REAL GEL’FAND-MAZUR DIVISION ALGEBRAS

MATI ABEL and OLGA PANOVA

Received 4 November 2002

Abstract

We show that the complexification ($\tilde{A}, \tilde{\tau}$) of a real locally pseudoconvex (locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra (A, τ) is a complex locally pseudoconvex (resp., locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra and all elements in the complexification $(\tilde{A}, \tilde{\tau})$ of a commutative real exponentially galbed algebra (A, τ) with bounded elements are bounded if the multiplication in (A, τ) is jointly continuous. We give conditions for a commutative strictly real topological division algebra to be a commutative real Gel'fand-Mazur division algebra.

2000 Mathematics Subject Classification: 46H05, 46H20.

1. Introduction. Let \mathbb{K} be one of the fields \mathbb{R} of real numbers or \mathbb{C} of complex numbers. A topological algebra A is a topological vector space over \mathbb{K} in which the multiplication is separately continuous. Herewith, A is called a real topological algebra if $\mathbb{K}=\mathbb{R}$ and a complex topological algebra if $\mathbb{K}=\mathbb{C}$. We classify topological algebras in a similar way as topological vector spaces. For example, a topological algebra A is
(a) a Fréchet algebra if it is complete and metrizable;
(b) an exponentially galbed algebra (see [3, 13]) if its underlying topological vector space is exponentially galbed, that is, for each neighborhood O of zero in A, there exists another neighborhood U of zero such that

$$
\begin{equation*}
\left\{\sum_{k=0}^{n} \frac{a_{k}}{2^{k}}: a_{0}, \ldots, a_{n} \in U\right\} \subset O \tag{1.1}
\end{equation*}
$$

for each $n \in \mathbb{N}$;
(c) a locally pseudoconvex algebra (see [5, 7]) if its underlying topological vector space is locally pseudoconvex, that is, A has a base $\left\{U_{\alpha}, \alpha \in \mathscr{A}\right\}$ of neighborhoods of zero in which every set U_{α} is balanced (i.e., $\lambda U_{\alpha} \in U_{\alpha}$ whenever $|\lambda| \leqslant 1$) and pseudoconvex (i.e., $U_{\alpha}+U_{\alpha} \subset 2^{1 / k_{\alpha}} U_{\alpha}$ for some $\left.k_{\alpha} \in(0,1]\right)$. Herewith, every locally pseudoconvex algebra is an exponentially galbed algebra.
In particular, when $k_{\alpha}=k\left(k_{\alpha}=1\right)$ for each $\alpha \in \mathscr{A}$, then a locally pseudoconvex algebra A is called a locally k-convex algebra (resp., locally convex
algebra). It is well known (see [14, page 4]) that the topology of a locally pseudoconvex algebra A can be given by means of a family $\mathscr{P}=\left\{p_{\alpha}: \alpha \in A\right\}$ of k_{α}-homogeneous seminorms, where $k_{\alpha} \in(0,1]$ for each $\alpha \in A$. A locally pseudoconvex algebra is called a locally absorbingly pseudoconvex (shortly, locally A-pseudoconvex) algebra (see [5]) if every seminorm $p \in \mathscr{P}$ is A-multiplicative, that is, for each $a \in A$ there are positive numbers $M_{p}(a)$ and $N_{p}(a)$ such that

$$
\begin{equation*}
p(a b) \leqslant M_{p}(a) p(b), \quad p(b a) \leqslant N_{p}(a) p(b), \tag{1.2}
\end{equation*}
$$

for each $b \in A$. In particular, when $M_{p}(a)=N_{p}(a)=p(a)$ for each $a \in A$ and $p \in \mathscr{P}$, then A is called a locally multiplicatively pseudoconvex (shortly, locally m-pseudoconvex) algebra.

Moreover, a topological algebra A over \mathbb{K} with a unit element is a Q-algebra (see $[10,15,16]$) if the set of all invertible elements of A is open in A and a Q-algebra A is a Waelbroeck algebra (see $[4,10]$) or a topological algebra with continuous inverse (see [9, 11]) if the inversion $a \rightarrow a^{-1}$ in A is continuous.

An element a of a topological algebra A is said to be bounded (see [6]) if for some nonzero complex number λ_{a}, the set

$$
\begin{equation*}
\left\{\left(\frac{a}{\lambda_{a}}\right)^{n}: n \in \mathbb{N}\right\} \tag{1.3}
\end{equation*}
$$

is bounded in A. A topological algebra, in which all elements are bounded, will be called a topological algebra with bounded elements.

Let now A be a topological algebra over \mathbb{K} and $m(A)$ the set of all closed regular two-sided ideals of A, which are maximal as left or right ideals. In case when the quotient algebra A / M (in the quotient topology) is topologically isomorphic to \mathbb{K} for each $M \in m(A)$, then A is called a Gel'fand-Mazur algebra (see [1, 4, 2]). Herewith, A is a real Gel'fand-Mazur algebra if $\mathbb{K}=\mathbb{R}$ and a complex Gel'fand-Mazur algebra if $\mathbb{K}=\mathbb{C}$. Main classes of complex Gel'fandMazur algebras have been given in [4, 2, 5]. Several classes of real Gel'fandMazur division algebras are described in the present paper.
2. Complexification of real algebras. Let A be a (not necessarily topological) real algebra and let $\tilde{A}=A+i A$ be the complexification of A. Then every element \tilde{a} of \tilde{A} is representable in the form $\tilde{a}=a+i b$, where $a, b \in A$ and $i^{2}=-1$. If the addition, scalar multiplication, and multiplication in \tilde{A} are to be defined by

