A BASIC INEQUALITY FOR SUBMANIFOLDS IN A COSYMPLECTIC SPACE FORM

JEONG-SIK KIM and JAEDONG CHOI

Received 7 February 2002

Abstract

For submanifolds tangent to the structure vector field in cosymplectic space forms, we establish a basic inequality between the main intrinsic invariants of the submanifold, namely, its sectional curvature and scalar curvature on one side; and its main extrinsic invariant, namely, squared mean curvature on the other side. Some applications, including inequalities between the intrinsic invariant δ_{M} and the squared mean curvature, are given. The equality cases are also discussed.

2000 Mathematics Subject Classification: 53C40, 53D15.

1. Introduction. To find simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold is one of the natural interests of the submanifold theory. Let M be an n-dimensional Riemannian manifold. For each point $p \in M$, let $(\inf K)(p)=\inf \{K(\pi)$: plane sections $\pi \subset$ $\left.T_{p} M\right\}$. Then, the well-defined intrinsic invariant δ_{M} of M introduced by Chen [4] is

$$
\begin{equation*}
\delta_{M}(p)=\tau(p)-(\inf K)(p), \tag{1.1}
\end{equation*}
$$

where τ is the scalar curvature of M (see also [6]).
In [3], Chen established the following basic inequality involving the intrinsic invariant δ_{M} and the squared mean curvature for n-dimensional submanifolds M in a real space form $R(c)$ of constant sectional curvature c :

$$
\begin{equation*}
\delta_{M} \leq \frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) c . \tag{1.2}
\end{equation*}
$$

The above inequality is also true for anti-invariant submanifolds in complex space forms $\widetilde{M}(4 c)$ as remarked in [7]. In [5], he proved a general inequality for an arbitrary submanifold of a dimension greater than 2 in a complex space form. Applying this inequality, he showed that (1.2) is also valid for arbitrary submanifolds in the complex hyperbolic space $\mathrm{CH}^{m}(4 c)$. He also established the basic inequality for a submanifold in a complex projective space CP^{m}.

A submanifold normal to the structure vector field ξ of a contact manifold is anti-invariant. Thus, the C-totally real submanifolds in a Sasakian manifold are anti-invariant as they are normal to ξ. An inequality similar to (1.2) for C-totally
real submanifolds in a Sasakian space form $\tilde{M}(c)$ of constant φ-sectional curvature c is given in [8]. In [9], for submanifolds in a Sasakian space form $\tilde{M}(c)$ tangential to the structure vector field ξ, a basic inequality, along with some applications, is presented.

There is another interesting class of almost contact metric manifolds, namely, cosymplectic manifolds [10]. In this paper, submanifolds tangent to the structure vector field ξ in cosymplectic space forms are studied. Section 2 contains the necessary details of submanifolds and cosymplectic space forms for further use. In Section 3, for submanifolds tangent to the structure vector field ξ in cosymplectic space forms, we establish a basic inequality between the main intrinsic invariants, namely, its sectional curvature function K and its scalar curvature function τ of the submanifold on the one side, and its main extrinsic invariant, namely, its mean curvature function $\|H\|$ on the other side. In Section 4, we give some applications including inequalities between the intrinsic invariant δ_{M} and the extrinsic invariant $\|H\|$. We also discuss the equality cases.
2. Preliminaries. Let \tilde{M} be a $(2 m+1)$-dimensional almost contact manifold [2] endowed with an almost contact structure (φ, ξ, η), that is, φ is a $(1,1)$ tensor field, ξ is a vector field, and η is 1-form such that

$$
\begin{equation*}
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1 . \tag{2.1}
\end{equation*}
$$

Then, $\varphi(\xi)=0$ and $\eta \circ \varphi=0$.
Let g be a compatible Riemannian metric with (φ, ξ, η), that is, $g(\varphi X, \varphi Y)=$ $g(X, Y)-\eta(X) \eta(Y)$ or, equivalently, $g(X, \varphi Y)=-g(\varphi X, Y)$ and $g(X, \xi)=$ $\eta(X)$ for all $X, Y \in T \tilde{M}$. Then, \tilde{M} becomes an almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g). An almost contact metric manifold is cosymplectic [2] if $\tilde{\nabla}_{X} \varphi=0$, where $\tilde{\nabla}$ is the Levi-Civita connection of the Riemannian metric g. From the formula $\tilde{\nabla}_{X} \varphi=0$, it follows that $\tilde{\nabla}_{X} \xi=0$.

