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We define the weighted Bergman space bpβ(ST ) consisting of temperature func-
tions on the cylinder ST = S1 × (0,T ) and belonging to Lp(ΩT ,tβdxdt), where
ΩT = (0,2)× (0,T ). For β > −1 we construct a family of bounded projections of
Lp(ΩT ,tβdxdt) onto bpβ(ST ). We use this to get, for 1<p <∞ and 1/p+1/p′ = 1,

a duality bpβ(ST )
∗ = bp′β′ (ST ), where β′ depends on p and β.
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1. Introduction. For D, the open unit disk in the complex plane C, the clas-

sic Bergman space Lpa is the subspace of holomorphic functions f :D→ C such

that f ∈ Lp(D). It can be verified by the mean value theorem and Hölder in-

equality that Lpa is a closed subspace of Lp(D). This implies the existence of

an orthogonal projection P from L2(D) onto L2
a, which is called the Bergman

projection. The projection P can be written as an integral operator

Pf(z)=
∫
D
K(z,w)f(w)dw, (1.1)

for all f ∈ L2
a, whereK(z,w) is the so-called Bergman reproducing kernel of L2

a.

The theory of Bergman spaces has a long history. It goes back to the work

of Bergman [3], who gave the first treatment of L2
a(Ω). Today there are rich

theories describing the Bergman spaces in various domains and their opera-

tors. Two of the most important classes of operators in the Bergman space

theory are the Toeplitz and Hankel operators, which are defined in terms of

the Bergman projection P . This theory was mainly developed in the late 1980s.

For a very nice exposition of the Lp(D)-theory of Bergman spaces, operators

defined on them, and further historical references, we refer to Axler [1], Zhu

[10], and a more modern approach in [2].

In this paper, we define weighted Bergman-type spaces bpβ(ST ) consisting

of temperature functions on the cylinder ST = S1 × (0,T ) and belonging to

Lp(ΩT ,tβdxdt), where ΩT = (0,2)× (0,T ). As in the holomorphic case, we

prove that bpβ(ST ) is a Banach space. Therefore, there exist the Bergman pro-

jection and the corresponding reproducing kernel in this setting. Since the

Bergman projection P : L2(ΩT )→ b2(ST ) is an orthogonal projection, then it is
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bounded, but the boundedness of P on Lp is not obvious at all. We will con-

struct a family of reproducing kernels and bounded projections Pα of Lp(ΩT ,
tβdxdt) onto bpβ(ST ), for p > 1 and p > (1+ β)/(1+α). The proof of the

boundedness of these projections is based on a version of the Schur’s test,

and the theory of Fourier multipliers. Using the fact that Pα is bounded we

obtain the duality between the Bergman spaces.

The main results of this paper are the following theorems.

Theorem 1.1. Let α,β > −1. If p > max(1,(1+β)/(1+α)), the operator

Pα : Lpβ(ΩT )→ bpβ(ST ) given by

Pαu(z)=
∫
ΩT
Nα(z,w)u(w)ταdw, z ∈ΩT , (1.2)

is a continuous projection onto bpβ(ST ), where

Nα(z,w)= 1+α
2T 1+α +

∑
m∈Z∗

2απ2(1+α)m2(1+α)

γ
(
1+α,2π2m2T

)e−π2m2(t+τ)+πmi(x−y). (1.3)

Theorem 1.2. Letα,β >−1. Ifp >max(1,(1+β)/(1+α)), then (bpβ(ST ))∗ =
bp

′
(α−β/p)p′(ST ) with respect to the duality

〈u,v〉α =
∫
ΩT
u(z)v(z)tαdxdt. (1.4)

Theorem 1.3. Let n,d ≥ 1 and p > 1. If u ∈ bp(ST ), then tn/2(∂nu/∂xn),
td(∂du/∂td)∈ Lp(ΩT ). Furthermore, there are constants Cn,Cd > 0 such that

∥∥∥∥tn/2 ∂nu∂xn
∥∥∥∥
Lp(ΩT )

≤ Cn‖u‖bp(ST ),∥∥∥∥td ∂du∂td
∥∥∥∥
Lp(ΩT )

≤ Cd‖u‖bp(ST ),
(1.5)

for all u∈ bp(ST ).
The paper is organized as follows. After some preliminaries in Section 2,

we define the Bergman space bpβ(ST ) in Section 3. In Section 4, we define a

family of reproducing kernels and projections Pα. Finally, in Section 5 we prove

the boundedness of the projections Pα and the duality between the Bergman

spaces.

2. Notation and preliminary results. Throughout this paper we will use

the following notation: the conjugate exponent of p > 1 will be denoted by p′,
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we will write z = (x,t), w = (y,τ), dz = dxdt, dw = dydτ , S1 = {eπiθ : θ ∈
[0,2]}, and Z∗ = {n∈ Z :n≠ 0}. Foru∈ L1(R), we define its Fourier transform

as

(�u)(ς)=
∫∞
−∞
u(x)e−2πixς dx. (2.1)

For Ω ⊂R2+ an open set, let

H(Ω)=
{
u∈ C2(Ω) :

∂2u
∂x2

= ∂u
∂t

on Ω
}
. (2.2)

We will call the elements ofH(Ω) temperature functions. K(x,t) will denote

the Gauss-Weierstrass kernel. For t > 0, let

θ(x,t)=
∑
n∈Z
K(x+2n,t)= 1

2

∑
n∈Z
e−π

2n2t+πnix,

ϕ(x,t)=−2
∂θ
∂x
(x,t),

(2.3)

and for t ≤ 0, let K = θ =ϕ = 0 (see [8]). Moreover,

∫ 2

0
θ(x,t)dx =

∫∞
−∞
K(x,t)dx = 1, ∀t > 0. (2.4)

Let Q = (0,1)× (0,1), Γ = Γ1∪ Γ2∪ Γ3 (the parabolic boundary of Q), where

Γ1 = {0}× [0,1), Γ2 = {1}× [0,1), and Γ3 = (0,1)×{0}, and let λ be the one-

dimensional Lebesgue measure on Γ .
We consider the heat kernel K̃(x,t;ξ,τ) on Q×Γ defined as follows:

K̃(x,t;ξ,τ)=


ϕ(x,t−τ), ξ = 0, 0≤ τ < 1,

ϕ(1−x,t−τ), ξ = 1, 0≤ τ < 1,

θ(x−ξ,t)−θ(x+ξ,t), τ = 0, 0< ξ < 1.

