IJMMS 2003:19, 1193-1213
PII. S0161171203204178
http://ijmms.hindawi.com

© Hindawi Publishing Corp.
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We define the weighted Bergman space bg (ST) consisting of temperature func-
tions on the cylinder St = S! x (0,T) and belonging to LP (Qr, tPdxdt), where
Q7 =(0,2) x (0,T). For B > —1 we construct a family of bounded projections of
LP (Qr,tPdxdt) onto bg(ST). We use this to get,forl1 <p<cand1/p+1/p' =1,

a duality bz (ST)* = bz,’ (ST), where B’ depends on p and B.

2000 Mathematics Subject Classification: 46E22, 35K05.

1. Introduction. For D, the open unit disk in the complex plane C, the clas-
sic Bergman space L} is the subspace of holomorphic functions f : D — C such
that f € LP (D). It can be verified by the mean value theorem and Holder in-
equality that L}, is a closed subspace of L? (D). This implies the existence of
an orthogonal projection P from L?(D) onto L2, which is called the Bergman
projection. The projection P can be written as an integral operator

Pf(z)=J’K(z,w)f(w)dw, (1.1)

forall f € L%, where K (z,w) is the so-called Bergman reproducing kernel of Lﬁ.

The theory of Bergman spaces has a long history. It goes back to the work
of Bergman [3], who gave the first treatment of L2(Q). Today there are rich
theories describing the Bergman spaces in various domains and their opera-
tors. Two of the most important classes of operators in the Bergman space
theory are the Toeplitz and Hankel operators, which are defined in terms of
the Bergman projection P. This theory was mainly developed in the late 1980s.
For a very nice exposition of the L? (D)-theory of Bergman spaces, operators
defined on them, and further historical references, we refer to Axler [1], Zhu
[10], and a more modern approach in [2].

In this paper, we define weighted Bergman-type spaces bf; (ST) consisting
of temperature functions on the cylinder S; = §* x (0,T) and belonging to
L? (Qr, tPdxdt), where Qr = (0,2) x (0,T). As in the holomorphic case, we
prove that bf,’ (S7) is a Banach space. Therefore, there exist the Bergman pro-
jection and the corresponding reproducing kernel in this setting. Since the
Bergman projection P : L2(Qr) — b%(S7) is an orthogonal projection, then it is
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bounded, but the boundedness of P on L? is not obvious at all. We will con-
struct a family of reproducing kernels and bounded projections P, of L (Qr,
tPdxdt) onto bE(ST), for p > 1 and p > (1 + B)/(1 + ). The proof of the
boundedness of these projections is based on a version of the Schur’s test,
and the theory of Fourier multipliers. Using the fact that P, is bounded we
obtain the duality between the Bergman spaces.

The main results of this paper are the following theorems.

THEOREM 1.1. Let &, > —1. If p > max(1,(1+B)/(1+x)), the operator
Py :Lg(Qr) — b (St) given by

Pyu(z) = J;) Ny (z,2w)u(w)t®dw, zeQr, (1.2)

is a continuous projection onto bg (S7), where

20(71-2(1+¢x)m2(1+o<)
(14 0, 2112m2T)

Ny(z,w) = I+a + Z e*TerZ(HTHTrmi(X—y). (1.3)

2T+« s y

THEOREM 1.2. Letx,f > —1.Ifp > max(1,(1+B)/(1+x)), then (b (S1))* =
bf’o;—li/p)p’ (St) with respect to the duality

(U, V)o = L uz)v(z)t*dxdt. (1.4)
T

THEOREM 1.3. Letn,d>1 and p > 1. If u € b?(St), then t"2(0"u/ox"),
t4(04u/ot?) e LP (Qr). Furthermore, there are constants Cp,Cq > 0 such that
‘ g2 "u

oxn
H 20%u
otd

< Cnllullpr sy,

LP(Qr) (1.5)

< Callullpr sy,
LP(Qr)

for all u € b? (St).

The paper is organized as follows. After some preliminaries in Section 2,
we define the Bergman space lof;(ST) in Section 3. In Section 4, we define a
family of reproducing kernels and projections P,. Finally, in Section 5 we prove
the boundedness of the projections Py and the duality between the Bergman
spaces.

2. Notation and preliminary results. Throughout this paper we will use
the following notation: the conjugate exponent of p > 1 will be denoted by p’,
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we will write z = (x,t), w = (¥,T), dz = dxdt, dw = dydT, S' = {e™? : 0 ¢
[0,2]},and Z* = {n € Z:n = 0}.For u € L' (R), we define its Fourier transform
as

00

(Fu)(g) = J u(x)e 2™xs dx. (2.1)

For Q C R2 an open set, let

2
H(Q) = {u €C2(Q): ZT’j - %—1: on Q} 2.2)

We will call the elements of H(Q) temperature functions. K (x,t) will denote
the Gauss-Weierstrass kernel. For t > 0, let

0(x,t) = > K(x+2n,t) = % S e-minttemnix,

nez nez (2.3)

00
@(x,t) = _ZE(X’”’

and for t <0, let K = 0 = @ =0 (see [8]). Moreover,
2 o0
J 9(x,t)dx=J K(x,t)dx =1, Vt>0. (2.4)
0 — 00
Let Q = (0,1) x (0,1), T =TI Ul UTI3 (the parabolic boundary of Q), where
I ={0}x[0,1), L = {1} x[0,1), and I3 = (0,1) x {0}, and let A be the one-
dimensional Lebesgue measure onI.