A plane section σ in $T_{p} \tilde{M}$ of an almost contact metric manifold \tilde{M} is called a φ-section if $\sigma \perp \xi$ and $\varphi(\sigma)=\sigma$. The $(2 m+1)$-dimensional almost contact manifold \tilde{M} is of the constant φ-sectional curvature if the sectional curvature $\tilde{K}(\sigma)$ does not depend on the choice of the φ-section σ of $T_{p} \tilde{M}$ and the choice of a point $p \in \tilde{M}$. A cosymplectic manifold \tilde{M} is of the constant φ-sectional curvature c if and only if its curvature tensor \tilde{R} is of the form [10]

$$
\begin{align*}
4 \tilde{R}(X, Y, Z, W)= & c\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& +g(X, \varphi W) g(Y, \varphi Z)-g(X, \varphi Z) g(Y, \varphi W) \\
& -2 g(X, \varphi Y) g(Z, \varphi W) \tag{2.2}\\
& -g(X, W) \eta(Y) \eta(Z)+g(X, Z) \eta(Y) \eta(W) \\
& -g(Y, Z) \eta(X) \eta(W)+g(Y, W) \eta(X) \eta(Z)\} .
\end{align*}
$$

Let M be an $(n+1)$-dimensional submanifold of a manifold \tilde{M} equipped with a Riemannian metric g. The Gauss and Weingarten formulae are given, respectively, by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \tilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N, \tag{2.3}
\end{equation*}
$$

for all $X, Y \in T M$ and $N \in T^{\perp} M$, where $\tilde{\nabla}, \nabla$, and ∇^{\perp}, respectively, are the Riemannian, induced Riemannian, and induced normal connections in \tilde{M}, M, and the normal bundle $T^{\perp} M$ of M, respectively, and h is the second fundamental form related to the shape operator A by $g(h(X, Y), N)=g\left(A_{N} X, Y\right)$.

Let $\left\{e_{1}, \ldots, e_{n+1}\right\}$ be an orthonormal basis of the tangent space $T_{p} M$. The mean curvature vector $H(p)$ at $p \in M$ is

$$
\begin{equation*}
H(p)=\frac{1}{n+1} \sum_{i=1}^{n+1} h\left(e_{i}, e_{i}\right) . \tag{2.4}
\end{equation*}
$$

The submanifold M is totally geodesic in \tilde{M} if $h=0$ and minimal if $H=0$. We put

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad\|h\|^{2}=\sum_{i, j=1}^{n+1} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right), \tag{2.5}
\end{equation*}
$$

where $\left\{e_{n+2}, \ldots, e_{2 m+1}\right\}$ is an orthonormal basis of $T_{p}^{\perp} M$ and $r=n+2, \ldots$, $2 m+1$.
3. A basic inequality. Let M be a submanifold of an almost contact metric manifold. For $X \in T M$, let

$$
\begin{equation*}
\varphi X=P X+F X, \quad P X \in T M, F X \in T^{\perp} M \tag{3.1}
\end{equation*}
$$

Thus, P is an endomorphism of the tangent bundle of M and satisfies

$$
\begin{equation*}
g(X, P Y)=-g(P X, Y), \quad X, Y \in T M \tag{3.2}
\end{equation*}
$$

For a plane section $\pi \subset T_{p} M$ at a point $p \in M$,

$$
\begin{equation*}
\alpha(\pi)=g\left(e_{1}, P e_{2}\right)^{2}, \quad \beta(\pi)=\left(\eta\left(e_{1}\right)\right)^{2}+\left(\eta\left(e_{2}\right)\right)^{2} \tag{3.3}
\end{equation*}
$$

are real numbers in the closed unit interval [0,1], which are independent of the choice of the orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of π.