(2.5)

It is well known that if u∈H(Q)∩C(Q), then (see [4])

u(x,t)=
∫
Γ
K̃(x,t;ξ,τ)u(ξ,τ)dλ(ξ,τ), ∀(x,t)∈Q. (2.6)

Conversely, if v ∈ C(Γ), then

u(x,t)=
∫
Γ
K̃(x,t;ξ,τ)v(ξ,τ)dλ(ξ,τ) (2.7)

is a temperature function on Q.
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Remark 2.1. Clearly K̃(x,t;·) ∈ L1(Γ ,dλ) for all (x,t) ∈ Q. This follows

from (2.7) with v ≡ 1.

Let R = (a,b)× (c,d) ⊂ R2+ be a rectangle such that d− c = (b − a)2. If

u ∈ H(R)∩C(R) then u◦Ψ ∈ H(Q)∩C(Q), where the mapping Ψ : Q→ R is

defined by

Ψ(ξ,τ)= ((b−a)ξ+a,(d−c)τ+c). (2.8)

By (2.6) we have

u(x,t)=
∫
ΓR
K̃
(
Ψ−1(x,t);Ψ−1(ξ,τ)

)
u(ξ,τ)dλR(ξ,τ), ∀(x,t)∈ R, (2.9)

where ΓR=Ψ(Γ)=Ψ(Γ1)∪Ψ(Γ2)∪Ψ(Γ3) and λR is the one-dimensional Lebesgue

measure normalized on each segment of ΓR .

In [5] it was proved that there is a constant C > 0 such that

θ(x,t)≤ C(1+t)K(x,t), −1<x < 1. (2.10)

In particular for 0< t ≤ T <∞ there is a constant CT > 0 such that

θ(x,t)≤ CTK(x,t), −1<x < 1. (2.11)

Now, suppose f is a 2-periodic continuous function on R. Then u is a tem-

perature function on R2+, 2-periodic in the variable x, and u(x,t) → f(x) as

t→ 0 uniformly on [0,2] if and only if (see [8, Chapter 5, Theorem 8])

u(x,t)=
∫ 2

0
θ(x−y,t)f (y)dy. (2.12)

Remark 2.2. Since f(x) is continuous on R and u(x,t)→ f(x) uniformly

on [0,2], the continuity of u at t = 0 follows.

On the other hand, if

u(x,t)=
∫ 2

0
θ(x−y,t)f (y)dy = (K(·, t)∗f )(x), (2.13)

by Minkowski’s integral inequality, we have

∥∥u(·, t)∥∥Lp(S1) ≤ ‖f‖Lp(S1), ∀t > 0. (2.14)

The following result, proved in [6], will be useful in this paper.
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Lemma 2.3. Let R = (a,b)× (c,d) ⊂ R2+ be such that d− c = (b−a)2. If

u∈H(R)∩C(R) and (x0, t0) is the midpoint of the upper boundary of R, then

∣∣u(x0, t0
)∣∣p ≤ Cp|R|

∫∫
R

∣∣u(x,t)∣∣pdxdt, (2.15)

where |R| is the area of R and Cp is a constant depending only on p > 0.

Next, we prove a variant of Schur’s lemma (see [9]). This result provides a

sufficient condition for the boundedness of an integral operator T defined on

Lp(Ω,dµ), 1<p <∞.

Lemma 2.4. Let 1 < p <∞. Let (Ω,µ) be a measure space with µ a σ -finite

measure, and let N :Ω×Ω→ C and G :Ω→R+ be measurable functions. For a

measurable function f , define

Tf
(
w1
)= ∫

Ω
N
(
w1,w2

)
f
(
w2
)
dµ
(
w2
)
. (2.16)

Assume that there exist measurable functions h,g :Ω→R+ and constants a,b ≥
0 such that

∫
Ω

∣∣N(w1,w2
)∣∣h(w2

)p′dµ(w2
)≤ (ag(w1

))p′ , µ-a.e., (2.17)∫
Ω

∣∣N(w1,w2
)∣∣g(w1

)pG(w1
)
dµ
(
w1
)≤ (bh(w2

))pG(w2
)
, µ-a.e. (2.18)

Then T : Lp(Ω,Gdµ)→ Lp(Ω,Gdµ) is a bounded operator and ‖T‖ ≤ ab.

Proof. By Hölder’s inequality and (2.17) we have

∣∣Tf (w1
)∣∣≤ ag(w1

)(∫
Ω

∣∣N(w1,w2
)∣∣∣∣∣∣f (w2

)
h
(
w2
)∣∣∣∣pdµ(w2

))1/p

. (2.19)

By Tonelli’s theorem and (2.18) we have

∫
Ω

∣∣Tf (w1
)∣∣pG(w1

)
dµ
(
w1
)≤ (ab)p ∫

Ω

∣∣f (w2
)∣∣pG(w2

)
dµ
(
w2
)
. (2.20)

That is, ‖Tf‖Lp(Ω,Gdµ) ≤ ab‖f‖Lp(Ω,Gdµ).
Lemma 2.5. Let α,β > −1 and p >max(1,(1+β)/(1+α)). For every δ > 0

such that

β−α
p

< δ<min
(

1+α
p′

,
1+β
p

)
, (2.21)
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the function h(t)= t−δ satisfies the following inequalities:

∫ T
0

τα

(t+τ)1+α h(τ)
p′dτ ≤ Ch(t)p′ , ∀t ∈ (0,T ),∫ T

0

τα

(t+τ)1+α h(t)
ptβdt ≤ Ch(τ)pτβ, ∀τ ∈ (0,T ).

(2.22)

Proof. Let γ ∈R. Making the change of variable t = τs, we have

∫ T
0

t−γ

(t+τ)1+α dt ≤ τ
−γ−α

∫∞
0

s−γ

(s+1)1+α
ds = Cα,γτ−γ−α, (2.23)

where Cα,γ =
∫∞
0 (s−γ/(s+1)1+α)ds <∞ whenever −α< γ < 1. We obtain (2.22)

by letting γ = δp′ −α and γ = δp−β, respectively.