$$
\begin{align*}
(a+i b)+(c+i d) & =(a+c)+i(b+d), \\
(\alpha+i \beta)(a+i b) & =(\alpha a-\beta b)+i(\alpha b+\beta a), \tag{2.1}\\
(a+i b)(c+i d) & =(a c-b d)+i(a d+b c),
\end{align*}
$$

for all $a, b, c, d \in A$ and $\alpha, \beta \in \mathbb{R}$, then \tilde{A} is a complex algebra with zero element $\theta_{\tilde{A}}=\theta_{A}+i \theta_{A}$ (here and later on θ_{A} denotes the zero element of A). In case
when A has the unit element e_{A}, then $e_{\tilde{A}}=e_{A}+i \theta_{A}$ is the unit element of \tilde{A}. Herewith, \tilde{A} is an associative (commutative) algebra if A is an associative (resp., commutative) algebra. Therefore, we can consider A as a real subalgebra of \tilde{A} under the imbedding v from A into \tilde{A} defined by $v(a)=a+i \theta_{A}$ for each $a \in A$.

A real (not necessarily topological) algebra A is called a formally real algebra if from $a, b \in A$ and $a^{2}+b^{2}=\theta_{A}$ that follows that $a=b=\theta_{A}$ and is called a strictly real algebra if $\operatorname{sp}_{\tilde{A}}\left(a+i \theta_{A}\right) \subset \mathbb{R}$ (here $\operatorname{sp}_{A}(a)$ denotes the spectrum of $a \in A$ in A). It is known (see, e.g., [7, Proposition 1.9.14]) that every formally real division algebra is strictly real and every commutative strictly real division algebra is formally real.

Let now (A, τ) be a real topological algebra and $\left\{U_{\alpha}: \alpha \in \mathscr{A}\right\}$ a base of neighborhoods of zero of (A, τ). As usual (see [7, 17]), we endow \tilde{A} with the topology $\tilde{\tau}$ in which $\left\{U_{\alpha}+i U_{\alpha}: \alpha \in \mathscr{A}\right\}$ is a base of neighborhoods of zero. It is easy to see that ($\tilde{A}, \tilde{\tau})$ is a topological algebra and the multiplication in $(\tilde{A}, \tilde{\tau})$ is jointly continuous if the multiplication in (A, τ) is jointly continuous (see [7, Proposition 2.2.10]). Moreover, the underlying topological space of $(\tilde{A}, \tilde{\tau})$ is a Hausdorff space if the underlying topological space of (A, τ) is a Hausdorff space.
3. Complexification of real locally pseudoconvex algebras. Let (A, τ) be a real locally pseudoconvex algebra and $\left\{p_{\alpha}: \alpha \in \mathscr{A}\right\}$ a family of k_{α}-homogeneous seminorms on A (where $k_{\alpha} \in(0,1]$ for each $\alpha \in \mathscr{A}$), which defines the topology τ on A and \tilde{A}, the complexification of A,

$$
\begin{gather*}
\Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right) \\
=\left\{\sum_{k=1}^{n} \lambda_{k}\left(u_{k}+i \theta_{A}\right): n \in \mathbb{N}, u_{1}, \ldots, u_{n} \in U_{\alpha}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C} \text { and } \sum_{k=1}^{n}\left|\lambda_{k}\right|^{k_{\alpha}} \leqslant 1\right\}, \\
q_{\alpha}(a+i b)=\inf \left\{|\lambda|^{k_{\alpha}}:(a+i b) \in \lambda \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)\right\} \tag{3.1}
\end{gather*}
$$

for each $a+i b \in \tilde{A}$. Then $\Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$ is the absolutely k_{α}-convex hull of $U_{\alpha}+i \theta_{A}$ for each $\alpha \in \mathscr{A}$ and q_{α} is a k_{α}-homogeneous Minkowski functional of $\Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$. (For real normed algebras the following result has been proved in [8, pages 68-69] (see also [12, page 8]) and for k-seminormed algebras with $k \in(0,1]$ in [7, pages 183-184]).

Theorem 3.1. Let (A, τ) be a real locally pseudoconvex algebra, let $\left\{p_{\alpha}, \alpha \in\right.$ A\} be a family of k_{α}-homogeneous seminorms on A (with $k_{\alpha} \in(0,1]$ for each $\alpha \in \mathscr{A})$, which defines the topology τ on A, and let $U_{\alpha}=\left\{a \in A: p_{\alpha}(a)<1\right\}$.

Then the following statements are true for each $\alpha \in \mathscr{A}$:
(a) q_{α} is a k_{α}-homogeneous seminorm on \tilde{A};
(b) $\max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\} \leqslant q_{\alpha}(a+i b) \leqslant 2 \max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\}$ for each $a, b \in A$;
(c) $q_{\alpha}\left(a+i \theta_{A}\right)=p_{\alpha}(a)$ for each $a \in A$;
(d) $\Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)=\left\{a+i b \in \tilde{A}: q_{\alpha}(a+i b)<1\right\}$.

