ON THE DIOPHANTINE EQUATION $x^{2}+p^{2 k+1}=4 y^{n}$

S. AKHTAR ARIF and AMAL S. AL-ALI

Received 12 June 2001

It has been proved that if p is an odd prime, $y>1, k \geq 0, n$ is an integer greater than or equal to $4,(n, 3 h)=1$ where h is the class number of the field $Q(\sqrt{-p})$, then the equation $x^{2}+p^{2 k+1}=4 y^{n}$ has exactly five families of solution in the positive integers x, y. It is further proved that when $n=3$ and $p=3 a^{2} \pm 4$, then it has a unique solution $k=0$, $y=a^{2} \pm 1$.
2000 Mathematics Subject Classification: 11D61.

1. Introduction. The purpose of this note is to compute positive integral solutions of the equation $x^{2}+p^{2 k+1}=4 y^{n}$, where p is an odd prime and n is any integer greater than or equal to 3 . The special case when $p=3$ and $k=0$ was treated by Nagell [7] and Ljunggren [3] who proved that this equation has the only solutions $y=1$ and $y=7$ with $n=3$. Later on, Ljunggren [4, 5], Persson [8], and Stolt [9] studied the general equation $x^{2}+D=4 y^{n}$ and proved that it has a solution under certain necessary conditions on D. Le [2] and Mignotte [6] proved that the equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$ has a finite number of solutions under certain conditions on m and n but did not compute these solutions. We will prove the following theorem.

Theorem 1.1. The Diophantine equation

$$
\begin{equation*}
x^{2}+p^{2 k+1}=4 y^{n}, \quad y>1, \tag{1.1}
\end{equation*}
$$

where p is an odd prime, $k \geq 0, n$ is an integer greater than or equal to $4,(n, 3 h)=1$, where h is the class number of the field $Q(\sqrt{-p})$ has exactly five families of solutions given in Table 1.1.

TABLE 1.1

p	n	k	x	y
7	5	$5 M$	$11 \cdot 7^{5 M}$	$2 \cdot 7^{2 M}$
7	13	$13 M$	$181 \cdot 7^{13 M}$	$2 \cdot 7^{2 M}$
7	7	$7 M+1$	$13 \cdot 7^{7 M}$	$2 \cdot 7^{2 M}$
11	5	$5 M$	$31 \cdot 11^{5 M}$	$3 \cdot 11^{2 M}$
19	7	$7 M$	$559 \cdot 19^{7 M}$	$5 \cdot 19^{2 M}$

We start by the usual method of factorizing in the field $Q(\sqrt{-p})$, then we use a recent result of Bilu et al. [1], about primitive divisors of a Lucas number.
We start by giving some important definitions.

Definition 1.2. A Lucas pair is a pair (α, β) of algebraic integers, such that $\alpha+$ β and $\alpha \beta$ are nonzero coprime rational integers and α / β is not a root of unity. Given a Lucas pair (α, β), we define the corresponding sequence of Lucas numbers by $u_{n}(\alpha, \beta)=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ (where $n=0,1,2, \ldots$).

A prime number p is a primitive divisor of $u_{n}(\alpha, \beta)$ if p divides u_{n}, but does not divide $(\alpha-\beta)^{2} u_{1} u_{2} \cdots u_{n-1}$.

The following result has been proved in [1].
Lemma 1.3. For $n>30$, the nth term of any Lucas sequence has a primitive divisor.
Also in [1], for $5 \leq n \leq 30$, all values of the pairs (α, β) have been listed for which the nth term of the Lucas sequence $u_{n}(\alpha, \beta)$ has no primitive divisors.

We first consider the case when $(p, x)=1$ and prove the following theorem.
Theorem 1.4. Equation (1.1), where n and p satisfy the conditions of Theorem 1.1, has no solution in the positive integers x when $(p, x)=1$ except when $p=7,11$, or 19 .

Proof. First suppose that n is an odd integer. Without loss of generality, we can suppose that n is an odd prime. Factorizing (1.1), we obtain

$$
\begin{equation*}
\left(\frac{x+p^{k} \sqrt{-p}}{2}\right) \cdot\left(\frac{x-p^{k} \sqrt{-p}}{2}\right)=y^{n} . \tag{1.2}
\end{equation*}
$$

We can easily verify that the two numbers on the left-hand side are relatively prime integers in $Q(\sqrt{-p})$. So that

$$
\begin{equation*}
\frac{x+p^{k} \sqrt{-p}}{2}=\left(\frac{a+b \sqrt{-p}}{2}\right)^{n}, \tag{1.3}
\end{equation*}
$$

where a and b are rational integers such that $a \equiv b(\bmod 2)$ and $4 y=a^{2}+p b^{2}$, where $(a, p b)=1$.
Let

$$
\begin{equation*}
\alpha=\frac{a+b \sqrt{-p}}{2}, \quad \bar{\alpha}=\frac{a-b \sqrt{-p}}{2} . \tag{1.4}
\end{equation*}
$$