3. The Bergman space bpβ(ST ). Let W : Ω → R+ be a measurable function

such that W−p′/p ∈ L1
loc(Ω). Denote LpW(Ω)= Lp(Ω,Wdxdt) for 1≤ p <∞.

Definition 3.1. We define the Bergman space bpW(Ω) as the subspace of

temperature functions in LpW(Ω). That is, bpW(Ω)=H(Ω)∩LpW(Ω).
We will show that bpW(Ω) is a closed subspace of LpW(Ω) and therefore a

Banach space. For this aim, we will need the following result.

Proposition 3.2. Given 1 ≤ p < ∞ and � ⊂ Ω a compact set, there is a

constant C� > 0 such that

∣∣u(x,t)∣∣≤ C�‖u‖LpW (Ω), (3.1)

for all (x,t)∈�, u∈ bpW(Ω).
Proof. Let δ = d(�,Ωc) > 0 and �0 = {z ∈ Ω : d(z,�) ≤ δ/2}. For every

z ∈�, let Rz be a rectangle such that z is the midpoint of the upper boundary

of Rz, with height(Rz)= {base(Rz)}2 and Rz ⊂ B(z,δ/2)⊂�0.

By Lemma 2.3 there is a constant C > 0 such that

∣∣u(z)∣∣≤ C∣∣Rz∣∣
∫∫
Rz

∣∣u(y,τ)∣∣dydτ
≤ C∣∣Rz∣∣‖u‖LpW (Ω)

(∫∫
�0

W−p′/p dydτ
)1/p′

,
(3.2)

for all u∈ bpW(Ω).
We conclude the proof by choosing rectangles Rz congruent to one another,

for every z ∈�.
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Remark 3.3. If uj → u in bpW(Ω), then uj → u uniformly on each compact

subset of Ω.

Theorem 3.4. For 1≤ p <∞, bpW(Ω) is a closed subspace of LpW(Ω). There-

fore bpW(Ω) is a Banach space.

Proof. Given u∈ LpW(Ω), let (uj) be a sequence in bpW(Ω) such that

∥∥u−uj∥∥LpW (Ω) �→ 0. (3.3)

We will show that u is a temperature function onΩ (except on a set of measure

zero).

Pick (x0, t0) ∈ Ω. Let R = (a,b)× (c,d), with d− c = (b−a)2, such that

(x0, t0)∈ R and R ⊂Ω. By Proposition 3.2, there is a constant C > 0 such that

∣∣uj(x,t)−uk(x,t)∣∣≤ C∥∥uj−uk∥∥LpW (Ω), ∀(x,t)∈ R. (3.4)

It follows that (uj) converges uniformly on R to a continuous function v .

Since uj ∈H(R)∩C(R), (2.9) implies that

uj(x,t)=
∫
ΓR
K̃
(
Ψ−1(x,t);Ψ−1(ξ,τ)

)
uj(ξ,τ)dλR(ξ,τ), for (x,t)∈ R. (3.5)

By Remark 2.1 and the dominated convergence theorem we have

v(x,t)= lim
j→∞

uj(x,t)=
∫
ΓR
K̃
(
Ψ−1(x,t);Ψ−1(ξ,τ)

)
lim
j→∞

uj(ξ,τ)dλR(ξ,τ)

=
∫
ΓR
K̃
(
Ψ−1(x,t);Ψ−1(ξ,τ)

)
v(ξ,τ)dλR(ξ,τ).

(3.6)

Since the function v is continuous on ΓR then v is a temperature function

on R. On the other hand, uj → u in LpW(Ω) and then some subsequence of

(uj) converges to u almost everywhere on Ω. Therefore u = v a.e. on R and

u∈H(R). Since (x0, t0)∈Ω was arbitrary, we conclude that u∈H(Ω).
We will write bp(Ω) = bpW(Ω) when W ≡ 1. Proposition 3.2 implies that the

linear functional �z : b2(Ω) → C defined by �z(u) = u(z) is bounded for all

z ∈Ω. Hence the Riesz representation theorem shows that there is a function

N :Ω×Ω→ C such that

u(z)= 〈u,N(z,·)〉= ∫
Ω
u(w)N(z,w)dw, (3.7)

for all u∈ b2(Ω), z ∈Ω.

The function N :Ω×Ω→ C is called the reproducing kernel of b2(Ω), some

of its properties are the following (see [2]):

(1) N(z,·)∈ b2(Ω) for all z ∈Ω;

(2) N is real-valued and symmetric;
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(3) if (un) is an orthonormal basis of b2(Ω), then

N(z,w)=
∞∑
n=1

un(z)un(w). (3.8)

There is a unique orthogonal projection P : L2(Ω)→b2(Ω) called the Bergman

projection. We have

Pu(z)= 〈Pu,N(z,·)〉= 〈u,N(z,·)〉= ∫
Ω
u(w)N(z,w)dw. (3.9)

For T > 0, we define

C
(
ST
)= {u∈ C(R×[0,T ]) :u(x,t)=u(x+2, t)

}
,

H
(
ST
)= {u∈H(R×(0,T )) :u(x,t)=u(x+2, t)

}
.

(3.10)

We will call the elements of H(ST ) temperature functions on the cylinder ST .

Definition 3.5. For 1 ≤ p <∞, we define the Bergman space of tempera-

ture functions on the cylinder ST as

bpW
(
ST
)= {u∈H(ST ) :

∫
ΩT
|u|pWdz <∞

}
, (3.11)

where ΩT = (0,2)×(0,T ), and W is a measurable function such that W−p′/p ∈
L1

loc(ΩT ).

In bpW(ST ) we define the following norm:

‖u‖bpW (ST ) =
(∫

ΩT
|u|pWdz

)1/p
. (3.12)

Notice that if u ∈ bpW(ST ), then u|ΩT ∈ LpW(ΩT ). Hence we write bpW(ST ) ⊂
LpW(ΩT ).

Theorem 3.6. For 1≤ p <∞, bpW(ST ) is a closed subspace of LpW(ΩT ). There-

fore bpW(ST ) is a Banach space.