We recall the following lemma from [3].

Lemma 3.1. If a_{1}, \ldots, a_{n+1}, a are $n+2(n \geq 1)$ real numbers such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n+1} a_{i}\right)^{2}=n\left(\sum_{i=1}^{n+1} a_{i}^{2}+a\right) \tag{3.4}
\end{equation*}
$$

then $2 a_{1} a_{2} \geq a$, with equality holding if and only if $a_{1}+a_{2}=a_{3}=\cdots=a_{n+1}$.
Now, we prove the following theorem.
Theorem 3.2. Let M be an $(n+1)$-dimensional ($n \geq 2$) submanifold isometrically immersed in a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$ such that the structure vector field ξ is tangent to M. Then, for each point $p \in M$ and each plane section $\pi \subset T_{p} M$, we have

$$
\begin{align*}
\tau-K(\pi) \leq & \frac{(n+1)^{2}(n-1)}{2 n}\|H\|^{2} \tag{3.5}\\
& +\frac{c}{8}\left(3\|P\|^{2}-6 \alpha(\pi)+2 \beta(\pi)+(n+1)(n-2)\right)
\end{align*}
$$

The equality in (3.5) holds at $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+2}, \ldots, e_{2 m+1}\right\}$ of $T_{p}^{\perp} M$ such that
(a) $\pi=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$,
(b) the forms of the shape operators $A_{r} \equiv A_{e_{r}}, r=n+2, \ldots, 2 m+1$, become

$$
\begin{align*}
A_{n+2} & =\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & (\lambda+\mu) I_{n-1}
\end{array}\right), \\
A_{r} & =\left(\begin{array}{ccc}
h_{11}^{r} & h_{12}^{r} & 0 \\
h_{12}^{r} & -h_{11}^{r} & 0 \\
0 & 0 & 0_{n-1}
\end{array}\right), \quad r=n+3, \ldots, 2 m+1 . \tag{3.6}
\end{align*}
$$

Proof. In view of the Gauss equation and (2.2), the scalar curvature and the mean curvature of M are related by

$$
\begin{equation*}
2 \tau=\frac{c}{4}\left(3\|P\|^{2}+n(n-1)\right)+(n+1)^{2}\|H\|^{2}-\|h\|^{2}, \tag{3.7}
\end{equation*}
$$

where $\|P\|^{2}$ is given by

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{n+1} g\left(e_{i}, P e_{j}\right)^{2} \tag{3.8}
\end{equation*}
$$

for any local orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ for $T_{p} M$. We introduce

$$
\begin{equation*}
\rho=2 \tau-\frac{(n+1)^{2}(n-1)}{n}\|H\|^{2}-\frac{c}{4}\left(3\|P\|^{2}+n(n-1)\right) . \tag{3.9}
\end{equation*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
(n+1)^{2}\|H\|^{2}=n\left(\|h\|^{2}+\rho\right) \tag{3.10}
\end{equation*}
$$

Let p be a point of M and let $\pi \subset T_{p} M$ be a plane section at p. We choose an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ for $T_{p} M$ and $\left\{e_{n+2}, \ldots, e_{2 m+1}\right\}$ for the normal space $T_{p}^{\perp} M$ at p such that $\pi=\operatorname{Span}\left\{e_{1}, e_{2}\right\}$ and the mean curvature vector $H(p)$ is parallel to e_{n+2}; then from (3.10), we get

$$
\begin{equation*}
\left(\sum_{i=1}^{n+1} h_{i i}^{n+2}\right)^{2}=n\left(\sum_{i=1}^{n+1}\left(h_{i i}^{n+2}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+2}\right)^{2}+\sum_{r=n+3}^{2 m+1} \sum_{i, j=1}^{n+1}\left(h_{i j}^{r}\right)^{2}+\rho\right) \tag{3.11}
\end{equation*}
$$