Proof. (a) Let $\alpha \in \mathscr{A},(a+i b) \in \tilde{A} \backslash\left\{\theta_{\tilde{A}}\right\}$, and $\mu_{\alpha}^{k_{\alpha}}>\max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\}$. Then $a / \mu_{\alpha}, b / \mu_{\alpha} \in U_{\alpha}$. Since

$$
\begin{gather*}
2^{-1 / k_{\alpha}}\left(\frac{a}{\mu_{\alpha}}+i \frac{b}{\mu_{\alpha}}\right)=2^{-1 / k_{\alpha}}\left(\frac{a}{\mu_{\alpha}}+i \theta_{A}\right)+i 2^{-1 / k_{\alpha}}\left(\frac{b}{\mu_{\alpha}}+i \theta_{A}\right), \tag{3.2}\\
\left|2^{-1 / k_{\alpha}}\right|^{k_{\alpha}}+\left|i 2^{-1 / k_{\alpha}}\right|^{k_{\alpha}}=1,
\end{gather*}
$$

then

$$
\begin{equation*}
(a+i b) \in 2^{1 / k_{\alpha}} \mu_{\alpha} \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right) \tag{3.3}
\end{equation*}
$$

Hence $(a+i b) \in \lambda_{\alpha} \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$ for each $\alpha \in \mathscr{A}$ if $\left|\lambda_{\alpha}\right| \geqslant 2^{1 / k_{\alpha}} \mu_{\alpha}$. It means that the set $\Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$ is absorbing. Consequently (see [7, Proposition 4.1.10]), q_{α} is a k_{α}-homogeneous seminorm on \tilde{A}.
(b) Let again $(a+i b) \in \tilde{A} \backslash\left\{\theta_{\tilde{A}}\right\}$. Then from (3.3), it follows that $q_{\alpha}(a+i b) \leqslant$ $2 \mu_{\alpha}^{k_{\alpha}}$. Since this inequality is valid for each $\mu_{\alpha}^{k_{\alpha}}>\max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\}$, then

$$
\begin{equation*}
q_{\alpha}(a+i b) \leqslant 2 \max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\} \tag{3.4}
\end{equation*}
$$

Let now $a+i b \in \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$. Then

$$
\begin{equation*}
a+i b=\sum_{k=1}^{n}\left(\lambda_{k}+i \mu_{k}\right)\left(a_{k}+i \theta_{A}\right)=\sum_{k=1}^{n} \lambda_{k} a_{k}+i \sum_{k=1}^{n} \mu_{k} a_{k} \tag{3.5}
\end{equation*}
$$

for some $a_{1}, \ldots, a_{n} \in U_{\alpha}$ and real numbers $\lambda_{1}, \ldots, \lambda_{n}$ and μ_{1}, \ldots, μ_{n} such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\lambda_{k}+i \mu_{k}\right|^{k_{\alpha}} \leqslant 1 \tag{3.6}
\end{equation*}
$$

Since $\left|\lambda_{k}\right| \leqslant\left|\lambda_{k}+i \mu_{k}\right|$ and $\left|\mu_{k}\right| \leqslant\left|\lambda_{k}+i \mu_{k}\right|$ for each $k \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
a=\sum_{k=1}^{n} \lambda_{k} a_{k}, \quad b=\sum_{k=1}^{n} \mu_{k} a_{k} \tag{3.7}
\end{equation*}
$$

belong to $\Gamma_{k_{\alpha}}\left(U_{\alpha}\right)=U_{\alpha}$.
Let now $\varepsilon>0$ and

$$
\begin{equation*}
\mu_{\alpha}>\left(\frac{1}{q_{\alpha}(a+i b)+\varepsilon}\right)^{1 / k_{\alpha}} \tag{3.8}
\end{equation*}
$$

Then from $\mu_{\alpha}(a+i b) \in \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$ follows that $\mu_{\alpha} a, \mu_{\alpha} b \in U_{\alpha}$ or $p_{\alpha}\left(\mu_{\alpha} a\right)<1$ and $p_{\alpha}\left(\mu_{\alpha} b\right)<1$. Therefore

$$
\begin{equation*}
\max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\}<\mu_{\alpha}^{-k_{\alpha}}<q_{\alpha}(+i b)+\varepsilon \tag{3.9}
\end{equation*}
$$

Since ε is arbitrary, then from (3.9) follows that $\max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\} \leqslant q_{\alpha}(a+i b)$ for each $a, b \in A$. Taking this and inequality (3.4) into account, it is clear that statement (b) holds.
(c) Let $a \in A, \alpha \in \mathscr{A}$, and $\rho^{k_{\alpha}}>q_{\alpha}\left(a+i \theta_{A}\right)$. Then from

$$
\begin{equation*}
\left(\frac{a}{\rho}+i \theta_{A}\right) \in \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right) \tag{3.10}
\end{equation*}
$$

it follows that $a \in \rho U_{\alpha}$ or $p_{\alpha}(a)<\rho^{k_{\alpha}}$. It means that the set of numbers $\rho^{k_{\alpha}}$ for which $\rho^{k_{\alpha}}>q_{\alpha}\left(a+i \theta_{A}\right)$ is bounded below by $p_{\alpha}(a)$. Therefore $p_{\alpha}(a) \leqslant$ $q_{\alpha}\left(a+i \theta_{A}\right)$.