Proof. Let u ∈ LpW(ΩT ) and let (uj) be a sequence in bpW(ST ) such that

‖u−uj‖LpW (ΩT )→ 0. Consider the open setΩ = (−1,3)×(0,T ) and the sequence

(uj|Ω). Extend the functionW :ΩT →R+ to be 2-periodic in the variablex. Then∥∥ui−uj∥∥LpW (Ω) = 2
∥∥ui−uj∥∥LpW (ΩT ). (3.13)

It follows that (uj|Ω) is a Cauchy sequence in bpW(Ω). Since bpW(Ω) is a Banach

space, there is v ∈ bpW(Ω) such that ‖v −uj‖LpW (Ω) → 0. By Remark 3.3, the

sequence (uj|Ω) converges uniformly on compact subsets of Ω. So,

v(0, t)= lim
j→∞

uj(0, t)= lim
j→∞

uj(2, t)= v(2, t), (3.14)
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for all 0< t < T . Extend the function v as a 2-periodic function in the variable

x. This extension, which we still denote by v , belongs to bpW(ST ) and ‖v −
uj‖LpW (ΩT )→ 0. Thus u= v a.e.

As in (3.7), it is shown that there is a reproducing kernel of b2(ST ), that is,

a function N :ΩT ×ΩT →R satisfying

u(z)=
∫
ΩT
N(z,w)u(w)dw, (3.15)

for all u∈ b2(ST ), z ∈ΩT .

If (un) is an orthonormal basis of b2(ST ), then

N(z,w)=
∞∑
n=1

un(z)un(w). (3.16)

The Bergman projection P : L2(ΩT )→ b2(ST ) is the integral operator given by

Pu(z)=
∫
ΩT
N(z,w)u(w)dw, ∀z ∈ΩT . (3.17)

We will prove that the extension of the Bergman projection P to Lp(ΩT ) is

bounded for all p > 1. Actually, we will show that P is bounded on certain

weighted Bergman spaces.

From now on, we will be working with weights consisting of powers of the

distance of a point to the base of the cylinder, that is, we considerWβ :R2+ →R+
given by Wβ(x,t)= tβ. Clearly W−p′/p

β ∈ L1
loc(R2+).

Let Lpβ(ΩT ) = LpWβ(ΩT ) and bpβ(ST ) = bpWβ(ST ). If β > −1, then Wβdxdt is a

finite measure on ΩT and

Lpβ
(
ΩT
)⊂ L1

β
(
ΩT
)
, bpβ

(
ST
)⊂ b1

β
(
ST
)
, (3.18)

for all 1≤ p <∞.

We will show that the subspace H(ST )∩C(ST ) is dense in bpβ(ST ), for all

β >−1. Given u∈ bpβ(ST ) and 0< r < T , we define the function ur as follows:

ur(x,t)=
∫ 2

0
θ(x−y,t)u(y,r)dy. (3.19)

From (2.12) and Remark 2.2, we have thatur ∈H(ST )∩C(ST ) andur(x,0)=
u(x,r).

The uniqueness of the solution of the heat equation on a finite cylinder (see

[8]) yields

ur(x,t)=u(x,t+r), for 0≤ t < T −r . (3.20)
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As before, we have

u(x,t+r)=
∫ 2

0
θ(x−y,r)u(y,t)dy = (K(·,r )∗u(·, t))(x), for r > 0.

(3.21)

Minkowski’s integral inequality implies∫ 2

0

∣∣u(x,t+r)∣∣pdx ≤ ∫ 2

0

∣∣u(x,t)∣∣pdx, for r > 0. (3.22)

Theorem 3.7. Let β > −1, 1 ≤ p <∞, and u ∈ bpβ(ST ). Then limr→0ur = u
in bpβ(ST ).

Proof. Given ε > 0, there exists v ∈ Cc(ΩT ) such that ‖u−v‖Lpβ(ΩT ) < ε.
We define vr :ΩT → C as

vr (x,t)=
v(x,t+r), 0≤ x ≤ 2, 0≤ t ≤ T −r ,

0, 0≤ x ≤ 2, T −r ≤ t ≤ T . (3.23)

Clearly vr ∈ C(ΩT ). We have

∥∥u−ur∥∥bpβ (ST ) ≤ ‖u−v‖Lpβ(ΩT )+∥∥v−vr∥∥Lpβ(ΩT )+∥∥vr −ur∥∥Lpβ(ΩT ). (3.24)

Since v is uniformly continuous on ΩT , it is easy to see that limr→0‖v −
vr‖Lpβ(ΩT ) = 0.

The uniqueness of the solution of the heat equation on a finite cylinder and

(2.12) allow to write

ur(x,t)=
∫ 2

0
θ
(
x−y,t− T

2
+r

)
u
(
y,
T
2

)
dy, for

T
2
−r < t < T. (3.25)

Hence

∥∥vr −ur∥∥pLpβ(ΩT ) ≤
∫ T−r

0

∫ 2

0

∣∣v(x,t+r)−u(x,t+r)∣∣ptβdz
+
∥∥∥∥u(·, T2

)∥∥∥∥p∞
∫ T
T−r

∫ 2

0

∣∣∣∣∫ 2

0
θ
(
x−y,t− T

2
+r

)
dy

∣∣∣∣ptβdz
=Ar +Br .

(3.26)

By (2.4) we have that limr→0Br = 2‖u(·,T/2)‖p∞ limr→0

∫ T
T−r tβdt = 0.

On the other hand, by (3.22) we have∫ r
0

∫ 2

0

∣∣v(x,t+r)−u(x,t+r)∣∣ptβdz
≤ Cp

{
‖v‖p∞

∫ r
0
tβdt+

∫ r
0

∫ 2

0

∣∣u(x,t)∣∣ptβdz}. (3.27)
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If 0< r ≤ t, then

tβ ≤
(t+r)β if β≥ 0,

2−β(t+r)β if β < 0.
(3.28)

So,∫ T−r
r

∫ 2

0

∣∣v(x,t+r)−u(x,t+r)∣∣ptβdz ≤ Cβ‖v−u‖pLpβ(ΩT ) < Cβεp. (3.29)

From (3.27) and (3.29) it follows that limsupr→0Ar ≤ Cβεp . Hence limsupr→0‖u
−ur‖Lpβ(ΩT ) ≤ Cβε.