Using Lemma 3.1, from (3.11) we obtain

$$
\begin{equation*}
h_{11}^{n+2} h_{22}^{n+2} \geq \frac{1}{2}\left\{\sum_{i \neq j}\left(h_{i j}^{n+2}\right)^{2}+\sum_{r=n+3}^{2 m+1} \sum_{i, j=1}^{n+1}\left(h_{i j}^{r}\right)^{2}+\rho\right\} \tag{3.12}
\end{equation*}
$$

From the Gauss equation and (2.2), we also have

$$
\begin{equation*}
K(\pi)=\frac{c}{4}(1+3 \alpha(\pi)-\beta(\pi))+h_{11}^{n+2} h_{22}^{n+2}-\left(h_{12}^{n+2}\right)^{2}+\sum_{r=n+3}^{2 m+1}\left(h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right) \tag{3.13}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
K(\pi) \geq & \frac{c}{4}(1+3 \alpha(\pi)-\beta(\pi))+\frac{1}{2} \rho+\sum_{r=n+2}^{2 m+1} \sum_{j>2}\left\{\left(h_{1 j}^{r}\right)^{2}+\left(h_{2 j}^{r}\right)^{2}\right\} \\
& +\frac{1}{2} \sum_{i \neq j>2}\left(h_{i j}^{n+2}\right)^{2}+\frac{1}{2} \sum_{r=n+3}^{2 m+1} \sum_{i, j>2}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+3}^{2 m+1}\left(h_{11}^{r}+h_{22}^{r}\right)^{2}, \tag{3.14}
\end{align*}
$$

or

$$
\begin{equation*}
K(\pi) \geq \frac{c}{4}(1+3 \alpha(\pi)-\beta(\pi))+\frac{1}{2} \rho \tag{3.15}
\end{equation*}
$$

which, in view of (3.9), yields (3.5).

If the equality in (3.5) holds, then the inequalities given by (3.12) and (3.14) become equalities. In this case, we have

$$
\begin{gather*}
h_{1 j}^{n+2}=0, \quad h_{2 j}^{n+2}=0, \quad h_{i j}^{n+2}=0, \quad i \neq j>2 ; \\
h_{1 j}^{r}=h_{2 j}^{r}=h_{i j}^{r}=0, \quad r=n+3, \ldots, 2 m+1 ; i, j=3, \ldots, n+1 ; \tag{3.16}\\
h_{11}^{n+3}+h_{22}^{n+3}=\cdots=h_{11}^{2 m+1}+h_{22}^{2 m+1}=0 .
\end{gather*}
$$

Furthermore, we may choose e_{1} and e_{2} so that $h_{12}^{n+2}=0$. Moreover, by applying Lemma 3.1, we also have

$$
\begin{equation*}
h_{11}^{n+2}+h_{22}^{n+2}=h_{33}^{n+2}=\cdots=h_{n+1 n+1}^{n+2} . \tag{3.17}
\end{equation*}
$$

Thus, choosing a suitable orthonormal basis $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$, the shape operator of M becomes of the form given by (3.6). The converse is straightforward.
4. Some applications. For the case $c=0$, from (3.5) we have the following pinching result.

Proposition 4.1. Let M be an $(n+1)$-dimensional $(n>1)$ submanifold isometrically immersed in a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$ with $c=0$ such that $\xi \in T M$. Then,

$$
\begin{equation*}
\delta_{M} \leq \frac{(n+1)^{2}(n-1)}{2 n}\|H\|^{2} . \tag{4.1}
\end{equation*}
$$

A submanifold M of an almost contact metric manifold \tilde{M} with $\xi \in T M$ is called a semi-invariant submanifold [1] of \tilde{M} if $T M=\mathscr{D} \oplus \mathscr{D}^{\perp} \oplus\{\xi\}$, where $\mathscr{D}=T M \cap \varphi(T M)$ and $\mathscr{D}^{\perp}=T M \cap \varphi\left(T^{\perp} M\right)$. In fact, the condition $T M=\mathscr{D} \oplus$ $\mathscr{D}^{\perp} \oplus\{\xi\}$ implies that the endomorphism P is an f-structure [12] on M with $\operatorname{rank}(P)=\operatorname{dim}(\mathscr{D})$. A semi-invariant submanifold of an almost contact metric manifold becomes an invariant or anti-invariant submanifold according as the anti-invariant distribution \mathscr{D}^{\perp} is $\{0\}$ or the invariant distribution \mathscr{D} is $\{0\}[1,12]$.

