{n}\right)<\infty$ since $\left(x_{n}\right) \in \ell_{p}(E)$. Hence in this case we have the equality $\ell_{p}\left(E_{D}\right)=\left\{\left(x_{n}\right) \in \ell_{p}(E):\left\{x_{n}\right\} \subset k D\right.$ for some $\left.k \in \mathbb{N}\right\}$.

Remark 3.2. Note that $k A_{D}=A_{k D}$ for every $k \in \mathbb{N}$.

Corollary 3.3. If E satisfies the strict Mackey convergence condition, then $\ell_{p}(E)_{A_{D}}=\ell_{p}\left(E_{D}\right)$.

Proof. It follows from the equality in the proof of Lemma 3.1(ii) that $\ell_{p}(E)_{A_{D}} \subset$ $\ell_{p}\left(E_{D}\right)$. Now let $\left(x_{n}\right) \in \ell_{p}\left(E_{D}\right)$. Then by Lemma 3.1(i), $\left(x_{n}\right) \subset k D$ for some $k \in \mathbb{N}$ so $\left\{x_{n}\right\} \subset A_{k D}=k A_{D}$ and $\left(x_{n}\right) \in \ell_{p}(E)_{A_{D}}$.
Remark 3.4. If (E, t) satisfies the strict Mackey convergence condition, then

$$
\begin{equation*}
\ell_{p}(E)_{A_{D}}=\ell_{p}\left(E_{D}\right)=\left\{\left(x_{n}\right) \in \ell_{p}(E):\left\{x_{n}\right\} \subset A_{k D} \text { for some } k \in \mathbb{N}\right\} . \tag{3.1}
\end{equation*}
$$

LemmA 3.5. (i) $\rho_{A_{D}}\left(\left(x_{n}\right)\right)=\sup \left\{\rho_{D}\left(x_{n}\right): n \in \mathbb{N}\right\}$;
(ii) $\rho_{A_{D}}\left(\left(x_{n}\right)\right) \leq \rho_{\rho_{D}}\left(\left(x_{n}\right)\right)$ for every $\left(x_{n}\right) \in \ell_{p}\left(E_{D}\right)$.

Proof. (i) Let $s=\sup \left\{\rho_{D}\left(x_{n}\right): n \in \mathbb{N}\right\}$. Then $\left\{x_{n}\right\} \subset s D$ so $\left\{x_{n}\right\} \subset A_{s D}=s A_{D}$ and then $\rho_{A_{D}}\left(\left(x_{n}\right)\right) \leq s$. Now take $r=\rho_{A_{D}}\left(\left(x_{n}\right)\right)$. Then $\left\{x_{n}\right\} \subset r A_{D}=A_{r D}$ and then $\left\{x_{n}\right\} \subset r D$ which means that $r \geq s$.
(ii) $\rho_{\rho_{D}}\left(\left(x_{n}\right)\right)=\left(\sum_{n=1}^{\infty} \rho_{D}^{p}\left(x_{n}\right)\right)^{1 / p} \geq \rho_{D}\left(x_{n}\right)$ for every $n \in \mathbb{N}$. Using (i) we have $\rho_{\rho_{D}}\left(\left(x_{n}\right)\right) \geq \rho_{A_{D}}\left(\left(x_{n}\right)\right)$.

Note that A_{D} is not bounded in $\ell_{p}(E)$; we need to construct a "smaller" set, in the sense of boundedness.

Define for each $j \in J$ and $m \in \mathbb{N}$ the set $A_{D}(j, m)=\left\{\left(x_{n}\right)_{n} \in A_{D}: \rho_{\rho_{j}}\left(\left(x_{n}\right)\right) \leq m\right\}$ and for each $B \subset \ell_{p}(E)$, let $B^{*}=\left\{x \in E: x \in\left\{x_{n}\right\}\right.$ and $\left.\left(x_{n}\right) \in B\right\}$.

The next proposition gives a way to look at the bounded sets in $\ell_{p}(E)$.
Proposition 3.6. If $\beta=\left\{D_{\lambda}\right\}_{\lambda \in \wedge}$ is a fundamental system of bounded disks in E, then $\left\{C=\cap_{j \in J}\left\{A_{D_{\lambda}}\left(j, m_{j}\right)\right\}: \lambda \in \Lambda,\left(m_{j}\right) \in \mathbb{N}^{J}\right\}$ is a fundamental system of τ bounded sets in $\ell_{p}(E)$.