Corollary 3.8. Let β >−1 and 1≤ p <∞. Then H(ST )∩C(ST ) is dense in

bpβ(ST ).

Now, to compute the reproducing kernel we need to find an orthonormal

basis of b2(ST ), so if we define

un(x,t)= e−π2n2t+πnix, (3.30)

thenun ∈ bpβ(ST ) for all n∈ Z, β >−1. We will show that (un) is an orthogonal

basis of b2(ST ).

Lemma 3.9. Let β > −1 and 1 ≤ p < ∞. The linear space generated by

(un)n∈Z is dense in bpβ(ST ).

Proof. Let u ∈ bpβ(ST ) and ε > 0, by the previous theorem there exists

v ∈ C(ST )∩H(ST ) such that

‖u−v‖bpβ (ST ) < ε. (3.31)

Since the set of trigonometric polynomials is dense in Lp(S1) and v(·,0)∈
C(S1), there exists a trigonometric polynomial q(x) = ∑

|n|≤N aneπnix such

that ‖v(·,0)−q‖Lp(S1) < ε.
On the other hand, by (2.12) with f(x)= eπnix , we have

un(x,t)=
∫ 2

0
θ(x−y,t)eπniydy = (K(y,t)∗eπniy)(x). (3.32)

By (3.19) it follows that

v(x,t)=
∫ 2

0
θ(x−y,t)v(y,0)dy = (K(·, t)∗v(·,0))(x). (3.33)

By (2.14) we obtain∥∥∥∥∥v(·, t)− ∑
|n|≤N

anun(·, t)
∥∥∥∥∥
p

Lp(S1)
≤ ∥∥v(·,0)−q∥∥pLp(S1). (3.34)
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Multiplying the previous inequality by tβ and integrating on (0,T ), we get∥∥∥∥∥v− ∑
|n|≤N

anun

∥∥∥∥∥
bpβ (ST )

≤ CT,β
∥∥v(·,0)−q∥∥Lp(S1). (3.35)

Therefore, ‖u−∑|n|≤N anun‖bpβ (ST ) < C
′
T ,βε. Since ε > 0 is arbitrary the result

follows.

Clearly, the sequence (un)n∈Z defined in (3.30) is an orthogonal set inb2(ST ).
It follows that the sequence (‖un‖−1

b2(ST )
un) is an orthonormal basis of b2(ST ).

We have

∥∥un∥∥2
b2(ST ) =

1
π2n2

γ
(
1,2π2n2T

)
, (3.36)

for all n∈ Z∗, where γ is defined by

γ(α,z)=
∫ z

0
tα−1e−tdt if α,z > 0. (3.37)

Moreover, ‖u0‖2
b2(ST )

= 2T . By (3.16) it follows that

N(z,w)= 1
2T

+
∑
n∈Z∗

π2n2

γ
(
1,2π2n2T

)e−π2n2(t+τ)+πni(x−y). (3.38)

4. The projections Pα. Before proving the continuity of the Bergman projec-

tion, we will study certain integral operators Pα with kernel Nα. The operators

Pα will turn out to be continuous projections on bpβ(ST ).

Definition 4.1. Given α>−1, we define Nα :ΩT ×ΩT → C as

Nα(z,w)=
∑
m∈Z

cm,αe−π
2m2(t+τ)+πmi(x−y), (4.1)

where cm,α = 2απ2(1+α)m2(1+α)/γ(1+α,2π2m2T), for all m ∈ Z∗ and c0,α =
(1+α)/2T 1+α.

Since

γ
(
1+α,2π2m2T

)≥ ∫ 2π2T

0
tαe−tdt = Cα > 0, (4.2)

we have that cm,α ≤ Cαm2(1+α), for all m∈ Z∗.

Using the fact that e−x ≤ C′λx−λ for x > 0 and λ≥ 0, we get∣∣∣∣∣ ∑
m∈Z∗

mke−π
2m2(t+τ)+πmi(x−y)

∣∣∣∣∣≤ Ck
tk/2+1

∑
m∈Z∗

|m|k(
m2

)k/2+1 ≤
Ck
tk/2+1

0

, (4.3)

for t ≥ t0 > 0, k≥ 0.
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Therefore, the series defining Nα converges absolutely and uniformly on

Ω′×ΩT providedΩ′ ⊂ΩT is compact, furthermore, the functionNα is bounded

on Ω′ ×ΩT . So Nα ∈ C∞(ΩT ×ΩT ) and Nα(·,w) ∈H(ST ) for all w ∈ΩT . Since

cm,α = c−m,α, the function Nα is real valued and symmetric. If α= 0, Nα coin-

cides with the reproducing kernel of b2(ST ).

Definition 4.2. For α>−1, Pα is the integral operator given by

Pαu(z)=
∫
ΩT
Nα(z,w)u(w)ταdw, z ∈ΩT . (4.4)

This integral is well defined for all u∈ C∞c (ΩT ). If α= 0, Pα is the Bergman

projection.

It is easy to see that

Pα
(
e−π

2n2t+πnix)= e−π2n2t+πnix, (4.5)

for all n ∈ Z. Therefore, Pα is a projection on the linear space generated by

{e−π2n2t+πnix}.
We want to show the continuity of Pα on Lpβ(ΩT ). In order to do so, we

analyze the following operator:

Tαu(z)=
∫
ΩT
Θα(z,w)u(w)ταdw, z ∈ΩT , (4.6)

where

Θα(z,w)= θα(x−y,t+τ)= 1
2
π2(1+α) ∑

m∈Z
m2(1+α)e−π

2m2(t+τ)+πmi(x−y).

(4.7)

The series defining Θα has the same properties of convergence as Nα.

Remark 4.3. If α∈N, then θα(x,t)= (−1)1+α(∂1+α/∂t1+α)θ(x,t).

Let Kα(x,t) be the function defined as

Kα(x,t)= 1
2

�
−1
(
π2(1+α)ς2(1+α)e−π

2ς2t
)(x

2

)
= 1√

πt1+α
K(x,t)

∫∞
−∞

(
σ +i x

2
√
t

)2(1+α)
e−σ

2
dσ,

(4.8)

where �
−1 is the inverse Fourier transform with respect to the variable ς.