Let now $\rho^{k_{\alpha}}>p_{\alpha}(a)$. Then $a \in \rho U_{\alpha}$ and from

$$
\begin{equation*}
\left(\frac{a}{\rho}+i \theta_{A}\right) \in \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right) \tag{3.11}
\end{equation*}
$$

it follows that $q_{\alpha}\left(a+i \theta_{A}\right)<\rho^{k_{\alpha}}$. Hence $q_{\alpha}\left(a+i \theta_{A}\right) \leqslant p_{\alpha}(a)$. Thus $q_{\alpha}(a+$ $\left.i \theta_{A}\right)=p_{\alpha}(a)$ for each $a \in A$ and $\alpha \in \mathscr{A}$.
(d) It is clear that the set $\left\{a+i b \in \tilde{A}: q_{\alpha}(a+i b)<1\right\} \subset \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$. Let now $a+i b \in \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right)$. Then

$$
\begin{equation*}
a+i b=\sum_{k=1}^{n}\left(\lambda_{k}+i \mu_{k}\right)\left(a_{k}+i \theta_{A}\right) \tag{3.12}
\end{equation*}
$$

for some $a_{1}, \ldots, a_{n} \in U_{\alpha}$ and real numbers $\lambda_{1}, \ldots, \lambda_{n}$ and μ_{1}, \ldots, μ_{n} such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\lambda_{k}+i \mu_{k}\right|^{k_{\alpha}} \leqslant 1 \tag{3.13}
\end{equation*}
$$

Since $p_{\alpha}\left(a_{k}\right)<1$ for each $k \in\{1, \ldots, n\}$, we can choose $\varepsilon_{\alpha}>0$ so that

$$
\begin{equation*}
\max \left\{p_{\alpha}\left(a_{1}\right), \ldots, p_{\alpha}\left(a_{n}\right)\right\}<\varepsilon_{\alpha}^{k_{\alpha}}<1 \tag{3.14}
\end{equation*}
$$

Then $a_{k} \in \varepsilon_{\alpha} U_{\alpha}$ for each $\alpha \in \mathscr{A}$ and each $k \in\{1, \ldots, n\}$. Therefore

$$
\begin{equation*}
\frac{a+i b}{\varepsilon_{\alpha}} \in \sum_{k=1}^{n}\left(\lambda_{k}+i \mu_{k}\right)\left(\frac{a_{k}}{\varepsilon_{\alpha}}+i \theta_{A}\right) \in \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right) . \tag{3.15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(a+i b) \in \varepsilon_{\alpha} \Gamma_{k_{\alpha}}\left(U_{\alpha}+i \theta_{A}\right) \tag{3.16}
\end{equation*}
$$

or $q_{\alpha}(a+i b) \leqslant \varepsilon_{\alpha}^{k_{\alpha}}<1$. It means that statement (d) holds.
Corollary 3.2. If (A, τ) is a real locally pseudoconvex Fréchet algebra, then ($\tilde{A}, \tilde{\tau}$) is a complex locally pseudoconvex Fréchet algebra.

Proof. Let (A, τ) be a real locally pseudoconvex Fréchet algebra and let $\left\{p_{n}, n \in \mathbb{N}\right\}$ be a countable family of k_{n}-homogeneous seminorms (with $k_{n} \in$ $(0,1]$ for each $n \in \mathbb{N})$, which defines the topology τ on A. Then $\left\{q_{n}: n \in \mathbb{N}\right\}$ defines on \tilde{A} a metrizable locally pseudoconvex topology $\tilde{\tau}$ (see Theorem 3.1). If ($a_{n}+i b_{n}$) is a Cauchy sequence in ($\tilde{A}, \tilde{\tau}$), then $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences in (A, τ) by Theorem 3.1(b). Because (A, τ) is complete, then (a_{n}) converges to $a_{0} \in A$ and (b_{n}) converges to $b_{0} \in A$. Hence $\left(a_{n}+i b_{n}\right)$ converges in $(\tilde{A}, \tilde{\tau})$ to $a_{0}+i b_{0} \in \tilde{A}$ by the same inequality (b). Thus ($\tilde{A}, \tilde{\tau}$) is a complex locally pseudoconvex Fréchet algebra.

Theorem 3.3. Let (A, τ) be a real locally A-pseudoconvex (locally m pseudoconvex) algebra and $\left\{p_{\alpha}, \alpha \in \mathscr{A}\right\}$ a family of k_{α}-homogeneous A multiplicative (resp., submultiplicative) seminorms on A (with $k_{\alpha} \in(0,1]$ for each $\alpha \in \mathscr{A}$), which defines the topology τ on A. Then $(\tilde{A}, \tilde{\tau})$ is a complex locally A-pseudoconvex (resp., locally m-pseudoconvex) algebra. (Here $\tilde{\tau}$ denotes the topology on \tilde{A} defined by the system $\left\{q_{\alpha}: \alpha \in \mathscr{A}\right\}$.)

Proof. Let p_{α} be an A-multiplicative seminorm on A. Then for each fixed element $a_{0} \in A$, there are numbers $M_{\alpha}\left(a_{0}\right)>0$ and $N_{\alpha}\left(a_{0}\right)>0$ such that

$$
\begin{equation*}
p_{\alpha}\left(a_{0} a\right) \leqslant M_{\alpha}\left(a_{0}\right) p_{\alpha}(a), \quad p_{\alpha}\left(a a_{0}\right) \leqslant N_{\alpha}\left(a_{0}\right) p_{\alpha}(a) \tag{3.17}
\end{equation*}
$$

for each $a \in A$. If $a_{0}+i b_{0}$ is a fixed element and $a+i b$ an arbitrary element of \tilde{A}, then

$$
\begin{align*}
q_{\alpha}\left(\left(a_{0}+i b_{0}\right)(a+i b)\right) & =q_{\alpha}\left(\left(a_{0} a-b_{0} b\right)+i\left(a_{0} b+b_{0} a\right)\right) \\
& \leqslant 2 \max \left\{p_{\alpha}\left(a_{0} a-b_{0} b\right), p_{\alpha}\left(a_{0} b+b_{0} a\right)\right\} \tag{3.18}
\end{align*}
$$