Now, we establish two inequalities in the following theorems, which are analogous to that of (1.2).

Theorem 4.2. Let M be an $(n+1)$-dimensional $(n>1)$ submanifold isometrically immersed in a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$ such that the structure vector field ξ is tangent to M. If $c<0$, then

$$
\begin{equation*}
\delta_{M} \leq \frac{(n+1)^{2}(n-1)}{2 n}\|H\|^{2}+\frac{1}{2}(n+1)(n-2) \frac{c}{4} . \tag{4.2}
\end{equation*}
$$

The equality in (4.2) holds if and only if M is a semi-invariant submanifold with $\operatorname{dim}(\mathscr{D})=2$.

Proof. Since $c<0$, in order to estimate δ_{M}, we minimize $3\|P\|^{2}-6 \alpha(\pi)+$ $2 \beta(\pi)$ in (3.5). For an orthonormal basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$ of $T_{p} M$ with $\pi=\operatorname{span}\left\{e_{1}\right.$, $\left.e_{2}\right\}$, we write

$$
\begin{equation*}
\|P\|^{2}-2 \alpha(\pi)=\sum_{i, j=3}^{n+1} g\left(e_{i}, \varphi e_{j}\right)^{2}+2 \sum_{j=3}^{n+1}\left\{g\left(e_{1}, \varphi e_{j}\right)^{2}+g\left(e_{2}, \varphi e_{j}\right)^{2}\right\} . \tag{4.3}
\end{equation*}
$$

Thus, we see that the minimum value of $3\|P\|^{2}-6 \alpha(\pi)+2 \beta(\pi)$ is zero provided $\pi=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ is orthogonal to ξ and $\operatorname{span}\left\{\varphi e_{j} \mid j=3, \ldots, n\right\}$ is orthogonal to the tangent space $T_{p} M$. Thus, we have (4.2) with equality case holding if and only if M is semi-invariant such that $\operatorname{dim}(\mathscr{D})=2$ with $\beta=0$.

THEOREM 4.3. Let M be an $(n+1)$-dimensional $(n>1)$ submanifold isometrically immersed in a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$ such that $\xi \in T M$. If $c>0$, then

$$
\begin{equation*}
\delta_{M} \leq \frac{(n+1)^{2}(n-1)}{2 n}\|H\|^{2}+\frac{1}{2} n(n+2) \frac{c}{4} . \tag{4.4}
\end{equation*}
$$

The equality in (4.4) holds if and only if M is an invariant submanifold.
Proof. Since $c>0$, in order to estimate δ_{M}, we maximize $3\|P\|^{2}-6 \alpha(\pi)+$ $2 \beta(\pi)$ in (3.5). We observe that the maximum of $3\|P\|^{2}-6 \alpha(\pi)+2 \beta(\pi)$ is attained for $\|P\|^{2}=n, \alpha(\pi)=0$, and $\beta(\pi)=1$, that is, M is an invariant and $\xi \in \pi$. Thus, we obtain (4.4) with equality case if and only if M is invariant with $\beta=1$.

In last, we prove the following theorem.
THEOREM 4.4. If M is an $(n+1)$-dimensional $(n>1)$ submanifold isometrically immersed in a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$ such that $c>0, \xi \in T M$ and

$$
\begin{equation*}
\delta_{M}=\frac{(n+1)^{2}(n-1)}{2 n}\|H\|^{2}+\frac{1}{2} n(n+2) \frac{c}{4} \tag{4.5}
\end{equation*}
$$