We have the following estimate:

∣∣Kα(x,t)∣∣≤ Cα
t1+α

K(x,t)
∫∞
−∞

(
σ 2(1+α)+ x

2(1+α)

t1+α

)
e−σ

2
dσ

≤ Cα
t1+α

K(x,t)
[

1+ x
2(1+α)

t1+α

]
.

(4.9)
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Since xλe−x ≤ Cλe−x/2 for x,λ > 0, we have

x2(1+α)

(4t)1+α
K(x,t)= 1√

4πt

(
x2(1+α)

(4t)1+α
e−x

2/4t
)

≤ Cα√
4πt

e−x
2/8t = CαK(x,2t).

(4.10)

Therefore,

∣∣Kα(x,t)∣∣≤ Cα
t1+α

{
K(x,t)+K(x,2t)}. (4.11)

Lemma 4.4. For α>−1, Kα(x,t)∈ C(R2+).

Proof. We write Kα(x,t)= (1/√πt1+α)K(x,t)ψα(x,t), where

ψα(x,t)=
∫∞
−∞

(
σ +i x

2
√
t

)2(1+α)
e−σ

2
dσ. (4.12)

The function f(z)= z2(1+α) is analytic on Imz > 0. Also

∫∞
−∞

∣∣∣∣∣
(
σ +i x

2
√
t

)2(1+α)∣∣∣∣∣e−σ2
dσ

≤
∫∞
−∞

(
|σ |+ |x|

2
√
t

)2(1+α)
e−σ

2
dσ <∞,

(4.13)

for all (x,t) ∈ R2+. From the dominated convergence theorem it follows that

ψα(x,t)∈ C(R2+).

Remark 4.5. If α∈N, then Kα(x,t)= (−1)1+α(∂1+α/∂t1+α)K(x,t).

Now we get an alternate expression for the function θα in terms of the func-

tion Kα.

Proposition 4.6. For α>−1, θα(x,t)=
∑
m∈ZKα(x+2m,t).

Proof. From (4.11) we have

∣∣∣∣∣ ∑
m∈Z

Kα(x+2m,t)

∣∣∣∣∣≤ Cα
t1+α

{
θ(x,t)+θ(x,2t)}. (4.14)

Hence, the series converges uniformly on compact subsets ofR2+ and therefore

it is continuous. Since the series is 2-periodic in x, it admits a representation

as a Fourier series,

∑
m∈Z

Kα(x+2m,t)=
∑
m∈Z

am(t)eπmix, (4.15)
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where convergence is in L2(S1). Moreover,∫ 2

0

∑
m∈Z

∣∣Kα(x+2m,t)
∣∣dx ≤ Cα

t1+α

∫∞
−∞

(
K(x,t)+K(x,2t))dx = Cα

t1+α
. (4.16)

By the dominated convergence theorem we have

am(t)= 1
2

∫ 2

0

[ ∑
n∈Z
Kα(x+2n,t)

]
e−πmix dx

= 1
2

∑
n∈Z

∫ 2n+2

2n
Kα(x,t)e−πmix dx

= 1
2

∫∞
−∞
Kα(x,t)e−πmix dx

=�
(
Kα(2x,t)

)
(m)

= 1
2
π2(1+α)m2(1+α)e−π

2m2t .

(4.17)

The following result is the key to prove the boundedness of the operator Pα.

The proof is based on the Schur’s test.

Theorem 4.7. Let α,β > −1. If p > max(1,(1+β)/(1+α)), the operator

Tα : Lpβ(ΩT )→ bpβ(ST ) given by

Tαu(z)=
∫
ΩT
Θα(z,w)u(w)ταdw, z ∈ΩT , (4.18)

is bounded.

Proof. SinceΘα(·,w)∈H(ST ), it follows that Tαu∈H(ST ) foru∈C∞c (ΩT ).
By Lemma 2.4, it is enough to prove that for each p there is a positive measur-

able function h(x,t) such that∫
ΩT

∣∣θα(x−y,t+τ)∣∣h(y,τ)p′ταdydτ ≤ Cαh(x,t)p′ , (x,t)∈ΩT ,∫
ΩT

∣∣θα(x−y,t+τ)∣∣h(x,t)pταtβdxdt ≤ Cαh(y,τ)ptβ, (y,τ)∈ΩT .
(4.19)

By Proposition 4.6 and (4.11) we have that

∣∣θα(x,t)∣∣≤ Cα
t1+α

(
θ(x,t)+θ(x,2t)). (4.20)

Using (2.11) we get for 0<x,y < 2 that

∣∣θα(x−y,t+τ)∣∣≤ Cα
(t+τ)1+α {K(x−y+2, t+τ)+K(x−y,t+τ)

+K(x−y−2, t+τ)+K(x−y+2,2(t+τ))
+K(x−y,2(t+τ))+K(x−y−2,2(t+τ))}.

(4.21)
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Letδ>0 be such that (β−α)/p<δ<min((1+α)/p′,(1+β)/p). Seth(x,t)=
t−δ. From Lemma 2.5 we have

∫ T
0

τ−δp′+α

(t+τ)1+α
∫ 2

0
K
(
x−y±2,λ(t+τ))dydτ

≤
∫ T

0

τ−δp′+α

(t+τ)1+α
∫∞
−∞
K
(
y,λ(t+τ))dydτ

=
∫ T

0

τ−δp′+α

(t+τ)1+α dτ

≤ Cαt−δp′ .

(4.22)

From the estimate in (4.21), together with the above calculations and letting

λ= 1,2 we conclude that∫
ΩT

∣∣θα(x−y,t+τ)∣∣τ−δp′ταdydτ ≤ Cαt−δp′ . (4.23)

The proof of the second inequality is similar.

The theory of Fourier multipliers is another useful tool that it will help to

define an isomorphism �α connecting the operators Tα and Pα.

Definition 4.8. Given 1≤ p ≤∞, a bounded sequence (µn) is a multiplier

on Lp(S1) if there is c > 0 such that∥∥∥∥∑µnf̂ (n)einx∥∥∥∥
Lp(S1)

≤ c‖f‖Lp(S1) (4.24)

for all trigonometric polynomials f .