Proof. Let $B \subset \ell_{p}(E)$ be a bounded set. Then B^{*} is bounded in E so $B^{*} \subset D_{\lambda}$ for some λ. For each $x \in B^{*}$, if $x \in\left(x_{n}\right)$ then given $j \in J$ there is some s_{j} such that $\rho_{j}(x) \leq \rho_{\rho_{j}}\left(\left(x_{n}\right)\right) \leq s_{j}$ so that $\rho_{\rho_{j}}(B) \leq s_{j}$. Now let $m_{j} \in \mathbb{N}$ be such that $s_{j} \leq m_{j}$. We have $B \subset C=\cap_{j \in J} A_{D_{\lambda}}\left(j, m_{j}\right)$.
Remark 3.7. (i) If D is bounded in E, then for each $j \in J$, by Remark $2.1 \rho_{j \mid E_{D}} \leq \rho_{D}$.
(ii) If C is bounded in $\ell_{p}(E)$, then for each $j \in J$, by Remark $2.1 \rho_{\rho_{j}} \mid \ell_{p}(E)_{C} \leq \rho_{C}$.

4. Main results

Proposition 4.1. If for some D there exists $j_{0} \in J$, such that $\left.\rho_{j_{0}}\right|_{D}=\rho_{D}$ in E, then $\rho_{\rho_{j_{0}} \mid C}=\rho_{C}$ where $C=\cap_{j \in J} A_{D}\left(j, m_{j}\right)$ in $\ell_{p}(E)$. Equivalently, if E satisfies the strict Mackey convergence condition, then $\ell_{p}(E)$ also satisfies the strict Mackey convergence condition.

Proof. Let $\left(x_{n}\right) \in C$. Then $s=\rho_{\rho_{j_{0}}}\left(x_{n}\right)=\left(\sum_{n=1}^{\infty} \rho_{j_{0}}^{p}\left(x_{n}\right)\right)^{1 / p}=\left(\sum_{n=1}^{\infty} \rho_{D}^{p}\left(x_{n}\right)\right)^{1 / p} \geq$ $\rho_{D}\left(x_{n}\right) \geq \rho_{\rho_{j}}\left(x_{n}\right)$ for every $j \in J$ and $n \in \mathbb{N}$. So we have $\left(x_{n}\right) \in \cap_{j \in J} A_{D}(j, s)=$ $s\left[\cap_{j \in J} A_{D}(j, 1)\right] \subset s C$. Thus $\rho_{C}\left(\left(x_{n}\right)\right) \leq s=\rho_{\rho_{j_{0}}}\left(x_{n}\right)$ and since C is bounded in $\ell_{p}(E)$ we have $\rho_{\rho_{j}} \leq \rho_{C}$ for each $j \in J$; now $\rho_{\rho_{j}} \mid c \leq \rho_{C}$ for every $j \in J$, so for j_{0} we have $\left.\rho_{\rho_{j_{0}}}\right|_{C}=\rho_{C}$.

Notice that if B is a bounded set in $\ell_{p}(E)$, then $\rho_{\rho_{j}}(B) \leq m_{j}$ for all $j \in J$ with $m_{j} \in N$ and then $B \subset \cap_{j \in J} A_{B^{*}}\left(j, m_{j}\right)$.

This gives the property we need to characterize the bounded sets in $\ell_{p}(E)$.
Theorem 4.2. If E is locally complete and satisfies the strict Mackey convergence condition, then $\left(\ell_{p}(E)_{C}, \rho_{C}\right)$ where $C=\cap_{j \in J} A_{D}\left(j, m_{j}\right)$ in $\ell_{p}(E)$, is a Banach space so $\ell_{p}(E)$ is locally complete.