We consider the heat kernel K (x,t;&,7) on Q XTI defined as follows:

Q(x,t—1), E=0,0=<T1<1,
Ree 1) =@ -x,t-1), E=1,0<7T<1, (25
O(x—§t)—-0(x+&t), T=0,0<&<1.

It is well known that if u € H(Q) nC(Q), then (see [4])
u(x,t) = J;I?(x,t;E,T)u(E,T)d/\(E,T), V(x,t) € Q. (2.6)
Conversely, if v € C(T'), then
wx,t) = | ReeGETVEDAAE ) 2.7)

is a temperature function on Q.
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REMARK 2.1. Clearly I?(x,t;-) € LY(T,dA) for all (x,t) € Q. This follows
from (2.7) with v = 1.

Let R = (a,b) x (¢,d) C RZ be a rectangle such that d —c¢ = (b — a)?. If
ucHR)NC(R) then uo¥ € H(Q) N C(Q), where the mapping ¥: Q — R is
defined by

Y& T1)=(b-a)é+a,(d-c)T+c). (2.8)

By (2.6) we have

u(x,t)zjr K(Y 1, 0); ¥ 1ET))u(E, 1)dAR(E,T), VY(x,t)€R, (2.9)
R

where Iz =¥(I') =¥ (I7) UY (I>) UY(I3) and Ag is the one-dimensional Lebesgue
measure normalized on each segment of I'’x.
In [5] it was proved that there is a constant C > 0 such that
O(x,t) <C(1+t)K(x,t), —-1<x<1. (2.10)
In particular for 0 <t < T < oo there is a constant Cy > 0 such that

O(x,t) <CrK(x,t), -l<x<1. (2.11)

Now, suppose f is a 2-periodic continuous function on R. Then u is a tem-
perature function on R2, 2-periodic in the variable x, and u(x,t) — f(x) as
t — 0 uniformly on [0, 2] if and only if (see [8, Chapter 5, Theorem 8])

2
w(x,t) = JO 0(x—y,0) F(v)d. (2.12)

REMARK 2.2. Since f(x) is continuous on R and u(x,t) — f(x) uniformly
on [0,2], the continuity of u at t = 0 follows.

On the other hand, if

2
wx,t) = | 0=, 0f )y = (K0 %.£) (), (2.13)

by Minkowski’s integral inequality, we have
||u(',t)||Ln(51) < flltpst)y, Vt>0. (2.14)

The following result, proved in [6], will be useful in this paper.
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LEMMA 2.3. Let R = (a,b) x (¢,d) C R2 be such that d —c = (b —a)?. If
u € H(R)NnC(R) and (xo,to) is the midpoint of the upper boundary of R, then

r_Cp p
[u(xo,t0)|” < R| ﬂR |u(x,t)|"dxdt, (2.15)

where |R| is the area of R and C,, is a constant depending only on p > 0.

Next, we prove a variant of Schur’s lemma (see [9]). This result provides a
sufficient condition for the boundedness of an integral operator T defined on
LP(Q,du), 1 <p < co.

LEMMA 2.4. Let1 < p < . Let (Q,u) be a measure space with u a o -finite
measure, and let N : QxQ — C and G : Q — R, be measurable functions. For a
measurable function f, define

Tf(w) = JQN(wl,wz)f(wz)du(wz). (2.16)

Assume that there exist measurable functions h,g : Q — R, and constants a,b >
0 such that

JQ IN(wi,ws) | h(ws)? du(ws) < (ag(wn))?, pae, — (2.17)

JQ IN(wi,w2)|g(w1)” G(wr)du(wy) < (bh(ws))’G(ws), p-ae (2.18)

Then T :L?P(Q,Gdu) — LP (Q,Gdu) is a bounded operator and | T|| < ab.

PROOF. By Holder’s inequality and (2.17) we have

1p
| Tf(wy)] sag(wﬂ(fg [N (wy,w>) | ‘ﬁij; ‘pdu(wz)> . (2.19)

By Tonelli’s theorem and (2.18) we have
| 1T r0 176 @) du(wn) < @by | 1 £(wa) 76 w)duws). (220

Thatis, T flltr ,caw < abll flirr.cauw- a
LEMMA 2.5. Let &, > —1 and p > max(1,(1+B)/(1+ «)). For every 6 > 0
such that

B—«

—<5<min(
p

1+« M)

=, (2.21)
PP
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the function h(t) = t=° satisfies the following inequalities:

T T » p
L Wh(r) dtr <Ch(t)?, Vte(0,T),

T o (2.22)
[ ph B
Jo (t+T)1+0<h(t) tPdt < Ch(t)PtP, VT e€(0,T).
PROOF. Let y € R. Making the change of variable t = Ts, we have
JT LI T*Y*“r L P (2.23)
o (t+T)l+« = 0 (s+1)l+a oy ’ '

where Cy,y = f6’°(5*>’/(5+ 1)1**)ds < co whenever —x < y < 1. We obtain (2.22)
by letting y = dp’ — « and y = dp — B, respectively. |

3. The Bergman space bg (S7). Let W : Q) — R* be a measurable function
such that W=7"/7 € L} (Q). Denote L}, (Q) = LP (Q,Wdxdt) for 1 < p < c.