The following result about multipliers is due to Hirschman [7].

Theorem 4.9. Let (µn) be a bounded sequence such that |µn| = O(|n|−ε),
0 < ε < 1. Then for all p satisfying (1−ε)/2 < 1/p < (1+ε)/2, (µn) is a multi-

plier on Lp(S1).

Lemma 4.10. Let (λn) be a bounded sequence such that λn = C1+O(|n|−ε)
for some C1 ≠ 0 and 0 < C2 ≤ |λn| for n ∈ Z and all ε > 0. Then (λn) induces

an isomorphism � of bpβ(ST ) onto itself for all p > 1.

Proof. By Lemma 3.9 it is enough to define the operator � on the elements

e−π2n2t+πnix , n∈ Z:

�
(
e−π

2n2t+πnix)= λne−π2n2t+πnix. (4.25)

We note that � can be written as � = C1I+�′, where I is the identity oper-

ator and �′ is a multiplier operator by Theorem 4.9. Thus, there exists C > 0

such that ‖�u‖Lp(S1) ≤ C‖u‖Lp(S1) for all trigonometric polynomials u.
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By hypothesis (λ−1
n ) is a bounded sequence and λ−1

n = C−1
1 +O(|n|−ε), as

before we can see that there exists a constant c > 0 such that c‖�−1u‖Lpt(S1) ≤
‖u‖Lp(S1) for all trigonometric polynomials u. So,

c

∥∥∥∥∥ ∑
|n|≤N

ane−π
2n2t+πnix

∥∥∥∥∥
p

Lp(S1)
≤
∥∥∥∥∥ ∑
|n|≤N

λnane−π
2n2t+πnix

∥∥∥∥∥
p

Lp(S1)

≤ C
∥∥∥∥∥ ∑
|n|≤N

ane−π
2n2t+πnix

∥∥∥∥∥
p

Lp(S1)
.

(4.26)

Multiplying the inequality by tβ and integrating on (0,T ), we have

c

∥∥∥∥∥ ∑
|n|≤N

ane−π
2n2t+πnix

∥∥∥∥∥
bpβ (ST )

≤
∥∥∥∥∥ ∑
|n|≤N

λnane−π
2n2t+πnix

∥∥∥∥∥
bpβ (ST )

≤ C
∥∥∥∥∥ ∑
|n|≤N

ane−π
2n2t+πnix

∥∥∥∥∥
bpβ (ST )

.
(4.27)

5. Proof of the main theorems. By the previous work, it is easy to prove

that the operator Pα is bounded on Lpβ(ΩT ).

Proof of Theorem 1.1. Since Nα(·,w) ∈ H(ST ), it follows that Pαu ∈
H(ST ), for u∈ C∞c (ΩT ).

Letλn,α=2−α−1γ(1+α,2π2n2T) for everyn∈ Z∗ andλ0,α=2T(1+α)/(1+α).
Then

0< cα = 2−α−1
∫ 2π2T

0
tαe−t dt ≤ λn,α ≤ 2−α−1

∫∞
0
tαe−t dt = Cα, (5.1)

for all n∈ Z∗. Thus, cα ≤ λn,α ≤ Cα, for all n∈ Z.

Using the fact that e−t ≤ C′σ t−σ for t,σ > 0, we have that

∫∞
2π2n2T

tαe−t dt ≤ C′σ
∫∞

2π2n2T
tα−σ dt = Cσ,T

σ −α−1
n2(α−σ+1) (5.2)

provided α−σ <−1. Letting σ =α+1+ε/2 we have

λn,α = Cα+O
(|n|−ε), ∀ε > 0. (5.3)

Let �α be the isomorphism induced by the sequence (λn,α) on bpβ(ST ) (see

Lemma 4.10). That is,

�α

(∑
ane−π

2n2t+πnix
)
=
∑
λn,αane−π

2n2t+πnix. (5.4)
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In particular, we have

�αNα(z,w)= 1+θα(x−y,t+τ), (5.5)

where �α is acting on the variable z.

Since the series defining Nα(z,w) and Θα(z,w) converges uniformly on the

set {z}×ΩT we have

(
�α ◦Pα

)
u(z)= (1α+Tα)u(z), ∀u∈ C∞c

(
ΩT
)
, (5.6)

where 1αu(z) =
∫
ΩT u(w)τ

αdw is a bounded operator on Lpβ(ΩT ) if p >
max(1,(1+β)/(1+α)). So, Pα is continuous on Lpβ(ΩT ). The result follows

from (4.5) and Lemma 3.9.

Corollary 5.1. The Bergman projection P : Lp(ΩT )→ bp(ST ) is continuous

for all p > 1.

5.1. The dual space of bpβ(ST ). This section is devoted to the study of the

dual space of bpβ(ST ). For β >−1, p > 1, we denote by 〈 ,〉β the weighted duality

between Lpβ(ΩT ), and Lp
′
β (ΩT ), that is, 〈u,v〉β =

∫
ΩT u(z)v(z)t

βdxdt.

Proof of Theorem 1.2. Let v ∈ bp′(α−β/p)p′(ST ). We define

Φ(u)=
∫
ΩT
u(z)v(z)tαdxdt, (5.7)

by Hölder’s inequality Φ ∈ (bpβ(ST ))∗ and ‖Φ‖ ≤ ‖v‖
bp
′
(α−β/p)p′ (ST )

.

Conversely, let Φ ∈ (bpβ(ST ))∗. Theorem 1.1 implies that Φα = Φ ◦ Pα ∈
(Lpβ(ΩT ))∗. Therefore, there is v1 ∈ Lp

′
β (ΩT ) such that

Φα(u)=
〈
u,v1

〉
β =

∫
ΩT
u(z)v1(z)tβdxdt, (5.8)

for all u∈ Lpβ(ΩT ).
Since Pα is a projection onto bpβ(ST ) then Φ(u)= Φα(u) for all u∈ bpβ(ΩT ).