then M is a totally geodesic cosymplectic space form $M(c)$.
Proof. In view of Theorem 4.3, M is an odd-dimensional invariant submanifold of the cosymplectic space form $\tilde{M}(c)$. For every point $p \in M$, we can choose an orthonormal basis $\left\{e_{1}=\xi, e_{2}, \ldots, e_{n+1}\right\}$ for $T_{p} M$ and $\left\{e_{n+2}, \ldots, e_{2 m+1}\right\}$ for $T_{p}^{\perp} M$ such that $A_{r}(r=n+2, \ldots, 2 m+1)$ take the form (3.6). Since M is an
invariant submanifold of a cosymplectic manifold, therefore, it is minimal and $A_{r} \varphi+\varphi A_{r}=0, r=n+2, \ldots, 2 m+1$ [11]. Thus, all the shape operators take the form

$$
A_{r}=\left(\begin{array}{ccc}
c_{r} & d_{r} & 0 \tag{4.6}\\
d_{r} & -c_{r} & 0 \\
0 & 0 & 0_{n-1}
\end{array}\right), \quad r=n+2, \ldots, 2 m+1
$$

Since $A_{r} \varphi e_{1}=0, r=n+2, \ldots, 2 m+1$, from $A_{r} \varphi+\varphi A_{r}=0$, we get $\varphi A_{r} e_{1}=0$. Applying φ to this equation, we obtain $A_{r} e_{1}=\eta\left(A_{r} e_{1}\right) \xi=\eta\left(A_{r} e_{1}\right) e_{1}$; thus, $d_{r}=0, r=n+2, \ldots, 2 m+1$. This implies that $A_{r} e_{2}=-c_{r} e_{2}$. Applying φ to both sides, in view of $A_{r} \varphi+\varphi A_{r}=0$ we get $A_{r} \varphi e_{2}=c_{r} \varphi e_{2}$. Since φe_{2} is orthogonal to ξ and e_{2} and φ has a maximal rank, the principal curvature c_{r} is zero. Hence, M becomes totally geodesic. As in [12, Proposition 1.3, page 313], it is easy to show that M is a cosymplectic manifold of the constant φ-sectional curvature c.

Acknowledgment. This work was supported by the Korea Science \& Engineering Foundation grant R01-2001-00003.

References

[1] A. Bejancu, Geometry of CR-Submanifolds, Mathematics and Its Applications (East European Series), vol. 23, D. Reidel Publishing, Dordrecht, 1986.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 1976.
[3] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), no. 6, 568-578.
[4] , A Riemannian invariant for submanifolds in space forms and its applications, Geometry and Topology of Submanifolds, VI (Leuven, 1993/Brussels, 1993), World Scientific Publishing, New Jersey, 1994, pp. 58-81.
[5] , A general inequality for submanifolds in complex-space-forms and its applications, Arch. Math. (Basel) 67 (1996), no. 6, 519-528.
[6] , Riemannian submanifolds, Handbook of Differential Geometry, Vol. I (F. Dillen and L. Verstraelen, eds.), North-Holland Publishing, Amsterdam, 2000, pp. 187-418.
[7] B.-Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken, An exotic totally real minimal immersion of S^{3} in CP^{3} and its characterisation, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 1, 153-165.
[8] F. Defever, I. Mihai, and L. Verstraelen, B.-Y. Chen's inequality for C-totally real submanifolds of Sasakian space forms, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, 365-374.
[9] Y. H. Kim and D.-S. Kim, A basic inequality for submanifolds in Sasakian space forms, Houston J. Math. 25 (1999), no. 2, 247-257.
[10] G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geometry 4 (1970), 237-244.
[11] M. M. Tripathi, Almost semi-invariant submanifolds of trans-Sasakian manifolds, J. Indian Math. Soc. (N.S.) 62 (1996), no. 1-4, 225-245.
[12] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, vol. 3, World Scientific Publishing, Singapore, 1984.

Jeong-Sik Kim: Department of Mathematics Education, Sunchon National University, Sunchon 540-742, Korea

E-mail address: jskim01@hanmir.com
Jaedong Choi: Department of Mathematics, P.O. Box 335-2, Airforce Academy, Ssangsu, Namil, Chungwon, Chungbuk 363-849, Korea

E-mail address: jdong@afa.ac. kr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