by Theorem 3.1(b). If now $p_{\alpha}\left(a_{0} a-b_{0} b\right) \geqslant p_{\alpha}\left(a_{0} b+b_{0} a\right)$, then

$$
\begin{align*}
\max \left\{p_{\alpha}\right. & \left.\left(a_{0} a-b_{0} b\right), p_{\alpha}\left(a_{0} b+b_{0} a\right)\right\} \\
& =p_{\alpha}\left(a_{0} a-b_{0} b\right) \\
& \leqslant M_{\alpha}\left(a_{0}\right) p_{\alpha}(a)+M_{\alpha}\left(b_{0}\right) p_{\alpha}(b) \tag{3.19}\\
& \leqslant \max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\}\left(M_{\alpha}\left(a_{0}\right)+M_{\alpha}\left(b_{0}\right)\right) \\
& \leqslant \frac{1}{2} M_{\alpha}\left(a_{0}, b_{0}\right) q_{\alpha}(a+i b)
\end{align*}
$$

by Theorem 3.1(b) (here $\left.M_{\alpha}\left(a_{0}, b_{0}\right)=2\left(M_{\alpha}\left(a_{0}\right)+M_{\alpha}\left(b_{0}\right)\right)\right)$. Hence

$$
\begin{equation*}
q_{\alpha}\left(\left(a_{0}+i b_{0}\right)(a+i b)\right) \leqslant M_{\alpha}\left(a_{0}, b_{0}\right) q_{\alpha}(a+i b) \tag{3.20}
\end{equation*}
$$

for each $a+i b \in \tilde{A}$.
The proof for the case when $p_{\alpha}\left(a_{0} a-b_{0} b\right)<p_{\alpha}\left(a_{0} b+b_{0} a\right)$ is similar. Thus inequality (3.20) holds for both cases. In the same way, it is easy to show that the inequality

$$
\begin{equation*}
q_{\alpha}\left((a+i b)\left(a_{0}+i b_{0}\right)\right) \leqslant N_{\alpha}\left(a_{0}, b_{0}\right) q_{\alpha}(a+i b) \tag{3.21}
\end{equation*}
$$

holds for each $a+i b \in \tilde{A}$. Consequently, $(\tilde{A}, \tilde{\tau})$ is a complex locally A-pseudoconvex algebra.

Let now p_{α} be a submultiplicative seminorm on A. Then $p_{\alpha}(a b) \leqslant p_{\alpha}(a) p_{\alpha}(b)$ for each $a, b \in A$. If $a+i b, a^{\prime}+i b^{\prime} \in \tilde{A}$, then

$$
\begin{equation*}
q_{\alpha}\left((a+i b)\left(a^{\prime}+i b^{\prime}\right)\right) \leqslant 2 \max \left\{p_{\alpha}\left(a a^{\prime}-b b^{\prime}\right), p_{\alpha}\left(a b^{\prime}+b a^{\prime}\right)\right\} \tag{3.22}
\end{equation*}
$$

by Theorem 3.1(b). If now $p_{\alpha}\left(a a^{\prime}-b b^{\prime}\right) \geqslant p_{\alpha}\left(a b^{\prime}+b a^{\prime}\right)$, then

$$
\begin{align*}
\max \{ & \left.p_{\alpha}\left(a a^{\prime}-b b^{\prime}\right), p_{\alpha}\left(a b^{\prime}+b a^{\prime}\right)\right\} \\
& =p_{\alpha}\left(a a^{\prime}-b b^{\prime}\right) \leqslant p_{\alpha}(a) p_{\alpha}\left(a^{\prime}\right)+p_{\alpha}(b) p_{\alpha}\left(b^{\prime}\right) \\
& \leqslant 2 \max \left\{p_{\alpha}(a), p_{\alpha}(b)\right\} \max \left\{p_{\alpha}\left(a^{\prime}\right), p_{\alpha}\left(b^{\prime}\right)\right\} \tag{3.23}\\
& \leqslant 2 q_{\alpha}(a+i b) q_{\alpha}\left(a^{\prime}+i b^{\prime}\right)
\end{align*}
$$

by Theorem 3.1(b). Hence

$$
\begin{equation*}
q_{\alpha}\left((a+i b)\left(a^{\prime}+i b^{\prime}\right)\right) \leqslant 4 q_{\alpha}(a+i b) q_{\alpha}\left(a^{\prime}+i b^{\prime}\right) \tag{3.24}
\end{equation*}
$$

Putting $r_{\alpha}=4 q_{\alpha}$ for each $\alpha \in \mathscr{A}$, we see that

$$
\begin{equation*}
r_{\alpha}\left((a+i b)\left(a^{\prime}+i b^{\prime}\right)\right) \leqslant r_{\alpha}(a+i b) r_{\alpha}\left(a^{\prime}+i b^{\prime}\right) \tag{3.25}
\end{equation*}
$$

for each $a+i b, a^{\prime}+i b^{\prime} \in \tilde{A}$.
The proof for the case when $p_{\alpha}\left(a a^{\prime}-b b^{\prime}\right)<p_{\alpha}\left(a b^{\prime}+b a^{\prime}\right)$ is similar. Hence inequality (3.25) holds for both cases. Since the families $\left\{q_{\alpha}: \alpha \in \mathscr{A}\right\}$ and $\left\{r_{\alpha}: \alpha \in \mathscr{A}\right\}$ define on \tilde{A} the same topology, then $(\tilde{A}, \tilde{\tau})$ is a complex locally m-pseudoconvex algebra.
4. Complexification of real exponentially galbed algebras. Next, we will show that the complexification ($\tilde{A}, \tilde{\tau}$) of (A, τ) is a complex exponentially galbed algebra if (A, τ) is a real exponentially galbed algebra, and all elements of $(\tilde{A}, \tilde{\tau})$ are bounded in $(\tilde{A}, \tilde{\tau})$ if (A, τ) is a commutative exponentially galbed algebra in which all elements are bounded and the multiplication in (A, τ) is jointly continuous.

