ON THE WEAK UNIFORM ROTUNDITY OF BANACH SPACES

WEN D. CHANG and PING CHANG

Received 10 June 2002

Abstract

We prove that if $X_{i}, i=1,2, \ldots$, are Banach spaces that are weak* uniformly rotund, then their l_{p} product space ($p>1$) is weak* uniformly rotund, and for any weak or weak* uniformly rotund Banach space, its quotient space is also weak or weak* uniformly rotund, respectively.

2000 Mathematics Subject Classification: 46B20.

1. Definitions and preliminaries. In this note, X and Y denote Banach spaces and X^{*} and Y^{*} denote the conjugate spaces of X and Y, respectively. Let $A \subset X$ be a closed subset and X / A denote the quotient space. We use $S(X)$ for the unit sphere in X and $P_{l_{p}}\left(X_{i}\right)$ for the l_{p} product space. We refer to [1,3] for the following definitions and notations. For more recent treatment, one may see, for example, [2].

DEFINITION 1.1. A Banach space X is $\mathrm{UR}^{A^{\prime}}$, where A^{\prime} is a nonempty subset of X^{*}, if and only if for any pair of sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $S(X)$, if $\| x_{n}+$ $y_{n} \| \rightarrow 2$, then $f\left(x_{n}-y_{n}\right) \rightarrow 0$ for all f in A^{\prime}.

Definition 1.2. A Banach space X is WUR (weakly uniformly rotund) if and only if X is $\mathrm{UR}^{X^{*}}$.

Definition 1.3. The conjugate space X^{*} is W^{*} UR (weak* uniformly rotund) if and only if X is $\mathrm{UR}^{Q(X)}$, where $Q: X \rightarrow X^{* *}$ is the canonical embedding.
2. Some results on the weak* and weak uniform rotundity. From the definition, we clearly have the following corollary.

Lemma 2.1. The Banach space X is $W^{*} U R$ if and only if for any pair of sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, if $\left\|x_{n}\right\|-\left\|y_{n}\right\| \rightarrow 0,\left\{\left\|y_{n}\right\|\right\}$ is bounded, and $\left\|x_{n}\right\|+\left\|y_{n}\right\|-\left\|x_{n}+y_{n}\right\| \rightarrow 0$, then $x_{n}-y_{n} \xrightarrow{w^{*}} \theta$.

Theorem 2.2. Suppose that $X_{i}, i=1,2, \ldots$, are $W^{*} U R$, then for $p>1, P_{l_{p}}\left(X_{i}\right)$ is $W^{*} U R$.

Proof. Let $X_{i}=Y_{i}^{*}$, then $P_{l_{p}}\left(X_{i}\right)=\left[P_{l_{q}}\left(Y_{i}\right)\right]^{*}$ (where $1 / p+1 / q=1$) (see [2]). Let $\left\{x_{n}\right\}=\left\{\left(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}, \ldots, x_{m}^{n}, \ldots\right)\right\} \in P_{l_{p}}\left(X_{i}\right),\left\{y_{n}\right\}=\left\{\left(y_{1}^{n}, y_{2}^{n}, y_{3}^{n}, \ldots\right.\right.$, $\left.\left.y_{m}^{n}, \ldots\right)\right\} \in P_{l_{p}}\left(X_{i}\right),\left\|x_{n}+y_{n}\right\| \rightarrow 2$. Using the properties of l_{p} norm and Minkowski
inequality, one can see, for each i, that there exists a subsequence of $\{n\},\left\{n_{k}^{i}\right\}$, such that $\lim _{k \rightarrow \infty}\left\|x_{i}^{n_{k}^{i}}\right\|=\lim _{k \rightarrow \infty}\left\|y_{i}^{n_{k}^{i}}\right\|$ and $\lim _{k \rightarrow \infty}\left\|x_{i}^{n_{k}^{i}}+y_{i}^{n_{k}^{i}}\right\|=\lim _{k \rightarrow \infty}\left[\left\|x_{i}^{n_{k}^{i}}\right\|\right.$ $\left.+\left\|y_{i}^{n_{k}^{i}}\right\|\right]$. We now choose a subsequence with the diagonal method, without loss of generality, still use $\{n\}$ as the index such that for each i, we have $\lim _{n \rightarrow \infty}\left\|x_{i}^{n}\right\|-\lim _{n \rightarrow \infty}\left\|y_{i}^{n}\right\|=0$ and $\lim _{k \rightarrow \infty}\left[\left\|x_{i}^{n}\right\|+\left\|y_{i}^{n}\right\|-\left\|x_{i}^{n}+y_{i}^{n}\right\|\right]=0$. Since X_{i} is $\mathrm{W}^{*} \mathrm{UR}$ for each i, by the lemma, we have

$$
\begin{equation*}
x_{i}^{n}-y_{i}^{n} \xrightarrow{\mathrm{w}^{*}} \theta . \tag{2.1}
\end{equation*}
$$