DEFINITION 3.1. We define the Bergman space bfV(Q) as the subspace of
temperature functions in L}, (Q). That is, b}, (Q) = H(Q) nL}, (Q).

We will show that bf,’V(Q) is a closed subspace of Lﬁ,(Q) and therefore a
Banach space. For this aim, we will need the following result.

PROPOSITION 3.2. Given 1 < p < o and 5 C Q a compact set, there is a
constant Cy; > 0 such that

lux, )| < Callullp g, (3.1)

for all (x,t) €, u € bl (Q).

PROOF. let 6 = d(H,Q°) >0 and Ky ={z € Q:d(z,%) < 6/2}. For every
z € i, let R, be a rectangle such that z is the midpoint of the upper boundary
of R, with height(R,) = {base(R,)}? and R, C B(z,5/2) C ¥o.

By Lemma 2.3 there is a constant C > 0 such that

lu(z)| < %HR [u(y,7)|dydr

, (3.2)
C vl (H W*”’/vdydr)l/p
|Rz| Ly (@) Jo ’

<

for all u € bl (Q).
We conclude the proof by choosing rectangles R, congruent to one another,
for every z € K. ]
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REMARK 3.3. If u; — u in b}, (Q), then u; — u uniformly on each compact
subset of Q.

THEOREM 3.4. For 1 <p < oo, bl (Q) is a closed subspace of L}, (Q). There-
fore bfV(Q) is a Banach space.

PROOF. Given u € L} (Q), let (u;) be a sequence in b}, (Q) such that
||u—uj||L5,(Q) — 0. (3.3)

We will show that u is a temperature function on Q (except on a set of measure
Z€ero).

Pick (xo,to) € Q. Let R = (a,b) x (c,d), with d —c = (b — a)?, such that
(x0,t0) € R and R c Q. By Proposition 3.2, there is a constant C > 0 such that

[uj(x,t) —uk(x,t)| < CHMj*“,kHL‘K/’V(Q), V(x,t) €R. (3.4)

It follows that (1) converges uniformly on R to a continuous function v.
Since u; € H(R) nC(R), (2.9) implies that

w0 = [ RO 0% (6,0)w) (A (E ), for (x,0) €R. (3.5)
Ir
By Remark 2.1 and the dominated convergence theorem we have

v(x,t) =limu;(x,t) = J K(¥ 0, );¥ 7 1(E, 7)) limu; (§,T)dAR (§,T)
J— [‘R J— o
(3.6)
=, K(Y ', 0; Y HE D))V (E,T)dAR(E, T).
R

Since the function v is continuous on I’y then v is a temperature function
on R. On the other hand, u; — u in LfV(Q) and then some subsequence of
(uj) converges to u almost everywhere on Q. Therefore u = v a.e. on R and
u € H(R). Since (xo,tp) € Q was arbitrary, we conclude that u € H(Q). O

We will write b? (Q) = bl (Q) when W = 1. Proposition 3.2 implies that the
linear functional %, : b%(Q) — C defined by %,(u) = u(z) is bounded for all
z € Q. Hence the Riesz representation theorem shows that there is a function
N:QxQ — C such that

u(z) ={u,N(z,-)) = JQu(w)N(z,w)dw, (3.7)

for all u € b2(Q), z € Q.

The function N : Q xQ — C is called the reproducing kernel of b?(Q), some
of its properties are the following (see [2]):

(1) N(z,-) €eb?(Q) forall z € Q;

(2) N is real-valued and symmetric;
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(3) if (uy) is an orthonormal basis of b?(Q), then
N(z,w) = > un(2)un(w). (3.8)
n=1
There is a unique orthogonal projection P : L2 (Q) —b?(Q) called the Bergman
projection. We have

Pu(z) = (Pu,N(z,-)) = (u,N(z,-)) = Lzu(w)N(z,w)dw. (3.9

For T > 0, we define

C(St) = {u e C(Rx[0,T]) : u(x,t) =u(x+2,t)},

H(S7) = {u € H(RX (0,T)) : u(x,t) = u(x+2,0)}. (3.10)

We will call the elements of H(S7) temperature functions on the cylinder St.
DEFINITION 3.5. For 1 < p < o, we define the Bergman space of tempera-
ture functions on the cylinder St as
bL,(Sr) ={ueH(ST):L2 |u|”Wdz<oo}, 3.11)
T
where Q7 = (0,2) x (0,T), and W is a measurable function such that W=7"/p
Llloc(QT)'

In bf,’v(ST) we define the following norm:

1/p
sy, = ( ], wuirwaz) . (3.12)

Notice that if u € b}, (St), then ulg, € L}, (Qr). Hence we write by (St) C
LI (Qr).