THEOREM 4.1. Let (A, τ) be a real exponentially galbed algebra (commutative real exponentially galbed algebra with jointly continuous multiplication and bounded elements). Then ($\tilde{A}, \tilde{\tau}$) is a complex exponentially galbed algebra (resp., commutative complex exponentially galbed algebra with bounded elements).

Proof. Let (A, τ) be a real exponentially galbed algebra and \tilde{O} a neighborhood of zero in $(\tilde{A}, \tilde{\tau})$. Then there are a neighborhood O of zero of (A, τ) such that $O+i O \subset \tilde{O}$ and another neighborhood U of zero of (A, τ) such that

$$
\begin{equation*}
\left\{\sum_{k=0}^{n} \frac{a_{k}}{2^{k}}: a_{0}, \ldots, a_{n} \in U\right\} \subset O \tag{4.1}
\end{equation*}
$$

for each $n \in \mathbb{N}$. Since $U+i U$ is a neighborhood of zero in $(\tilde{A}, \tilde{\tau})$ and

$$
\begin{equation*}
\left\{\sum_{k=0}^{n} \frac{a_{k}+i b_{k}}{2^{k}}: a_{0}+i b_{0}, \ldots, a_{n}+i b_{n} \in U+i U\right\} \subset O+i O \subset \tilde{O} \tag{4.2}
\end{equation*}
$$

for each $n \in \mathbb{N}$, then ($\tilde{A}, \tilde{\tau}$) is a complex exponentially galbed algebra.
Let now (A, τ) be a commutative real exponentially galbed algebra with jointly continuous multiplication and bounded elements, \tilde{O} an arbitrary neighborhood of zero of ($\tilde{A}, \tilde{\tau}$), and $a+i b \in \tilde{A}$ an arbitrary element. Then there are a neighborhood O of zero of (A, τ) such that $O+i O \subset \tilde{O}$ and $\lambda_{a}, \lambda_{b} \in \mathbb{C} \backslash\{0\}$ and the sets

$$
\begin{equation*}
\left\{\left(\frac{a}{\lambda_{a}}\right)^{n}: n \in \mathbb{N}\right\}, \quad\left\{\left(\frac{b}{\lambda_{b}}\right)^{n}: n \in \mathbb{N}\right\} \tag{4.3}
\end{equation*}
$$

are bounded in (A, τ). The neighborhood O defines now a balanced neighborhood U of zero of (A, τ) such that (4.2) holds and U defines a balanced neighborhood V of zero of (A, τ) such that $V V \subset U$ (because the multiplication in (A, τ) is jointly continuous). Now there are numbers $\mu_{a}, \mu_{b}>0$ such that

$$
\begin{equation*}
\left(\frac{a}{\left|\lambda_{a}\right|}\right)^{n} \in \mu_{a} V, \quad\left(\frac{b}{\left|\lambda_{b}\right|}\right)^{n} \in \mu_{b} V, \tag{4.4}
\end{equation*}
$$

for each $n \in \mathbb{N}$. Let $\kappa=4\left(\left|\lambda_{a}\right|+\left|\lambda_{b}\right|\right)$. Since $a+i b=\left(a+i \theta_{A}\right)+i\left(b+i \theta_{A}\right)$, then

$$
\begin{align*}
\left(\frac{a+i b}{\kappa}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k}\left(\left(\frac{a}{\kappa}\right)^{k}+i \theta_{A}\right) i^{n-k}\left(\left(\frac{b}{\kappa}\right)^{n-k}+i \theta_{A}\right) \tag{4.5}\\
& =\mu_{a} \mu_{b} \sum_{k=0}^{n} \frac{\tilde{x}_{k}}{2^{k}}
\end{align*}
$$

for each $n \in \mathbb{N}$, where

$$
\begin{align*}
\tilde{x}_{k} & =\varrho_{n k} \frac{1}{\mu_{a} \mu_{b}}\left(\left(\frac{a}{\left|\lambda_{a}\right|}\right)^{k}\left(\frac{b}{\left|\lambda_{b}\right|}\right)^{n-k}+i \theta_{A}\right) \\
\varrho_{n k} & =2^{k} i^{n-k}\binom{n}{k}\left(\frac{\left|\lambda_{a}\right|}{\kappa}\right)^{k}\left(\frac{\left|\lambda_{b}\right|}{\kappa}\right)^{n-k} \tag{4.6}
\end{align*}
$$

for each $k \leqslant n$. Herewith

$$
\begin{gather*}
\left|\varrho_{n k}\right|=\frac{2^{k}}{\kappa^{n}}\binom{n}{k}\left|\lambda_{a}\right|^{k}\left|\lambda_{b}\right|^{n-k} \leqslant \frac{2^{n}}{\kappa^{n}}\left(\left|\lambda_{a}\right|+\left|\lambda_{b}\right|\right)^{n} \leqslant\left(\frac{1}{2}\right)^{n}<1, \\
\left(\frac{a}{\left|\lambda_{a}\right|}\right)^{k}\left(\frac{b}{\left|\lambda_{b}\right|}\right)^{n-k}+i \theta_{A} \in \mu_{a} \mu_{b} V V+i \theta_{A} \subset \mu_{a} \mu_{b}(U+i U) \tag{4.7}
\end{gather*}
$$