Proof. Let D be a bounded closed disk such that $\left(E_{D,}, \rho_{D}\right)$ is a Banach space and let $C=\cap_{j \in J} A_{D}\left(j, m_{j}\right)$. By Remark 2.1 there is a $j_{0} \in J$ such that $\left.\rho_{j_{0}}\right|_{D}=\rho_{D}$. We will show that $\left(\ell_{p}(E)_{C}, \rho_{C}\right)$ is a Banach space. By Corollary 3.3 we have $\ell_{p}(E)_{A_{D}}=$ $\ell_{p}\left(E_{D}\right)$ and since $C \subset A_{D}, \ell_{p}(E)_{C} \subset \ell_{p}(E)_{A_{D}}$. Let $\left(x_{n}^{k}\right)_{k \in \mathbb{N}} \subset \ell_{p}(E)_{C}$ be a ρ_{C}-Cauchy sequence. Thus for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for every $n, m \geq N$ we have $\rho_{C}\left(\left(x_{n}^{k}\right)-\left(x_{m}^{k}\right)\right)<\varepsilon$. Using Remark 3.7(ii) we have that $\rho_{\rho_{j}} \mid \ell(E)_{C} \leq \rho_{C}$. Hence $\left(x_{n}^{k}\right)$ is also a $\rho_{\rho_{j}}$-Cauchy sequence and then a $\rho_{\rho_{j_{0}}}$-Cauchy sequence. Thus $\rho_{D}\left(x_{n}^{k}-x_{m}^{k}\right)=$ $\rho_{j_{0}}\left(x_{n}^{k}-x_{m}^{k}\right) \leq \rho_{\rho_{j_{0}}}\left(\left(x_{n}^{k}\right)-\left(x_{m}^{k}\right)\right)$, then the sequence $\left(x_{n}^{k}\right)_{k \in \mathbb{N}}$ for every $n \in \mathbb{N}$ is also a ρ_{D}-Cauchy sequence in (E_{D}, ρ_{D}) which is a Banach space, so there exists z^{k} in E_{D} such that (x_{n}^{k}) converges to z^{k} with respect to the norm ρ_{D}. Using Remark 3.7(i) we have $\rho_{j \mid E_{D}} \leq \rho_{D}$. Hence, we have the following claims.
Claim 1. We have that (x_{n}^{k}) converges to z^{k} with respect to the seminorm ρ_{j} for every $j \in J$.
Claim 2. Consider the sequence formed by the $\left(z^{k}\right)_{k \in \mathbb{N}} \in \ell_{p}\left(E_{D}\right)$. We compute

$$
\begin{align*}
\sum_{k=1}^{\infty}\left(\rho_{D}\left(z^{k}\right)\right)^{p} & =\lim _{m \rightarrow \infty} \sum_{k=1}^{m}\left(\rho_{D}\left(z^{k}\right)\right)^{p} \\
& =\lim _{m \rightarrow \infty} \sum_{k=1}^{m}\left(\rho_{j_{0}}\left(z^{k}\right)\right)^{p} \\
& =\lim _{m \rightarrow \infty} \sum_{k=1}^{m} \rho_{j_{0}}\left(\lim _{n \rightarrow \infty} x_{n}^{k}\right)^{p} \\
& =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \sum_{k=1}^{m} \rho_{j_{0}}\left(x_{n}^{k}\right)^{p} \tag{4.1}\\
& \leq \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \rho_{j_{0}}\left(x_{n}^{k}\right)^{p} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \rho_{j_{0}}\left(x_{n}^{k}\right)^{p} \\
& \leq \lim _{n \rightarrow \infty} \rho_{\rho_{j_{0}}}\left(\left(x_{n}\right)\right) \\
& \leq \varepsilon+\rho_{\rho_{j_{0}}}\left(\left(x_{N}\right)\right)<\infty, \quad \text { for some } N \in \mathbb{N} .
\end{align*}
$$

In this last inequality we used $x_{n}=\left(x_{n}^{k}\right)_{k \in \mathbb{N}}$ and since it is a $\rho_{\rho_{j 0}}$-Cauchy sequence, given $\varepsilon>0, \rho_{\rho_{j_{0}}}\left(x_{n}^{k}\right)-\rho_{\rho_{j_{0}}}\left(x_{m}^{k}\right) \leq \rho_{\rho_{j_{0}}}\left(\left(x_{n}^{k}\right)-\left(x_{m}^{k}\right)\right)<\varepsilon$ for every $n, m>N$, so $\rho_{\rho_{j_{0}}}\left(\left(x_{n}\right)\right) \leq \varepsilon+\rho_{\rho_{j_{0}}}\left(\left(x_{N}\right)\right)$. Notice that $\left(x_{n}\right)$ is a $\rho_{\rho_{j}}$-Cauchy sequence for every $j \in J$.