THEOREM 3.6. Forl <p < o, bl (St) is a closed subspace of L}, (Qr). There-
fore bﬁ, (S7) is a Banach space.

PROOF. Let u € L}, (Qr) and let (u;) be a sequence in b}, (St) such that
||u—uj||L5V(QT) — 0. Consider the open set Q = (—1,3) X (0, T) and the sequence
(ujlo). Extend the function W : Qr — R, to be 2-periodic in the variable x. Then

||ui—uj||L5V(Q) :2||ui—uj”L5’V(QT)- (3.13)

It follows that (u|q) is a Cauchy sequence in bl (Q). Since b}, (Q) is a Banach
space, there is v € bﬁ,(Q) such that ||v _“J'”Lﬁ,(g) — 0. By Remark 3.3, the
sequence (u;|q) converges uniformly on compact subsets of Q. So,

v(0,t) = limwu;(0,t) = limu;(2,t) =v(2,t), (3.14)
J*»OO

J—
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for all 0 < t < T. Extend the function v as a 2-periodic function in the variable
x. This extension, which we still denote by v, belongs to th(ST) and ||v —
ujlngv(QT) — 0. Thus u =v a.e. O

As in (3.7), it is shown that there is a reproducing kernel of b?(S7), that is,
a function N : Qr x Qr — R satisfying

u(z) = JQ N(z,w)u(w)dw, (3.15)

for all u € b2(St), z € Q7.
If (u,) is an orthonormal basis of b?(St), then

N(z,w) = > un(2)un(w). (3.16)
n=1

The Bergman projection P : L2(Q7) — b?(Sy) is the integral operator given by
Pu(z) = J Nz,w)u(w)dw, VzeQr. (3.17)
Qr

We will prove that the extension of the Bergman projection P to L”(Qr) is
bounded for all p > 1. Actually, we will show that P is bounded on certain
weighted Bergman spaces.

From now on, we will be working with weights consisting of powers of the
distance of a point to the base of the cylinder, that is, we consider Wg : R2 — R,
given by Wg(x,t) = th. Clearly WB_’”//” €L} (R2).

Let Ly (Qr) = Lﬁ,B(QT) and b (St) = thB(ST). If B> —1, then Wgdxdt is a
finite measure on Q7 and

Lp(Qr) CLg(Qr),  bg(St) Cbi(St), (3.18)

forall1 <p < oo.
We will show that the subspace H(S7t) n C(St) is dense in bZ(ST), for all
B> —-1.Givenu € bg (St) and 0 <7 < T, we define the function u, as follows:

2
Uy (x,t) = L O(x—y,tHu(y,r)dy. (3.19)

From (2.12) and Remark 2.2, we have that u, € H(S7)nC(St) and u, (x,0) =
u(x,r).

The uniqueness of the solution of the heat equation on a finite cylinder (see
[8]) yields

uy(x,t)=ulx,t+r), forO<t<T-r. (3.20)



1202 MARCOS LOPEZ-GARCIA
As before, we have
2
ulx,t+v) = J O(x—vy,ru(y,t)dy = (K(-,v)*u(-,t))(x), forr>O0.
0

(3.21)
Minkowski’s integral inequality implies

2 2
J |u(x,t+r)|"dxsj [u(x,t)|"dx, forr>o0. (3.22)
0 0

THEOREM 3.7. Let f> —1,1<p < o, and u € by(Sr). Then lim, .ou, = u
in by (St).

PROOF. Given € > 0, there exists v € C.(Qr) such that ||lu — v”L§<QT> < €.
We define v, : Qr — C as

vix,t+r), 0<x<2,0<t<T-r,
vy (x,t) = (3.23)
0, O<x<2, T-r=<t=<T.
Clearly v, € C(Qr). We have
H“‘”T”hg’(sr) <llu=vlizan +||v_v”||LE(QT) +||UT_”T||L§(QT)' (3.24)

Since v is uniformly continuous on Qr, it is easy to see that lim,_q|lv —
vy||Llr;(QT) =0.

The uniqueness of the solution of the heat equation on a finite cylinder and
(2.12) allow to write

2
ur(x,t)=J 9<x—y,t—§+r>u(y,§>dy, forg—r<t<T. (3.25)
0

Hence

T—v 2
||vyfur||f§(m) SL L v, t+7v)—ulx,t+7r) | thdz

T p T 2 2 T 14
n ‘u(-,—) J J J G(Xfy,t77+r>dy thdz
2 /Ml JT-rJo 1 Jo 2
=A,+B,.
(3.26)
By (2.4) we have that lim, o B, = 2||lu(-,T/2)||%lim, o [;_, tBdt = 0.
On the other hand, by (3.22) we have
v 2
J J v, t+7r)—ulx,t+7r) | thdz
00 (3.27)

v v r2
<Goflviz [ thare | | un|"tbaz].
0 0Jo
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If 0 <7 <t, then

ﬁ .
8 <{(t+r) if =0, (3.28)

27 B(t+r)f ifB<O.

So,

T-v (2
J J |v(x,t+1f)—u(x,t+1’)|ptﬁalzsqglli)—tt\lf,[,(Q | <Cpe?. (3.29)
r 0 BT

From (3.27) and (3.29) it follows thatlimsup, .o A, < Cge?.Hencelimsup, .o llu
_uY”LE(Qr) < Cge. O

COROLLARY 3.8. Let > —1and1 <p < . Then H(St) nC(St) is dense in
b%(St).
B

Now, to compute the reproducing kernel we need to find an orthonormal
basis of b2(S7), so if we define

’l/Ln(X,t) — e—n2n2t+nnix, (3'30)

then u, € log (S7) forallm € 7, B > —1. We will show that (u,,) is an orthogonal
basis of b?(St).