Then from (1.3), we get

$$
\begin{equation*}
\frac{\alpha^{n}-\bar{\alpha}^{n}}{\alpha-\bar{\alpha}}=\frac{p^{k}}{b} . \tag{1.5}
\end{equation*}
$$

By equating imaginary parts in (1.3), we can easily conclude from (1.5) that

$$
\frac{\alpha^{n}-\bar{\alpha}^{n}}{\alpha-\bar{\alpha}}= \begin{cases} \pm 1 & \text { if }(p, n)=1 \tag{1.6}\\ \pm p & \text { if } n \mid p .\end{cases}
$$

It can be verified that ($\alpha, \bar{\alpha}$) is a Lucas pair as defined earlier and the only positive prime divisor of the corresponding nth Lucas number

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\bar{\alpha}^{n}}{\alpha-\bar{\alpha}} \tag{1.7}
\end{equation*}
$$

is p which is not a primitive divisor because it divides $(\alpha-\bar{\alpha})^{2}=p b^{2}$. So the Lucas number defined in (1.7) has no primitive divisors. Using Lemma 1.3 and [1, Table 2], we deduce that (1.1) has no solutions when $n>13$. When $5 \leq n \leq 13$, again using [1, Table 2], we find all values of α for which the Lucas number $u_{n}(\alpha, \beta)$ has no primitive divisors. We consider each value of n separately.

When $n=13$, then $\alpha=(1+\sqrt{-7}) / 2$ which correspondingly gives $k=0, a=1$, $b=1, p=7$ and consequently, $y=\left(a^{2}+p b^{2}\right) / 4=2, x=181$ is the only solution of the equation $x^{2}+p^{2 k+1}=4 y^{13}$.

When $n=11$, there is no α for which $u_{11}(\alpha, \bar{\alpha})$ has no primitive divisors and so no solution of (1.1).

When $n=7$, the values of α for which $u_{7}(\alpha, \bar{\alpha})$ has no primitive divisors, are $\alpha=$ $(1+\sqrt{-7}) / 2,(1+\sqrt{-19}) / 2$ which give $y=2$ as a solution of $x^{2}+7^{3}=4 y^{7}(x=13)$ and $y=5$ as a solution of $x^{2}+19=4 y^{7}(x=559)$. Similarly, for $n=5$, we get $y=2$ as a solution of $x^{2}+7=4 y^{5}(x=11)$ and $y=3$ as a solution of $x^{2}+11=4 y^{5}(x=31)$.

Now we will prove that there is no solution for (1.1) when n is even. It suffices to consider that $n=4$.

Factorizing $x^{2}+p^{2 k+1}=4 y^{4}$, we get

$$
\begin{equation*}
\left(2 y^{2}+x\right) \cdot\left(2 y^{2}-x\right)=p^{2 k+1} \tag{1.8}
\end{equation*}
$$

Since $(p, x)=(p, y)=1$, then

$$
\begin{equation*}
2 y^{2}+x=p^{2 k+1}, \quad 2 y^{2}-x=1 \tag{1.9}
\end{equation*}
$$

which gives $4 y^{2}=p^{2 k+1}+1$. This can easily be checked to have no solution with $y>1$.

Proof of Theorem 1.1. Suppose that $p \mid x$. Let $x=p^{\lambda} x_{1}, y=p^{\mu} y_{1}$, where $\left(x_{1}, p\right)=\left(y_{1}, p\right)=1$ and $\lambda, \mu \geq 1$. Substituting in (1.1), we get

$$
\begin{equation*}
p^{2 \lambda} \cdot x_{1}^{2}+p^{2 k+1}=4 p^{n \mu} \cdot y_{1}^{n} \tag{1.10}
\end{equation*}
$$

We have the following three cases.
CASE 1. If $2 \lambda=\min (2 \lambda, 2 k+1, n \mu)$, then

$$
\begin{equation*}
x_{1}^{2}+p^{2 k-2 \lambda+1}=4 p^{n \mu-2 \lambda} \cdot y_{1}^{n} \tag{1.11}
\end{equation*}
$$

This equation is impossible modulo p unless $n \mu-2 \lambda=0$, and then we get $x_{1}^{2}+$ $p^{2(k-\lambda)+1}=4 y_{1}^{n}$, where $\left(x_{1}, p\right)=\left(y_{1}, p\right)=1$. According to Theorem 1.4, this equation has no solution for all $n \geq 4$ except when $n=13,7,5, k=\lambda$, and $n=7, k=\lambda+1$.

Accordingly, when $n=13$, we have $13 \mu=2 \lambda$, then $\lambda=13 M, \mu=2 M$ and so the solutions of (1.1) are $p=7, x=181 \cdot 7^{13 M}, y=2 \cdot 7^{2 M}$. Similarly, considering $n=5,7$, we get exactly the families of solutions given in the statement of Theorem 1.1.

CASE 2. If $2 k+1=\min (2 \lambda, 2 k+1, n \mu)$, then

$$
\begin{equation*}
p^{2 \lambda-2 k-1} \cdot x_{1}^{2}+1=4 p^{n \mu-2 k-1} \cdot y_{1}^{n} \tag{1.12}
\end{equation*}
$$

This equation is known to have no solution [7].