Therefore for j_{0} and consequently for $\rho_{\rho_{D}}$, then for every $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that $\rho_{D}\left(x_{n}^{k}-z^{k}\right)=\rho_{D}\left(x_{n}^{k}-\lim _{m \rightarrow \infty} x_{m}^{k}\right)=\lim _{m \rightarrow \infty} \rho_{D}\left(x_{n}^{k}-x_{m}^{k}\right)<\varepsilon$.

Claim 3. The sequence (x_{n}^{k}) converges to $\left(z^{k}\right)_{k \in \mathbb{N}}$ in $\ell_{p}\left(E_{D}\right)$. Since

$$
\begin{align*}
\rho_{\rho_{D}}\left(x_{n}^{k}-\left(z^{k}\right)_{k}\right) & =\left[\sum_{k=1}^{\infty} \rho_{D}^{p}\left(x_{n}^{k}-z^{k}\right)\right]^{1 / p} \\
& \leq\left[\sum_{k=1}^{N} \rho_{D}^{p}\left(x_{n}^{k}-z^{k}\right)+\frac{\varepsilon^{p}}{2}\right]^{1 / p} \tag{4.2}\\
& \leq(\underbrace{\frac{\varepsilon^{p}}{2 N}+\cdots+\frac{\varepsilon^{p}}{2 N}}_{N \text { factors }}+\frac{\varepsilon^{p}}{2})^{1 / p} \\
& =\varepsilon, \text { for } n>N .
\end{align*}
$$

In the first inequality we used Claim 2. This completes the proof of the convergence.
Claim 4. We have $\left(z^{k}\right)_{k \in \mathbb{N}} \in \ell_{p}(E)_{C} .\left(x_{n}^{k}\right)_{k \in \mathbb{N}}$ is a ρ_{C}-Cauchy sequence so it is bounded and there is an $s \in \mathbb{N}$ such that $\left(x_{n}^{k}\right) \subset s C$. Using Claim $3,\left(x_{n}^{k}\right)$ converges to $\left(z^{k}\right)$ in $\ell_{p}(E)_{C}$ with respect to $\rho_{\rho_{D}}$ and since $\rho_{\rho_{j}} \mid \ell_{p}\left(E_{D}\right) \leq \rho_{\rho_{D}}$ for every $j \in J$ the sequence (x_{n}^{k}) is τ-convergent to (z^{k}), it is convergent for each $\rho_{\rho_{j}}$. Now for each $\varepsilon>0$ there exists N_{j} such that $\rho_{\rho_{j}}\left(\left(z^{k}\right)\right) \leq \rho_{\rho_{j}}\left(\left(z^{k}\right)-\left(x_{n}^{k}\right)\right)+\rho_{\rho_{j}}\left(\left(x_{n}^{k}\right)\right)<\varepsilon+s m_{j}$ for every $j \in J$ and $n \geq N_{j}$, this means that $\left(z^{k}\right) \in s C \subset \ell_{p}(E)_{C}$.

Claim 5. The sequence $\left(x_{n}^{k}\right)$ converges to $\left(z^{k}\right)_{k \in \mathbb{N}}$ in $\ell_{p}(E)_{C}$. Let $\varepsilon>0$, since $\left(x_{n}^{k}\right)$ is a ρ_{C}-Cauchy sequence, there is $N \in \mathbb{N}$ such that $\left(x_{n}^{k}\right)-\left(x_{m}^{k}\right) \in \varepsilon C$ for every $n, m \geq N$. C is τ-closed so $\left(x_{n}^{k}\right)-\left(\tau-\lim \left(x_{m}^{k}\right)\right) \in \varepsilon C$; then $\left(x_{n}^{k}\right)-\left(z^{k}\right) \in \varepsilon C$ for every $n \geq N$ which means $\rho_{C}\left(\left(x_{n}^{k}\right)-\left(z^{k}\right)\right) \leq \varepsilon$ for every $n \geq N$.

Notice that this is true for every $1 \leq p<\infty$. The case $p=\infty$ also follows from this and we get the characterization given in [1], although under a stronger hypothesis. Here we need E to satisfy the strict Mackey convergence condition.