LEMMA 3.9. Let B> -1 and 1 < p < o. The linear space generated by
(Un)nez is dense in bg (ST).

PROOF. Let u € bZ(ST) and € > 0, by the previous theorem there exists
v e C(St) nH(ST) such that

H”‘””b;’(sT) <e. (3.31)
Since the set of trigonometric polynomials is dense in L?(S!) and v (-,0) €
C(S'), there exists a trigonometric polynomial q(x) = X, j<n ane™x such

that ||U(';0)_QHLV(51) <E€.
On the other hand, by (2.12) with f(x) = e™*, we have

2
Un(x,t) = JO 0(x—y,t)e™>dy = (K(y,t)*e™)(x). (3.32)

By (3.19) it follows that

2
v(x,t) = L O(x—vy,0)v(y,0)dy = (K(-,t) xv(-,0)) (x). (3.33)

By (2.14) we obtain

p

v(,t) - Z AnUn(-,t)

In|<N

SHU(HO)_QHEp(gl)- (3.34)
Lp(st)
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Multiplying the previous inequality by ¢t# and integrating on (0, T), we get

< Crpllv(-,0) =allpp(s1)- (3.35)

V- Z AnUn
by (ST)

In|<N

Therefore, [[u -2, <n “n”n”hg(w < C’T‘ﬁe. Since € > 0 is arbitrary the result
follows. O

Clearly, the sequence (i) ez defined in (3.30) is an orthogonal setin b2(St).
It follows that the sequence (||, ”ZZI(ST)“n) is an orthonormal basis of b?(St).
We have

1
||”n||b2<sT) p— ——vy(1,2m*n?T), (3.36)

for all n € 7*, where y is defined by
z
y(x,z) = J t*le~tdt if @,z > 0. (3.37)
0

Moreover, ”u()”iZ(sT) = 2T. By (3.16) it follows that

n?

TNt 22ty il —y) 3.38
W5 y(1,2m2n2T) - o

N(z,w) = +

4. The projections P,. Before proving the continuity of the Bergman projec-
tion, we will study certain integral operators P, with kernel N,. The operators
P, will turn out to be continuous projections on bg (S1).

DEFINITION 4.1. Given & > —1, we define Ny : Qr xQr — C as

292 i(x—
Na(z,w) — Z Cm,u@ Teme (L+1) +mTmi(x y)’ (4_1)
mez

where ¢y o = 28210 M2+ 1y (1 + «, 211°m?2T), for all m € 7* and con =
(1+)/2T1+e,

Since

22T
y(1+0,2m2m?T) = J t¥%e~tdt = Cy > 0, (4.2)
0

we have that ¢y, < Cam?1 % for all m € Z*.
Using the fact that e=* < Cyx~* for x > 0 and A > 0, we get

Cx z |m|* Cx

2002 :
Z mke—TrmA (t+T)+Tmi(x-y) | < < , 4.3)
tk/2+1 B (mz)k/2+l tl(;/ZJrl

mez*

fort >ty >0,k=>0.
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Therefore, the series defining N, converges absolutely and uniformly on
Q' x Q7 provided Q' C Qr is compact, furthermore, the function N is bounded
on Q' xO7. S0 Ny € C*(Qr xQ7) and Ny (-,w) € H(S7) for all w € Q. Since
Cm,x = C—m,x, the function N is real valued and symmetric. If « = 0, N coin-
cides with the reproducing kernel of b?(St).

DEFINITION 4.2. For & > —1, Py is the integral operator given by
Pyu(z) = J Ny (z,2w)u(w)t*dw, zeQr. (4.4)
Qr

This integral is well defined for all u € CZ(Qr). If @ =0, P is the Bergman
projection.
It is easy to see that

ch (efrrznzHTmix) _ e*TanZtHTm'x (4_5)

for all n € Z. Therefore, Py is a projection on the linear space generated by
{efrrznzHrmiX}_

We want to show the continuity of Py on LE(QT). In order to do so, we
analyze the following operator:

Tau(z) = Jﬂ Oz, w)u(w)t%dw, ze€Qr, (4.6)

where

1 .
Ox(z,w) =Ox(x—y,t+7) = ET(Z(HO() > M2+ p=mimE (e T) e TTmi(x-y)

mezZ

4.7)
The series defining ®, has the same properties of convergence as N.
REMARK 4.3. If x € N, then 04(x,t) = (=1)1+* @1+ /9t1+*) 0 (x, t).
Let K4(x,t) be the function defined as

L (s 2040 —m2c2t) (X
Ka(x,t)—EF <1T Mgt emmre )(§>
(4.8)

2(1+0)
X 2
) e %do,

= ﬁ]((x,t) [; (0+ iz_ﬁ

where /! is the inverse Fourier transform with respect to the variable ¢.
We have the following estimate:

C0< h 2(1+x) x2(1+(x) —o?
|Kua(x,t)] < thK(x,t) o + )¢ do
o 1 (4.9)
Ca X (1+x)
= twK(X’”[“W]
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Since x e X < Cye X/2 for x,A > 0, we have

2 2

x (1+x) K(X’t) _ 1 x (1+ o) x4t
(4t)1+x VATt \ (4t)1+«
Cu

4T

(4.10)

e X8t — CoK (x,2t).