CASE 3. If $n \mu=\min (2 \lambda, 2 k+1, n \mu)$, then

$$
\begin{equation*}
p^{2 \lambda-n \mu} \cdot x_{1}^{2}+p^{2 k+1-n \mu}=4 y_{1}^{n} . \tag{1.13}
\end{equation*}
$$

This equation is possible only if $2 \lambda-n \mu=0$ or $2 k+1-n \mu=0$. If $2 \lambda-n \mu=0$, we get $x_{1}^{2}+p^{2(k-\lambda)+1}=4 y_{1}^{n}$, which is an equation of the same form as considered in Case 1 .

If $2 k+1-n \mu=0$, we get $p\left(p^{\lambda-k-1} \cdot x_{1}\right)^{2}+1=4 y_{1}^{n}$, which is known to have no solution [6]. This completes the proof of Theorem 1.1.

Note 1.5. When $n=3$, factorizing (1.1), we get

$$
\begin{align*}
& \frac{x+3^{k} \sqrt{-3}}{2}=\varepsilon\left(\frac{a+b \sqrt{-3}}{2}\right)^{3}, \tag{1.14}\\
& \frac{x+p^{k} \sqrt{-p}}{2}=\left(\frac{a+b \sqrt{-p}}{2}\right)^{3}, \quad p \neq 3 \tag{1.15}
\end{align*}
$$

where $\varepsilon=\omega$ or ω^{2} and ω is a cube root of unity. From (1.14), we easily deduce that $k=0$ and $y=1$ and 7 are the only solutions as proved in [3]. We treat (1.15) by the same way as before by taking $\alpha=(a+b \sqrt{-\bar{p}}) / 2$ and $\bar{\alpha}=(a-b \sqrt{-p}) / 2$, so we get $\left(\alpha^{3}-\bar{\alpha}^{3}\right) /(\alpha-\bar{\alpha})= \pm 1$. It can be easily proved that $(\alpha, \bar{\alpha})$ is a Lucas pair as defined above. Using [1, Table 2], we find the following two values of α for which the Lucas number $u_{3}(\alpha, \bar{\alpha})$ has no primitive divisors:

$$
\alpha= \begin{cases}\frac{m+\sqrt{ \pm 4-3 m^{2}}}{2}, & m>1 \tag{1.16}\\ \frac{m+\sqrt{ \pm 4 \cdot 3^{k}-3 m^{2}}}{2}, & m \neq 0(\bmod 3)\end{cases}
$$

where $(k, m) \neq(1,2)$.
The first value of α gives $b=1, k=0$ and consequently, $p=3 a^{2} \pm 4, y=a^{2} \pm 1$, and $x=a\left(2 a^{2} \pm 3\right)$ is the solution of (1.1) with $n=3$. No solution is found for the second value of α since $p \neq 3$. Hence, we have the following theorem.

Theorem 1.6. The Diophantine equation

$$
\begin{equation*}
x^{2}+p^{2 k+1}=4 y^{3}, \quad(p, x)=1 \tag{1.17}
\end{equation*}
$$

has the only solutions $k=0$ and $y=1$ and 7 when $p=3$. When p is a prime greater than 3 , such that $(3, h)=1$, where h is the class number of the field $Q(\sqrt{-p})$, then it has solutions only if $p=3 a^{2} \pm 4$, and then the solution is $k=0, y=a^{2} \pm 1$, and $x=a\left(2 a^{2} \pm 3\right)$.

References

[1] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. reine angew. Math. 539 (2001), 75-122.
[2] M. H. Le, On the Diophantine equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$, Monatsh. Math. 120 (1995), no. 2, 121-125.
[3] W. Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante, Acta Math. 75 (1943), 1-21 (German).
[4] , On the Diophantine equation $x^{2}+D=4 y^{q}$, Monatsh. Math. 75 (1971), 136-143.
[5] _, New theorems concerning the Diophantine equation $x^{2}+D=4 y^{q}$, Acta Arith. 21 (1972), 183-191.
[6] M. Mignotte, On the Diophantine equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$, Portugal. Math. 54 (1997), no. 4, 457-460.
[7] T. Nagell, Des équations indéterminées $x^{2}+x+1=y^{n}$ et $x^{2}+x+1=3 y^{n}$, Norsk Mat. Forenings Skr., Ser. I (1921), no. 2, 1-14.
[8] B. Persson, On a Diophantine equation in two unknowns, Ark. Mat. 1 (1949), 45-57.
[9] B. Stolt, Die Anzahl von Lösungen gewisser diophantischer Gleichungen, Arch. Math. 8 (1957), 393-400 (German).
S. Akhtar Arif: Department of Mathematics, Girls College of Education, p.O. Box 22171, Riyadh 11495, SAUDI Arabia

E-mail address: sarif5@hotmai1.com
Amal S. Al-Ali: Department of Mathematics, Girls College of Education, P.O. Box 56778, Riyadh 11564, SAUDI Arabia

E-mail address: ama11422h@yahoo.com

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