Lemma 4.3. If $D \subset E$ is t-complete and the net $\left\{x_{\lambda}\right\}_{\Lambda}$ is a τ-Cauchy net bounded with respect to ρ_{C}, that is if there exists $s \in \mathbb{N}$ such that $\left\{x_{\lambda}\right\}_{\Lambda} \subset s C$ then there exists $z \in 2 s C$ such that x_{λ} converges to z with respect to the τ topology in $\ell_{p}(E)$.

Proof. Let $\left\{x_{\lambda}\right\}_{\Lambda}$ be a τ-Cauchy net, $x_{\lambda}=\left(x_{\lambda}^{1}, x_{\lambda}^{2}, \ldots\right)$, then for every $\varepsilon>0$ there exists $\lambda_{j} \in \Lambda$ such that for every $j \in J, \rho_{j}\left(x_{\lambda}^{k}-x_{\lambda^{\prime}}^{k}\right) \leq \rho_{\rho_{j}}\left(x_{\lambda}-x_{\lambda^{\prime}}\right)<\varepsilon$ for every $\lambda, \lambda^{\prime} \geq \lambda_{j}$ and $k \in \mathbb{N}$. So $\left\{x_{\lambda}^{k}\right\}_{\Lambda} \subset D$ is t-Cauchy for each $k \in \mathbb{N}$, and since D is complete there is a z^{k} such that x_{λ}^{k} converges to z^{k} with respect to the topology t for each $k \in \mathbb{N}$. Let $z=\left\{z^{1}, z^{2}, \ldots\right\}$. Then $z \subset D$, and for each $j \in J$ and $k \in \mathbb{N}$ we have $\rho_{j}\left(x_{\lambda}^{k}-z^{k}\right)=$ $\rho_{j}\left(x_{\lambda}^{k}-\left(\rho_{j}-\lim _{\lambda^{\prime}} x_{\lambda^{\prime}}^{k}\right)\right)=\lim _{\lambda^{\prime}} \rho_{j}\left(x_{\lambda}^{k}-x_{\lambda^{\prime}}^{k}\right)$, so raising to the p th power and adding with respect to k we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} \rho_{j}\left(x_{\lambda}^{k}-z^{k}\right)^{p} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \rho_{j}\left(x_{\lambda}^{k}-z^{k}\right)^{p} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \lim _{\lambda^{\prime}} \rho_{j}\left(x_{\lambda}^{k}-x_{\lambda^{\prime}}^{k}\right)^{p}
\end{aligned}
$$

$$
\begin{align*}
& =\lim _{n \rightarrow \infty} \lim _{\lambda^{\prime}} \sum_{k=1}^{n} \rho_{j}\left(x_{\lambda}^{k}-z^{k}\right)^{p} \\
& \leq \lim _{\lambda^{\prime}} \sum_{k=1}^{\infty} \rho_{j}\left(x_{\lambda}^{k}-z^{k}\right)^{p} \\
& =\lim _{\lambda^{\prime}} \rho_{\rho_{j}}\left(x_{\lambda}-x_{\lambda^{\prime}}\right)<\varepsilon^{p}, \tag{4.3}
\end{align*}
$$

for every $\lambda \geq \lambda_{j}$.
So we have $\rho_{\rho_{j}}\left(x_{\lambda}-z\right)^{p}=\sum_{k=1}^{\infty} \rho_{j}\left(x_{\lambda}^{k}-z^{k}\right)^{p}<\varepsilon^{p}$, for every $\lambda \geq \lambda_{j}$. This means that x_{λ} converges to z with respect to the topology τ. We still need to prove that $z \in \ell_{p}(E)$

$$
\begin{align*}
\rho_{\rho_{j}}(z)^{p} & =\sum_{k=1}^{\infty} \rho_{j}\left(z^{k}\right)^{p} \\
& =\sum_{k=1}^{\infty} \rho_{j}\left(z^{k}+x_{\lambda}^{k}-x_{\lambda}^{k}\right)^{p} \\
& \leq \sum_{k=1}^{\infty} 2^{p}\left[\rho_{j}\left(z^{k}-x_{\lambda}^{k}\right)^{p}+\rho_{j}\left(x_{\lambda}^{k}\right)^{p}\right] \tag{4.4}\\
& =2^{p} \sum_{k=1}^{\infty} \rho_{j}\left(z^{k}-x_{\lambda}^{k}\right)^{p}+2^{p} \sum_{k=1}^{\infty} \rho_{j}\left(x_{\lambda}^{k}\right)^{p} \\
& <2^{p} \varepsilon^{p}+2^{p} \rho_{\rho_{j}}\left(x_{\lambda}\right)^{p} \\
& \leq 2^{p} \varepsilon^{p}+2^{p} m_{j}
\end{align*}
$$