<

~

Therefore,

Cu
tl+a

|Ka(x,t)] < {K(x,t) +K(x,2t)}. (4.11)

LEMMA 4.4. For x> —1, Kx(x,t) € C(R?).
PROOF. We write Ky(x,t) = (1/ /Tt K (x,t) Py (x,t), where

00 . 2(1+(X) o
(I/o((x,t)zj (U+12—ﬁ> e %do. (4.12)

—00

The function f(z) = z2(+® js analytic on Imz > 0. Also

) X 2(1+x)
o+i=—~=

2t

_ g2
e % do

(4.13)
[ x|

© 2(1+x) 2
< o+ == e 7 do < o,
Lo(‘ | 2ﬁ> *

for all (x,t) € R2. From the dominated convergence theorem it follows that
Yalx,t) € C(R2). O

REMARK 4.5. If x € N, then Ky (x,t) = (—=1)"+* (010t **)K (x, ).

Now we get an alternate expression for the function 0 in terms of the func-
tion K.

PROPOSITION 4.6. For & > —1, O4(x,t) = > ,,czKa(x +2m,t).

PROOF. From (4.11) we have

> Kalx+2m,t)| < Ca

T ot

{0(x,0)+0(x,20)}. (4.14)

mez

Hence, the series converges uniformly on compact subsets of R2 and therefore
it is continuous. Since the series is 2-periodic in x, it admits a representation
as a Fourier series,

D> Kalx+2m,t) = > am(t)e™X, (4.15)

mez mez
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where convergence is in L?(S'). Moreover,

Cu
tlta”

2 )
JO > |Kalx+2m,t)|dx < C“aj (K(x,t) +K(x,2t))dx = (4.16)

1+
meZz t

By the dominated convergence theorem we have

2
am(t) = %L [ > Ka(x+2n,t)}e"m""dx
nez
2n+2

1 .
==> J Ko (o, t)e ™M g
2 nez??2n

o 4.17)
1 —TTmix

= 5,[_00K°‘(X't)e dx

= F (Ka(2x,t))(m)

l 2(1+x)

_12m?2
— 2.”. m2(1+o<)e nmt_

|

The following result is the key to prove the boundedness of the operator P.
The proof is based on the Schur’s test.

THEOREM 4.7. Let &, > —1. If p > max(1,(1+B)/(1+x)), the operator
Ty : Ly (Qr) — b (St) given by

Tau(z) = JQ Oz, wu(w)tdw, ze€Qr, (4.18)

is bounded.

PROOF. Since O4(-,w) e H(ST), it follows that Tyu € H(S7) for u e C (Qr).
By Lemma 2.4, it is enough to prove that for each p there is a positive measur-
able function h(x,t) such that

j |Ou(x =y, t+T) | (Y, T)P T¢dydT < Coh(x, 1), (x,1) € Qr,
Qr

J |0x(x =, t+T) |h(x, )P TP dxdt < Coh(y,T)PtE, (v,T) € Qr.
Qr
(4.19)

By Proposition 4.6 and (4.11) we have that

[On(x,t)| < tlcfa(Q(x,t)+9(x,2t)). (4.20)

Using (2.11) we get for 0 < x,y < 2 that

Cu

\90((X—y,t+T)| < m

{K(x-y+2,t+7T)+K(x-y,t+71)

+K(x—y-2,t+T)+K(x—y+2,2(t+7T))

+K(x—-y,2(t+7))+K(x—y-2,2(t+71))}.
4.21)
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Let 6 >0besuchthat (B—«)/p<d<min((1+x)/p’,(1+B)/p).Seth(x,t) =
t=%. From Lemma 2.5 we have

JT T-0p +a
0 (t+-r)1+o(
T T—(Sp’ﬂx
<), @
0 (t+-l—)l+0(
T -5p’+«x
T
= | ———adr
Jo (t+T)t+e
< Cut ™7,

2
J K(x—y+2,A(t+71))dydTt
0

T KOy A dyd
Lo (yv,A(t+71))dydT 4.22)

From the estimate in (4.21), together with the above calculations and letting
A =1,2 we conclude that

IQ |O(x =y, t+T) | TP T¥dydT < Cot 07", (4.23)
T

The proof of the second inequality is similar. |

The theory of Fourier multipliers is another useful tool that it will help to
define an isomorphism ., connecting the operators Ty and Py.