Also,

Φα(u)= Φα
(
Pαu

)= ∫
ΩT

(∫
ΩT
Nα(z,w)u(w)ταdydτ

)
v1(z)tβdxdt, (5.9)

for all u∈ Lpβ(ΩT ).
Consider u∈ C∞c (ΩT ), then

Φα(u)=
∫
ΩT

(∫
ΩT
Nα(z,w)v1(z)tβdxdt

)
u(w)ταdydτ

=
∫
ΩT
v(w)u(w)ταdydτ.

(5.10)
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It was proved in Section 4 that Nα(z,w) and all of its partial derivatives are

bounded on ΩT ×Ω′ with Ω′ ⊂ ΩT compact. Furthermore, Nα(z,·) ∈ H(ST ).
Since v1 ∈ Lp

′
β (ΩT ) ⊂ L1

β(ΩT ) then v is a well-defined function satisfying the

heat equation.

Since C∞c (ΩT ) is dense in Lpβ(ΩT ) and Φα ∈ (Lpβ(ΩT ))∗ then v(w)τα−β ∈
Lp

′
β (ΩT ), which implies that v ∈ Lp′(α−β/p)p′(ΩT ). Hence v ∈ bp′(α−β/p)p′(ST ) and

it represents Φ.

Finally, we need to prove that the correspondence v � Φ is injective. Since

p′ > (1/(1+α))(1+(α−β/p)p′), Theorem 1.1 implies that Pα is a continuous

projection from Lp
′
(α−β/p)p′(ΩT ) onto bp

′
(α−β/p)p′(ST ).

Assume that Φ = 0 is represented by v ∈ bp′(α−β/p)p′(ST ). Let u∈ C∞c (ΩT ). By

Fubini’s theorem we have∫
ΩT
u(z)v(z)tαdxdt =

∫
ΩT
u(z)

(
Pαv

)
(z)tαdxdt

=
∫
ΩT
v(w)

(∫
ΩT
Nα(z,w)u(z)tαdxdt

)
ταdydτ

=
∫
ΩT
v(w)

(
Pαu

)
(w)ταdydτ = Φ(Pαu)= 0.

(5.11)

The density of the space C∞c (ΩT ) implies that v = 0. By the open map-

ping theorem we have that the norms ‖Φα‖ and ‖v‖
bp
′
(α−β/p)p′ (ST )

are equivalent.

Corollary 5.2. If p > 1, then bp(ST )∗ = bp′(ST ) with the usual duality.

Corollary 5.3. Let p > 1. If p ≤ (1+β)/(1+α), then Pα : Lpβ(ΩT )→ bpβ(ST )
is not bounded.

Proof. Note that the adjoint operator P∗α : bp
′
−(β/p)p′(ST ) → Lp

′
−(β/p)p′(ΩT )

under the usual integral pairing is given by

P∗αu(z)= tα
∫
ΩT
Nα(z,w)u(w)dw. (5.12)

Since the function 1 is in bp
′
−(β/p)p′(ST ) and P∗α 1= c0,αtα is not in Lp

′
−(β/p)p′(ΩT )

we have that P∗α is unbounded. Thus, Pα is not bounded.

Finally, we give an application of the continuity of P∗α . We show that there

is a constant Cn > 0 such that ‖tn/2(∂nu/∂xn)‖Lp(ΩT ) ≤ Cn‖u‖bp(ST ), for all

u∈ bp(ST ).
Proof of Theorem 1.3. If u∈ bp(ST ), then

u(z)=
∫
ΩT
N(z,w)u(w)dw. (5.13)
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Differentiating under the integral sign leads to

∂nu
∂xn

(z)=
∫
ΩT

∂nN
∂xn

(z,w)u(w)dw. (5.14)

We have

∂nN
∂xn

(z,w)=
∑
m∈Z∗

inπ2+nm2+n

γ
(
1,2π2m2T

)e−π2m2(t+τ)+πmi(x−y). (5.15)

Let Dn be the operator defined by

Dnu(z)= ∂
nu
∂xn

(z)=
∫
ΩT

∂nN
∂xn

(z,w)u(w)dw. (5.16)

On the other hand, by letting α = n/2 in (4.1) we define the operator Tn as

follows:

Tnu(z)=
∫
ΩT

(
− 1+n/2

2T 1+n/2 +Nn/2(z,w)
)
u(w)dw. (5.17)

Let λm,n = 2n/2γ(1,2π2m2T)/inγ(1+n/2,2π2m2T) for every m ∈ Z∗ and

λ0,n = (1+n/2)/2T 1+n/2. As in (5.3) we have

λm,n = inCn+inO
(|m|−ε), (5.18)

for all ε > 0.

Let �n be the isomorphism induced by the sequence (λm,n) (see Lemma

4.10). That is,

�n

(∑
ame−π

2m2t+πmix
)
=
∑
λm,name−π

2m2t+πmix. (5.19)

It is easy to see that

(
�n ◦Dn

)(
e−π

2m2t+πmix)= Tn(e−π2m2t+πmix), (5.20)

for all m∈ Z.

By the inequality in (4.26), we have that there is a constant Cn > 0 such that

∥∥Dnu∥∥pLp(S1) =
∥∥�−1

n
(
Tnu

)∥∥p
Lp(S1) ≤ Cn

∥∥Tnu∥∥pLp(S1), (5.21)

for all u∈ bp(ST ).
By multiplying this inequality by tnp/2, integrating on (0,T ), and using

Tonelli’s theorem we have

∥∥tn/2Dnu∥∥pLp(ΩT ) ≤ Cn∥∥tn/2Tnu∥∥pLp(ΩT ). (5.22)
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From (5.12), it follows that

P∗n/2u(z)= tn/2
(
Tnu

)
(z)+ 1+n/2

2T 1+n/2 t
n/2

∫
ΩT
u(w)dw. (5.23)

By Theorem 1.1, Pn/2 : Lp(ΩT )→ bp(ST ) is a bounded projection, for all p > 1.

Hence P∗n/2 : bp(ST )→ Lp(ΩT ) is a bounded operator, for all p > 1. It follows

that ∥∥tn/2Dnu∥∥Lp(ΩT ) ≤ Cn(∥∥P∗n/2u∥∥Lp(ΩT )+‖u‖b1(ST )
∥∥tn/2∥∥Lp(ΩT ))

≤ Cn‖u‖bp(ST ).
(5.24)

The proof of the other inequality is similar.
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