Suppose that $P_{l_{p}}\left(X_{i}\right)$ is not $\mathrm{W}^{*} \mathrm{UR}$, then there exist sequences $\left\{x_{n}\right\} \in$ $S\left(P_{l_{p}}\left(X_{i}\right)\right),\left\{y_{n}\right\} \in S\left(P_{l_{p}}\left(X_{i}\right)\right),\left\|x_{n}+y_{n}\right\| \rightarrow 2$, but $x_{n}-y_{n}$ does not converge $\left(\mathrm{w}^{*}\right)$ to θ. So, there must be an $a=\left(a_{1}, a_{2}, \ldots, a_{i}, \ldots\right)$ in $P_{l_{a}}\left(Y_{i}\right)$, with $a_{i} \in$ Y_{i}, such that $\left|\left(x^{n}-y^{n}\right)(a)\right|$ does not converge to 0 . Therefore, there exist $\epsilon>0$ and a subsequence of $\{n\}$ (for simplicity, we still use $\{n\}$) such that $\left|\left(x^{n}-y^{n}\right)(a)\right|>\epsilon$, which implies that one can find an integer m, sufficiently large, so that

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\left(x_{i}^{n}-y_{i}^{n}\right)\left(a_{i}\right)\right|>\frac{\epsilon}{2} . \tag{2.2}
\end{equation*}
$$

Let (n_{k}) be the subsequence of $\{n\}$ such that (2.1) holds. By (2.2), we have

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\left(x_{i}^{n_{k}}-y_{i}^{n_{k}}\right)\left(a_{i}\right)\right|>\frac{\epsilon}{2} . \tag{2.3}
\end{equation*}
$$

Let $k \rightarrow \infty$ in (2.3), we have a contradiction $0>\epsilon / 2$.
The proof is complete.
Theorem 2.3. Suppose that $X=Y^{*}$ and A is any w^{*} closed subspace of X. If X is $W^{*} U R$, then X / A is $W^{*} U R$.

Proof. Let $D=\{y \in Y \mid x(y)=0$ for any $x \in A\}$, then

$$
\begin{equation*}
A=\{x \in X \mid x(y)=0 \text { for any } y \in D\}, \tag{2.4}
\end{equation*}
$$

see [4]. So, We have $D^{*} \simeq X / A$.
Suppose that X / A is not W^{*} UR, then there exist $\left\{\tilde{x}_{n}\right\}$ and $\left\{\tilde{y}_{n}\right\}$ in X / A such that $\left\|\tilde{x}_{n}\right\|=\left\|\tilde{y}_{n}\right\|=1,\left\|\tilde{x}_{n}+\tilde{y}_{n}\right\| \rightarrow 2$, but $\tilde{x}_{n}-\tilde{y}_{n}$ does not converge $\left(\mathrm{w}^{*}\right)$ to θ. Here, $\tilde{x}=\pi(x)$, where $\pi: X \rightarrow X / A$.

Now, for each n, take $x_{n} \in \tilde{x}_{n}$ and $y_{n} \in \tilde{y}_{n}, 1 \leq\left\|x_{n}\right\| \leq 1+1 / n, 1 \leq\left\|y_{n}\right\| \leq$ $1+1 / n$, then $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2$. Since X is $\mathrm{W}^{*} \mathrm{UR}$, we have $x_{n}-y_{n} \xrightarrow{\mathrm{w}^{*}} \theta$, π is $\mathrm{w}^{*}-\mathrm{w}^{*}$ continuous. So, we must have $\tilde{x}_{n}-\tilde{y}_{n} \xrightarrow{\mathrm{w}^{*}} \theta$. That contradicts the above, and the proof is complete.

Theorem 2.4. Suppose that A is a closed subspace of X and X is WUR (Definition 1.2), then X / A is WUR.

Proof. The proof is similar to the proof of Theorem 2.3.

REFERENCES

[1] M. M. Day, Normed Linear Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21, Springer-Verlag, New York, 1973.
[2] R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific \& Technical, Harlow, 1993, copublished in the United States with John Wiley \& Sons, New York.
[3] M. A. Smith, Banach spaces that are uniformly rotund in weakly compact sets of directions, Canad. J. Math. 29 (1977), no. 5, 963-970.
[4] A. E. Taylor, Introduction to Functional Analysis, John Wiley \& Sons, New York, 1958.

Wen D. Chang: Department of Mathematics and Computer Science, Alabama State University, Montgomery, AL 36104, USA

E-mail address: wchang@asunet. a1asu. edu
Ping Chang: Singapore Air Accounting Center in Beijing, Beijing, China
E-mail address: lovasun@charter.net

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