DEFINITION 4.8. Given 1 < p < o0, a bounded sequence (u,) is a multiplier
on L7 (S1) if there is ¢ > 0 such that

H > unf (n)e™

<cllfllirst (4.24)
LP(st)

for all trigonometric polynomials f.
The following result about multipliers is due to Hirschman [7].

THEOREM 4.9. Let (uy,) be a bounded sequence such that |, | = O(In|~¢),
0 <€ < 1. Then for all p satisfying (1—€)/2 <1/p < (1+¢€)/2, (uy) is a multi-
plier on LP (S1).

LEMMA 4.10. Let (A,,) be a bounded sequence such that A,, = C1 + O (|n|~€)
for some C; # 0 and 0 < Co < |A,,| forn € Z and all € > 0. Then (A,) induces
an isomorphism M of by (St) onto itself for all p > 1.

PROOF. ByLemma 3.9 itis enough to define the operator .il on the elements
efrrznztﬂrnix nez:

M(e—n2n2t+nnix) _ Ane—ﬂznzf*'"nix_ (4.25)

We note that Jl can be written as Jl = C1I +.’, where I is the identity oper-
ator and /" is a multiplier operator by Theorem 4.9. Thus, there exists C > 0
such that [[Mull 51y < Cllullps1) for all trigonometric polynomials wu.



BERGMAN SPACES OF TEMPERATURE FUNCTIONS ON A CYLINDER 1209

By hypothesis (A;;!) is a bounded sequence and A;! = C;' + O(In|~€), as
before we can see that there exists a constant ¢ > 0 such that ¢ |“/‘/L71u||Lpt(Sl) <
Il p 51y for all trigonometric polynomials u. So,

p 14
c z ane—nznztﬂ'rnix < Z Ananefrrznztﬂrnix
In|<N LP(Sh) [n|<N LP(S1)
v (4.26)
<C Z ane—n2n2t+rrnix
[n|<N LP(S1)
Multiplying the inequality by t# and integrating on (0, T), we have
—m2nlt+mnix —m2nlt+mnix
cll > ane <|| D Anane
Inl<N bRt MmN bj (ST)
4.27)
<C Z anefrrznztﬂ-mix
In|<N bf;'(ST) O

5. Proof of the main theorems. By the previous work, it is easy to prove
that the operator P is bounded on L’[‘; (Qr).

PROOF OF THEOREM 1.1. Since Ny(-,w) € H(St), it follows that Pyu €
H(St), for u € CZ(Qr).

LetApo=2"%1y(1+x,21°n?T) foreveryn € Z* and Ao o =27 % / (1 + o).
Then

22T 0
0<cyu=2%1 JO e tdt <Apg <27 %! JO t¥etdt = Cq, (5.1

for all n € Z*. Thus, cx < Ap,x < Cy, forall n € .
Using the fact that et < C/;t~7 for t,o > 0, we have that

« CO‘,T

J t¥e tdt < C, t* o dt = n2a-o+h) (5.2)
2m2n2T 2m2n2T og-x—1
provided ox— o < —1. Letting 0 = &+ 1 +¢€/2 we have

Ao =Cu+0(In|7¢), Ve>D0. (5.3)

Let Al be the isomorphism induced by the sequence (A, «) on bl’;’ (ST) (see
Lemma 4.10). That is,

Mo((zanefnznannix) _ Z)\n'uane—nznzwnnix_ (5.4)
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In particular, we have
MyNy(z,w) =14+ 0x(x—y,t+71), (5.5)

where L is acting on the variable z.
Since the series defining Ny (z,w) and O (z,w) converges uniformly on the
set {z} X Qr we have

(MyoPy)u(z) = (1a+To)u(z), YueC(Qr), (5.6)

where 1,u(z) = fQTu(w)T”‘dw is a bounded operator on L?(QT) if p >
max(1,(1+B)/(1+x)). So, Py is continuous on LE’(QT). The result follows
from (4.5) and Lemma 3.9. O

COROLLARY 5.1. The Bergman projection P : L (Qr) — b? (St) is continuous
forallp > 1.

5.1. The dual space of bg(ST). This section is devoted to the study of the
dual space of bfg’ (St).For B> —1, p > 1, we denote by (, ) g the weighted duality
between LZ (Q7), and Ll";/ (Qr), thatis, (u,v)p = fo, u(z)v(z)tFdxdt.

PROOF OF THEOREM 1.2. letv € bf’;_mp)p, (S7). We define

d(u) = J u(z)v(z)t*dxdt, (5.7)

Qr

by Holder’s inequality ® € (bg(ST))* and [|[®|| < [lvl,,r .
b(tx—B/p)p'(ST)

Conversely, let ® € (bf;(ST))*. Theorem 1.1 implies that &4 = ® o Py €
(L (Qr))*. Therefore, there is v; € L (Qr) such that

Do (u) = (u,v1)g = JQ u(z)vy (2)th dxdt, (5.8)
T

for all u € Ly (Qr).
Since Py is a projection onto by (St) then ®(u) = @ (u) for all u € by (Qr).
Also,

Oy (u) = 0y (Pyu) = JQT ( QTNo((z,w)u(w)'r‘"dyal*r)vl(z)thiX(it, (5.9)

forall u LE (Qr).
Consider u € CZ(Qr), then

%(u):f ( No((z,w)vl(z)tﬁdxdt>u(w)T°‘dydT
or Mer (5.10)
:J v(w)u(w)r*dydr.
Q'I'



BERGMAN SPACES OF TEMPERATURE FUNCTIONS ON A CYLINDER 1211

It was proved in Section 4 that Ny(z,w) and all of its partial derivatives are
bounded on Qr x Q" with Q" ¢ Q7 compact. Furthermore, Ny(z,-) € H(ST).
Since v, € LE, (Qr) C LE(QT) then v is a well-defined function satisfying the
heat equation.