Since U is a balanced set, then $\tilde{x}_{k} \in U+i U$ for each $k \in\{0, \ldots, n\}$. Hence

$$
\begin{equation*}
\left(\frac{a+i b}{\kappa}\right)^{n} \in \mu_{a} \mu_{b}(O+i O) \subset \mu_{a} \mu_{b} \tilde{O} \tag{4.8}
\end{equation*}
$$

by (4.2) for each $n \in \mathbb{N}$. It means that $a+i b$ is bounded in ($\tilde{A}, \tilde{\tau})$. Consequently, $(\tilde{A}, \tilde{\tau})$ is a commutative complex exponentially galbed algebra with bounded elements.
5. Real Gel'fand-Mazur division algebras. To describe main classes of real Gel'fand-Mazur division algebras, we first describe these real topological division algebras (A, τ) for which the complexification $(\tilde{A}, \tilde{\tau})$ of (A, τ) is a complex Gel'fand-Mazur division algebra.

Proposition 5.1. If (A, τ) is a commutative strictly real topological Hausdorff division algebra with continuous inversion, then the complexification ($\tilde{A}, \tilde{\tau}$) of (A, τ) is a commutative complex topological Hausdorff division algebra with continuous inversion.

Proof. Let A be a commutative strictly real division algebra. Then \tilde{A} is a complex division algebra (see [7, Proposition 1.6.20]). Since the underlying topological space of (A, τ) is a Hausdorff space, then (A, τ) is a Q-algebra. Hence (A, τ) is a commutative real Waelbroeck algebra with a unit element. Therefore ($\tilde{A}, \tilde{\tau}$) is a commutative Waelbroeck algebra (see [7, Proposition 3.6 .31] or [17, proposition on page 237]). Thus, $(\tilde{A}, \tilde{\tau})$ is a commutative complex Hausdorff division algebra with continuous inversion.

Proposition 5.2. Let (A, τ) be a real topological algebra and \tilde{A} the complexification of A. If the topological dual $(A, \tau)^{*}$ of (A, τ) is nonempty, then the topological dual $(\tilde{A}, \tilde{\tau})^{*}$ of $(\tilde{A}, \tilde{\tau})$ is also nonempty.

Proof. If $\psi \in(A, \tau)^{*}$, then $\tilde{\psi}$, defined by $\tilde{\psi}(a+i b)=\psi(a)+i \psi(b)$ for each $a+i b \in \tilde{A}$, is an element of $(\tilde{A}, \tilde{\tau})^{*}$.

Proposition 5.3. Let a be a commutative strictly real (not necessarily topological) division algebra and \tilde{A} the complexification of A. Then

$$
\begin{equation*}
\operatorname{sp}_{\tilde{A}}(a+i b)=\left\{\alpha+i \beta \in \mathbb{C}: \alpha \in \operatorname{sp}_{A}(a) \text { and } \beta \in \operatorname{sp}_{A}(b)\right\} \tag{5.1}
\end{equation*}
$$

Proof. Let $\alpha+i \beta \in \operatorname{sp}_{\tilde{A}}(a+i b)$. Since A is a commutative strictly real division algebra, then \tilde{A} is a commutative complex division algebra (see [7, Proposition 1.6.20]). Therefore

$$
\begin{equation*}
a+i b-(\alpha+i \beta)\left(e_{A}+i \theta\right)=\left(a-\alpha e_{A}\right)+i\left(b-\beta e_{A}\right)=\theta_{A}+i \theta_{A} \tag{5.2}
\end{equation*}
$$

if and only if $\alpha \in \operatorname{sp}_{A}(a)$ and $\beta \in \operatorname{sp}_{A}(b)$.
The main result of the present paper is the following theorem.

THEOREM 5.4. Let (A, τ) be a commutative strictly real topological division algebra and \tilde{A} the complexification of A. If there is a topology τ^{\prime} on A such that (A, τ^{\prime}) is
(a) a locally pseudoconvex Hausdorff algebra with continuous inversion;
(b) a Hausdorff algebra with continuous inversion for which $(A, \tau)^{*}$ is nonempty;
(c) an exponentially galbed Hausdorff algebra with jointly continuous multiplication and bounded elements;
(d) a topological Hausdorff algebra for which the spectrum $\mathrm{sp}_{A}(a)$ is nonempty for each $a \in A$,
then (A, τ) and \mathbb{R} are topologically isomorphic.
Proof. If A is a commutative strictly real division algebra, then \tilde{A} is a commutative complex division algebra (by [7, Proposition 1.6.20]). In case (a) the complexification ($\tilde{A}, \tilde{\tau}^{\prime}$) of (A, τ^{\prime}) is a commutative complex locally pseudoconvex Hausdorff division algebra with continuous inversion (by Theorem 3.1 and Proposition 5.1); in case (b) ($\left.\tilde{A}, \tilde{\tau}^{\prime}\right)$ of $\left(A, \tau^{\prime}\right)$ is a commutative complex topological Hausdorff algebra with continuous inversion for which the set $\left(\tilde{A}, \tilde{\tau}^{\prime}\right)^{*}$ is nonempty (by Propositions 5.1 and 5.2); in case (c) ($\left.\tilde{A}, \tilde{\tau}^{\prime}\right)$ of $\left(A, \tau^{\prime}\right)$ is a commutative complex exponentially galbed Hausdorff division algebra with bounded elements (by Theorem 4.1); and in case (d) ($\left.\tilde{A}, \tilde{\tau}^{\prime}\right)$ of $\left(A, \tau^{\prime}\right)$ is such a commutative topological Hausdorff division algebra for which the spectrum $\operatorname{sp}_{\tilde{A}}(a+i b)$ is nonempty for each $a+i b \in \tilde{A}$ (by Proposition 5.3), therefore $(\tilde{A}, \tilde{\tau})$ and \mathbb{C} are topologically isomorphic (see [4, Theorem 1] and [2, Proposition 1]). Hence every element $a+i b \in \tilde{A}$ is representable in the form $a+i b=\lambda e_{\tilde{A}}$ for some $\lambda \in \mathbb{C}$. It means that for each $a \in A$ there is a real number μ such that $a=\mu e_{A}$. Consequently, A is an isomorphism to \mathbb{R}. In the same way as in complex case (see, e.g., [4, page 122]) it is easy to show that this isomorphism is a topological isomorphism because (A, τ) is a Hausdorff space.