$\left(x_{\lambda} \in C=\cap_{j \in J} A_{D}\left(j, m_{j}\right)\right)$, then if we let $\varepsilon \rightarrow 0$ we get $\rho_{\rho_{j}}(z) \leq 2 m_{j}$, and finally $z \in 2 C \subset \ell_{p}(E)$.

Theorem 4.4. If D is t-complete, then $\ell_{p}(E)_{C}$ is ρ_{C}-complete.
Proof. Let (x_{n}^{k}) be a ρ_{C}-Cauchy sequence; it is clearly ρ_{C}-bounded and τ-Cauchy, so $\left(x_{n}^{k}\right) \subset s C$ for some $s \in \mathbb{N}$. Then by Lemma 4.3, there is a $z=\left(z^{k}\right) \in 2 s C \subset \ell_{p}(E)_{C}$ such that the sequence (x_{n}^{k}) converges to z with respect to the topology τ. Note that A_{D} is τ-closed so $A_{D}(j, m)$ is also τ-closed for every $j \in J$ and $m \in \mathbb{N}$; then $C=\cap_{j \in J} A_{D}\left(j, m_{j}\right)$ is τ-closed. For $\varepsilon>0$ there is $N \in \mathbb{N}$ such that $\left(x_{n}^{k}\right)-\left(x_{m}^{k}\right) \in \varepsilon C$ for every $n, m \geq N$, and since C is τ-closed $\left(x_{n}^{k}\right)-\left(\tau-\lim \left(x_{m}^{k}\right)\right) \in \varepsilon C$ then $\left(x_{n}^{k}\right)-\left(z^{k}\right) \in$ εC for every $n \geq N$. This means that (x_{n}^{k}) converges to (z^{k}) with respect to ρ_{C}.

Theorem 4.5. If E is t-complete, then $\ell_{p}(E)$ is τ-complete.
Proof. The proof of Lemma 4.3 can be repeated here to get the τ-completeness of $\ell_{p}(E)$.

Acknowledgments. C. Bosch and C. Gómez were partially supported by Asociación Mexicana de Cultura A.C. T. Gilsdorf was partially supported by a Fulbright scholarship. R. Vera was supported by Coordinación de la Investigación Científica de la Universidad Michoacana.

References

[1] C. Bosch, A. García-Martínez, and T. Gilsdorf, Some hereditary properties of $l_{\infty}(E)$ from E, to appear in Internat. J. of Math.
[2] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
[3] A. García-Martínez, Webbed spaces, double sequences, and the Mackey convergence condition, Int. J. Math. Math. Sci. 22 (1999), no. 3, 521-524.
[4] T. E. Gilsdorf, Boundedly compatible webs and strict Mackey convergence, Math. Nachr. 159 (1992), 139-147.
[5] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1-79 (French).
[6] J. Horváth, Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley, Massachusetts, 1966.
[7] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Mathematics Studies, vol. 131, North-Holland, Amsterdam, 1987.
[8] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353 (German).
C. Bosch: Departamento Académico de Matemáticas, itam, Rio Hondo \#1, Col. Tizapán San Ángel, C.P. 01000 México D.F., Mexico

E-mail address: bosch@itam.mx
T. Gilsdorf: Department of Mathematics, University of North Dakota, Grand Forks, ND 58202-8376, USA

E-mail address: thomas_gi1sdorf@und.nodak.edu
C. Gómez: Departamento Académico de Matemáticas, Itam, Rio Hondo \#1, Col. TizapÁn SAN Ángel, C.P. 01000 México D.F., Mexico

E-mail address: claudiag@itam.mx
R. Vera: Esc. de C. Físico-Matemáticas, Universidad Michoacana, Santiago Tapia No. 403 Edif. B, Ciudad Universitaria, 58060 Morelia, Mich., Mexico

E-mail address: rvera@zeus.ccu.umich.mx

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