Since CZ°(Qr) is dense in Ly (Qr) and &4 € (L (Qr))* then v(w)T*F €
L’/;, (Qr), which implies that v € Lﬁ;,ﬁ/p) (St) and
it represents &.

Finally, we need to prove that the correspondence v — @ is injective. Since
p'>1/(1+x)(1+(x—B/p)p’), Theorem 1.1 implies that Py is a continuous
projection from Lf’or‘fﬁ/p)p, (Qr) onto bf’;,ﬁ/p)p, (ST).

V'
P (Qr). Hence v € b(“,ﬁ/p)p,

Assume that ® = 0 is represented by v € bfa_ﬁ/p)p, (S7).Letu € C2(Qr). By
Fubini’s theorem we have

J u(z)v(z)t“dxdt=J u(z)(Pyv) (2)t“dxdt
Qr

Qr

=L v(w)(JQ Na(z,w)u(z)t”‘dxdt)T“dydT
T T

= Lz v(w) (Pyu) (w)t*dydt = ®(Pyu) = 0.
! (5.11)

The density of the space CZ(Qr) implies that v = 0. By the open map-

ping theorem we have that the norms ||[®|| and ||v|| W 57) are equivalent.
(x=B/p)p’
O

COROLLARY 5.2. Ifp > 1, then b? (St)* = b?' (St) with the usual duality.

COROLLARY 5.3. Letp > 1.Ifp < (1+f)/(1+x), then Py : Ly (Qr) — b (Sr)
is not bounded.

PROOF. Note that the adjoint operator P : b” 5/, (Sr) = LY 5, (Qr)
under the usual integral pairing is given by

Piu(z)=t“ JQ Ny(z,w)u(w)dw. (5.12)
T

Since the function 1 is in b’f’(ﬁ/p)p, (St) and PX1 = co ot is not in Llj'(B/n)n’ (Qr)
we have that P} is unbounded. Thus, Py is not bounded. O

Finally, we give an application of the continuity of P}. We show that there
is a constant C, > 0 such that [[t™2(0™u/0x™)lLrp) < Cnllttllpr sy, for all
u € bP(St).

PROOF OF THEOREM 1.3. If u € b”?(St), then

u(z) = J‘Q-N(z,w)u(w)dw. (5.13)
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Differentiating under the integral sign leads to

o"u O"N
= = dw. .14
e @ = | S cwuwdw (5.14)
We have
"N inﬂ-2+nm2+n m2m2 (t+T) +Tmi(x—7y)
= — 5 5 e L 5.15
oxn (z,w) mgll* y(l,ZWZmZT)e (5.15)

Let D,, be the operator defined by

Dyu(z) = anfu(z) = J an—N(z:,w)u(w)dw. (5.16)
oxn Qr 0x"

On the other hand, by letting & = n/2 in (4.1) we define the operator T, as
follows:

Tu(z) =L1 (—%+Nmz(z,w))u(w)dw. (5.17)
T

Let Ay =22y (1,210°m?T) /iy (1 +n/2,210°m?T) for every m € Z* and
Ao = (1+m/2)/2T 2, As in (5.3) we have

Amn :inCn+inO(|m|_E), (5.18)
for all € > 0.
Let M, be the isomorphism induced by the sequence (A, ) (see Lemma
4.10). That is,
My ( Zamefﬂ'ZmZHTrmix) _ zAmnam€7n2m2t+nmix- (5.19)
It is easy to see that

(-/'/Ln ODn) (efrrzmztﬂrmix) — Tn(e—rrzmzwrrmix), (5.20)

for all m € 7.
By the inequality in (4.26), we have that there is a constant C,, > 0 such that

IDnull}y g1y = (M (Ta) [}y 1) < Call T[] 51, (5.21)
for all u € b? (St).
By multiplying this inequality by t"?/2 integrating on (0,T), and using

Tonelli’s theorem we have

£ 2Dnul[fp ) < Callt"* Tnul|Dr ;- (5.22)
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From (5.12), it follows that

1+n/2

Pl ou(z) = t"?(Tau)(z) + STz

/2 L} uw)dw. (5.23)
T

By Theorem 1.1, Py : LV (Qr) — b?(S7) is a bounded projection, for all p > 1.
Hence Pj[/z :b?(St) — LP(Qr) is a bounded operator, for all p > 1. It follows
that

£ Dnullp o) < C"(HPTT/ZMHU'(QT) + ”u”bl(ST)th/ZHLP(QT))

< Cnllullprsy)-

(5.24)

The proof of the other inequality is similar. O
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