COROLLARY 5.5. Let A be a commutative strictly real division algebra. If A has a topology τ such that (A, τ) is
(a) a locally pseudoconvex Hausdorff algebra with continuous inversion;
(b) a locally A-pseudoconvex (in particular, locally m-pseudoconvex) Hausdorff algebra;
(c) a locally pseudoconvex Fréchet algebra;
(d) an exponentially galbed Hausdorff algebra with jointly continuous multiplication and bounded elements;
(e) a topological Hausdorff algebra for which the spectrum $\mathrm{sp}_{A}(a)$ is nonempty for each $a \in A$,
then (A, τ) is a commutative real Gel'fand-Mazur division algebra.
Proof. It is easy to see that (A, τ) is a commutative real Gel'fand-Mazur division algebra (by Theorem 5.4) in cases (a), (d), and (e). Since the inversion
is continuous in every locally m-pseudoconvex algebra and every locally A pseudoconvex Hausdorff algebra with a unit element having a topology τ^{\prime} such that (A, τ^{\prime}) is a locally m-pseudoconvex Hausdorff algebra (see [5, Lemma 2.2]), then (A, τ) is a commutative real Gel'fand-Mazur division algebra in case (b) by (a) and Theorem 5.4.

Let now (A, τ) be a commutative strictly real locally pseudoconvex Fréchet division algebra. Then (A, τ) is a commutative strictly real locally pseudoconvex Fréchet Q-algebra by Corollary 3.2. Therefore the inversion in (A, τ) is continuous (see [15, Corollary 7.6]). Hence (A, τ) is also a commutative real Gel'fand-Mazur division algebra by Theorem 5.4.

Acknowledgment. This research was supported in part by an Estonian Science Foundation Grant 4514.

References

[1] M. Abel, Inductive limits of Gel'fand-Mazur algebras, submitted to J. Austral. Math. Soc.
[2] ___ Survey of results on Gel'fand-Mazur algebras, Proc. of the Intern. Conf. on Topological Algebras and Applications (Rabat 2000), to appear.
[3] _ On the Gel'fand-Mazur theorem for exponentially galbed algebras, Tartu Riikl. Ül. Toimetised (1990), no. 899, 65-70.
[4] __ Gel'fand-Mazur algebras, Topological Vector Spaces, Algebras and Related Areas (Hamilton, ON, 1994), Pitman Res. Notes Math. Ser., vol. 316, Longman Scientific \& Technical, Harlow, 1994, pp. 116-129.
[5] M. Abel and A. Kokk, Locally pseudoconvex Gel'fand-Mazur algebras, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 37 (1988), no. 4, 377-386 (Russian).
[6] G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15 (1965), 399-421.
[7] V. K. Balachandran, Topological Algebras, North-Holland Mathematics Studies, vol. 185, North-Holland Publishing, Amsterdam, 2000, reprint of the 1999 original.
[8] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 80, Springer-Verlag, New York, 1973.
[9] A. Guichardet, Special Topics in Topological Algebras, Gordon and Breach Science Publishers, New York, 1968.
[10] A. Mallios, Topological Algebras. Selected Topics, North-Holland Mathematics Studies, vol. 124, North-Holland Publishing, Amsterdam, 1986.
[11] M. A. Naĭmark, Normed Algebras, Wolters-Noordhoff Publishing, Groningen, 1972.
[12] C. E. Rickart, General Theory of Banach Algebras, The University Series in Higher Mathematics, D. van Nostrand, Princeton, 1960.
[13] Ph. Turpin, Espaces et opérateurs exponentiellement galbés, Séminaire Pierre Lelong (Analyse), Année 1973-1974, Lecture Notes in Math., vol. 474, Springer, Berlin, 1975, pp. 48-62 (French).
[14] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Mathematics, vol. 230, Springer-Verlag, Berlin, 1971.
[15] W. Żelazko, Metric generalizations of Banach algebras, Rozprawy Mat. 47 (1965), 1-70.
[16] _ Selected Topics in Topological Algebras, Lecture Notes Series, no. 31, Matematisk Institut, Aarhus Universitet, Aarhus, 1971.
[17] \qquad On m-convexity of commutative real Waelbroeck algebras, Comment. Math. Prace Mat. 40 (2000), 235-240.

Mati Abel: Institute of Pure Mathematics, University of Tartu, 2 J. Liivi Street, 50409 Tartu, Estonia

E-mail address: abe1@math.ut.ee
Olga Panova: Institute of Pure Mathematics, University of Tartu, 2 J. Liivi Street, 50409 Tartu, Estonia

E-mail address: olpanova@math.ut.ee

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

